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The velocity rotation curve of NGC 1560 has a peculiar wiggle around 4.5 kpc. This

makes it a favorable galaxy to test the diverse models trying to explain galactic

dynamics, as for example CDM and MOND. I will fit NGC 1560 using the GR-

Schwarzschild based ‘constant Lagrangian’ model for galactic dynamics and compare

it to other results. But first I will give a brief expose of the ‘constant Lagrangian’

approach. At the end, I present same other fitting curves: those of galaxies F583-1,

F579V1 and U11648.
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I. THE ‘CONSTANT LAGRANGIAN’ MODEL FOR GALACTIC

DYNAMICS

The Lagrangian equation of motion reads

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (1)

In classical gravitational dynamics I assume circular orbits with q̇ = v and q = r. The

Lagrangian itself is then given by L = K−V , with V the Newtonian potential gravitational

energy and K the kinetic energy. One then gets

d

dt

(
∂L

∂q̇

)
=
dp

dt
= F. (2)

The other part gives
∂L

∂q
= −dV

dr
, (3)

so one gets Newton’s equation of motion in a central field of gravity

Fg = −dV
dr
. (4)

Further analysis of the context results in the identification of the Hamiltonian of the system,

H = K+V , as being a constant of the orbital motion and the virial theorem as describing a

relation between K and V in one single orbit but also between different orbits, 2K+V = 0.

The previous analysis is problematic relative to the notion of geodetic motion in General

Relativity. The problem can best be described in a semi-relativistic approach using the

classical Lagrangian equation of motion for geodetic orbits. The most important aspect of

geodetic motion in GR is that it requires no force to move on a geodetic. This has important

implications for the Lagrangian equation of motion, because F = 0 on a geodetic. One gets

d

dt

(
∂L

∂q̇

)
= Fg = 0 (5)

and as a consequence also
∂L

∂q
= −dL

dr
= 0. (6)

As a result, one gets the crucial

L = K − V = constant (7)

on geodetic orbits.
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This result, the Lagrangian of the system as being the constant of the geodetic motion, is

used on a daily basis by many of us because it is used by GNSS systems for the relativistic

correction of atomic clocks in their satellites. Let’s elaborate this a bit further. If we apply

the Schwarzschild metric in polar coordinates, we have (Ruggiero et al., 2008)

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1 +

2Φ

c2

)−1

dr2 − r2dθ2 − r2sin2θdφ2. (8)

In case of a clock on a circular geodesic on the equator of a central non-rotating mass M we

have dr
dt

= 0, dθ
dt

= 0, sinθ = 1 and dφ
dt

= ω. We thus get, with vorbit = rω, the GR result

dτ

dt
=

√
1 +

2Φ

c2
− v2orbit

c2
(9)

with dτ as the clock-rate of a standard clock A in a geodetic orbit and dt as the ‘universal’

clock-rate G of a standard clock at rest in infinity, the only condition for which dτ = dt.

The result of Eqn. (9) is the basic relativistic correction used in GNSS clock frequencies,

with the first as the gravity effect or gravitational potential correction and the second as the

velocity effect or the correction due to Special Relativity (Ashby, 2002; Hećimović, 2013;

Delva and Lodewyck, 2013).

Given the classical definitions of K =
mv2orbit

2
and V = mΦ, we get

dτ

dt
=

√
1− 2L

U0

. (10)

All the satellites of a GNSS system are being installed on a similar orbit and thus syntonized

relative to one another because they share the same high and velocity and have constant

L and dτ
dt

on those orbits. But different GNSS systems, as for example GPS compared to

GALILEO, are functioning on different orbits with different velocities and those systems

aren’t syntonized relative to one another. This non-syntonization between satellites on

orbits with different heights and virial theorem connected velocities is very annoying for the

effort towards realizing an integration of the different GNSS systems into one single global

network.

