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1 Riemann Hypothesis Definition

Definition: There is a pattern in the distribution of primes among the positive integers (N).

2 Riemann Hypothesis Proof Algorithm

2.1 Distinguishing the Sequence of Odd Numbers

First two primes (by condition) are:
1, 2. (1)

Prime number 2 is significant for dividing the sequence into two equal sequences of even (x) and odd (y)
numbers:

x ∈ {2M |M ∈ N}, (2)

y ∈ {2M + 1 |M ∈ N}. (3)

Starting from M = 2 the expression (2) describes the set of composite numbers by condition:

xcomp ∈ {2M |M ∈ N, M ≥ 2}. (4)

Thus further we will consider the sequence of odd numbers {y} (3) to determine the pattern in the distribution
of primes (yo).
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2.2 Conclusion 1

The sequence of odd numbers {y}, except for yo, also includes the set of composite odd numbers:

ycomp ∈ {yoy | yo ≥ 3, y ≥ 3}. (5)

Expression (3) without limitations describes the distribution of firstyo in the sequence of odd numbers within
the section from 3 to the first ycomp = 32 = 9.
Let’s represent set (3) as the following expression:

yo = 12 + 2 · 1 ·M1 + 2 where M1 ≥ 0. (6)

Therefore, this section can be represented in the following way:

12 < y < 32. (7)

The following section, where expression (6) for determination of yo will be limited by exception of the set
of composite numbers {3y | y > 3}, will end with the first ycomp to which yo = 3 will bear no relation. By
definition it is ycomp = 52 = 25. Thus we can conclude the following:
Conclusion 1: All sections compliant with the specific pattern of distribution of yo are limited by ycomp = y2on
and ycomp = y2o(n+1).
Let’s analyze the first such section.

2.3 Section [1] 1 < y < 9

Distribution of yo is described by expression (6).
Let’s calculate first yo after (1):

3, 5, 7. (8)

2.4 Section [2] 9 < y < 25

In order to exclude the composite numbers ycomp from the set {3y | y > 3}, yo = 1 in expression (6) shall be
replaced by yo = 3 and summand 2 shall be replaced by variable ±2 to cover all yo in this section:

yo = 32 + 2 · 3 ·M3 ± 2 = 32 + 2(3M3 ± 1) where M3 ≥ 0. (9)

Let’s calculate next yo in the sequence:
11, 13, 17, 19, 23. (10)

2.5 Section [3] 25 < y < 49

For this section yo value shall be equal in two expressions - in (9) and in the following expression in order to
exclude the composite numbers {5y | y > 5}:

yo = 52 + 2 · 5 ·M5 ± 2z5 = 52 + 2(5M5 ± z5),

where M5 ≥ 0, 1 ≤ z5 ≤ 2.
(11)

Starting from section [2], expression for yo depends on the value of M3. According to Conclusion 1 and (9) it
is possible to calculate the lower and upper limits for M3 in any section of y2on < y < y2o(n+1):

y2on − 9± 2

6
≤M3 ≤

y2o(n+1) − 9± 2

6
. (12)
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For this section M3 value in (9) will change:

3 ≤M3 ≤ 7. (13)

Let’s compare expressions (9) and (11):

32 + 2 · 3 ·M3 ± 2 = 52 + 2 · 5 ·M5 ± 2z5. (14)

Let’s express M5 from expression (14):

M5 =
3M3 ± 1− 8∓ z5

5
. (15)

Substitute (15) into (11):

yo = 52 + 2 · 5 ·M5 ± 2z5 = 52 + 2

(
5 · 3M3 ± 1− 8∓ z5

5
± z5

)
,

where 3 ≤M3 < 7, 1 ≤ z5 ≤ 2, M5 =
3M3 ± 1− 8∓ z5

5
∈ Z≥.

(16)

Calculate next yo in section [3]:
29, 31, 37, 41, 43, 47. (17)

2.6 Conclusion 2

Based on the results of analysis of sections [1], [2], [3] we can conclude the following:
Conclusion 2: Each successive section compliant with the pattern of distribution of yo depends on the pattern
of distribution of yo in all previous sections starting from [2].
Let’s analyze the following section for final determination of the pattern of distribution of yo in sections
y2on < y < y2o(n+1).

2.7 Section [4] 49 < y < 121

For this section yo value shall be equal in two expressions - in (16) with different values of variables:

7 ≤M3 < 19, 1 ≤ z5 ≤ 2, M5 =
3M3 ± 1− 8∓ z5

5
∈ N. (18)

and in the following expression to exclude the composite numbers ycomp from the set {7y | y > 7}:

yo = 72 + 2 · 7 ·M7 ± 2z7 = 72 + 2(7M7 ± z7), where M7 ≥ 0, 1 ≤ z7 ≤ 3. (19)

Let’s compare expressions (16) and (19):

52 + 2

(
5 · 3M3 ± 1− 8∓ z5

5
± z5

)
= 72 + 2 · 7 ·M7 ± 2z7. (20)

Express M7 from (20):

M7 =
5 · 3M3±1−8∓z5

5 ± z5 − 12∓ z7

7
. (21)

Substitute M7 from (21) into (19):

yo = 72 + 2(7 ·
5 · 3M3±1−8∓z5

5 ± z5 − 12∓ z7

7
± z7),

where 7 ≤M3 < 19, 1 ≤ z5 ≤ 2, M5 =
3M3 ± 1− 8∓ z5

5
∈ N, 1 ≤ z7 ≤ 3,

M7 =
5 · 3M3±1−8∓z5

5 ± z5 − 12∓ z7

7
∈ Z≥.

(22)
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Let’s calculate the successive values of yo in section [4]:

53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 103, 107, 109, 113. (23)

2.8 General Expression of Distribution of Primes

Thus we can determine the specific patterns comparing expressions (16) and (22).
Let’s present the general expression of distribution of yo in sections [n] y2on < y < y2o(n+1) taking these patterns
into consideration:

yo = y2on + 2(yonMyon ± zyon) = y2on + 2(yon ·

·

yo(n−1)·(...·(5·
3M3±1−8∓z5

5 ±z5)−...)±...∓zyo(n−1)

yo(n−1)
± zyo(n−1)

− y2
on−y2

o(n−1)

2 ∓ zyon

yon
± zyon),

where
y2on − 9± 2

6
≤M3 <

y2o(n+1) − 9± 2

6
, 1 ≤ zyo

≤ yo − 1

2
,

Myob
=

yo(b−1)Myo(b−1)
± zyo(b−1)

− y2
ob−y2

o(b−1)

2 ∓ zyob

yob
∈ N,

where 3 < yo(b−1) < yob < yon,

Myon =
yo(n−1)Myo(n−1)

± zyo(n−1)
− y2

on−y2
o(n−1)

2 ∓ zyon

yon
∈ Z≥.

(24)

In order to form the full sequence of yo the [n] sections shall be analyzed in sequence. But calculation of yo
from sections to section becomes more difficult. Thus section [3] in expression (16) has 5 variables, section
[4] in (22) has 8 variables. But nevertheless, expression (24) unequivocally describes the distribution of yo in
sequence of numbers. If it is necessary to calculate yo in some section [n], avoiding the previous sections, all
yo ≤ yo(n+1) from previous calculations shall be known. The required range will be set by summand y2on and
values of M3 (12). While solving the problem all M3 < Myob

< Myon for this section [n] shall be calculated
in sequence.

2.9 Final Conclusion

Final Conclusion: Riemann Hypothesis is true. Distribution of primes among the positive integers has its own
pattern. But for odd numbers of y the sections compliant with the specific pattern of distribution of primes
yo are limited by composite numbers y2on and y2o(n+1). Distribution of yo in such sections [n], starting from

[3], is calculated according to the expression (24). The full sequence of yo is achieved by consequent analysis
of sections [n], starting from [1] 12 < y < 32.
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