The ‘constant Lagrangian’ model for galactic dynamics starts with the postulate that the

geodetic Lagrangian L = K − V is a galactic constant, not just an orbital constant. In this

model the classical Newtonian potential is assumed valid. This potential in the case of a

model galaxy with a perfect quasi-solid bulge and a perfect Schwarzschild emptiness around
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it is given in Fig.(1). My model galaxy is build of a model bulge with mass M and radius

R and a Schwardschild metric emptiness around it. The model bulge has constant density

ρ0 = M
V

= 3M
4πR3 and its composing stars rotate on geodetics in a quasi-solid way. So all those

stars in the bulge have equal angular velocity on their geodetic orbits, with v = ωr. On

the boundary between the quasi solid spherical bulge and the emptiness outside of it, the

orbital velocities are behaving smoothly. So the last star in the bulge and the first star in the

Schwarzschild region have equal velocities and potentials. I also assume that the Newtonian

potential itself is unchanged and unchallenged, remains classical in the whole galaxy and its

surroundings. Such a model galaxy doesn’t have a SMBH in the center of its bulge and it

only has some very lonely stars in the space outside the bulge.

FIG. 1. The potential inside and out of a model bulge

The ‘constant Lagrangian model postulates L = K − V = constant in the entire galaxy,

without changing the Newtonian potential. As a result, in such a model bulge, L is a
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constant of the motion, not only in one orbit but also between orbits.

L

m
=
v2orbit

2
+
GM

r
=

3GM

2R
= constant. (11)

For the region 0 ≤ r ≤ R we get

v2orbit =
GM

R
· r
R

(12)

and outside the model bulge, where R ≤ r ≤ ∞, we have

v2orbit =
3GM

R
− GM

r
. (13)

FIG. 2. The square of the orbital velocity profile in the model galaxy with L = constant.

From the perspective of a free fall Einstein elevator observer, the free fall on a radial

geodetic from infinity towards the center of the bulge, the other free fall tangential geodetics

seem to abide the law of conservation of energy, because the escape kinetic energy plus

the orbital kinetic energy is a constant on my model galaxy with galactic constant L. An
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Einstein elevator system with test mass m that would be put in an orbital collapse situation,

magically descending from orbit to orbit in a process in thermodynamic equilibrium, would

have constant total kinetic energy, from the radial free fall perspective. This can be expressed

as L = Korbit − V = Korbit + Kescape = Kfinal. In Fig.(2) I sketched the result, with

−V = +Kescape.

Such a model galaxy would also be a GNSS engineer’s dream come true because the

whole model galaxy is in one single syntonized time-bubble.

dτ

dt
=

√
1− 2L

U0

. (14)

Given the Baryonic Tully-Fisher relation in Milgrom’s version v4final = Ga0M with 2πa0 ≈

cH0, with a0 as Milgrom’s galactic minimum acceleration and H0 as the Hubble constant

(Milgrom, 1983; McGaugh, 2005), we get as a galactic time bubble fix

dτ

dt
=

√
1− 2L

U0

=

√
1−

v2final
c2

=

√√√√
1−

√
v4final
c4

= (15)√
1−

√
Ga0M

c4
=

√
1−

√
GH0M

2πc3
=

√
1−

√
M

2πMU

, (16)

in which I used L = 3GM/R = Kfinal = 1
2
mv2final and MU = c3

GH0
. This last constant can

be referred to as an apparent mass of the Universe, a purely theoretical number constant,

see (Mercier, 2015). In a model Universe, this would imply that my model galaxy would

be in a proper time bubble with clock-rate dτ relative to the universal clock-rate dt in

proportion to the masses of galaxy M and Universe MU . In my model galaxy theoretical

environment the Baryonic Tully-Fisher relationship implies that the galactic time bubble

is fixed through the mass of my model galaxy and that this fix is a cosmological one. So

what is a universal acceleration minimum a0 in MOND can be interpreted as a universally

correlated (through MU) but still local (through M) time bubble fix in my model galaxy

geodetic environment. In such a model Universe, the time bubble of a galaxy immediately

functions as a gravitational lens, because dτ
dt

as measuring the curvature of the metric also

determines the gravitational index of refraction of the time bubble relative to Cosmic space.
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II. FITTING THE NGC 1560 ROTATION CURVE

Having determined the model galactic velocity rotation curve based on the Lagrangian

as a galactic constant of orbital motion, the question is to what extend real galaxies can be

modeled in this way. For this I used the experimental velocity rotation data of galaxy NGC

1560. The velocity rotation curve data come from (Broeils, 1992). The comparison with

other fitting models came from (Gentile et al., 2010).

In this section I present the plot of V 2
orb against r, with in each plot the experimental

values in red stars and the theoretical values in black bars. The fitting plots are given in

two versions. The first plot is with one single fit for M and R, this is the pure model. In

the second plot the two parameters M and R are used as one single‘free’ parameter for

every single measurement, because the time-bubble or L is constant constraint leaves only

one degree of freedom. The locked in through L variation of M and R in plot 2 can be

monitored using the apparent model mass density of the bulge ρbulge. This density varies

as M , with locked in R, varies. With this parameter freedom of one single value, M and

with locked R in L and ρbulge, all four experimental curves could be fitted really nice. The

most important cut in the model is the change from the model bulge to the model empty

space around it. In the model bulge, V 2
orb ∝ r2, outside the model bulge V 2

orb ∝ −r−1. In the

fixed fitting curve, the apparent mass density of the bulge is the main variable that changes

due to more realistic circumstances. The excel data sheets of the plots are in the appendix.

The fact that it is possible to exactly plot the rotation curves with just one free parameter

should be significant for the underlying physics. In my approach, one free parameter can

force a time-bubble on a whole galaxy.

But first lets present the results from other approaches, as given in (Gentile et al., 2010).

See Fig.(3, 4, 5). In discussing the result, special attention is given to the “wiggle” in the

graph and which model can fit it best.

In the rotation curve of NGC 1560, as derived by B92, there is a clear “wiggle”

in the total rotation velocity, which corresponds very closely to a similar wiggle

in the gas contribution to the rotation curve. Mass models such as MOND nat-

urally reproduce the feature, whereas models that include a dominant spherical

(or triaxial) halo are too smooth to do so. (Gentile et al., 2010)

Gentile et. al. conclude that MOND does best and that the success of MOND indicates to
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an intimate relation between baryonic mass and galactic rotation curves.

FIG. 3. Gentile et. al. fit of NGC 1560, using the Burkert DM distribution.
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FIG. 4. Gentile et. al. fit of NGC 1560, using the NFW DM distribution.

FIG. 5. Gentile et. al. fit of NGC 1560, using MOND.
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In my approach, I first have to determine the model galaxy that fits best, using the

parameters M and R, and then I can use M as a free parameter in order to create a

perfect time bubble. In case of NGC 1560 however, its seems that in phase 1 two models

partially fit the rotation curve. The first pure model fits NGC 1560 before the “wiggle”, see

Fig.(6), the second pure model fits NGC 1560 after the “wiggle”, see Fig.(7). With the first

model, it is almost impossible to then in phase 2 fit the outer range of the velocity curve,

while with the second model this is easy. Thus in my approach, the ‘constant Lagrangian’

model, the modeling indicates the underlying dynamics and the real world of unpredictable

mass distributions. The “wiggle” divides NGC 1560 in two regions, which both follow their

respective pure model relatively smoothly without being disturbed by that other part of the

galaxy. The baryonic matter further away from the center than the H1 gas of producing

“wiggle” just behaves as if the bulge end where the “wiggle” ends. The baryonic matter

closer to the center than the H1 gas of producing “wiggle” just behaves as if the H1 gas

of the “wiggle” is a perfect shell which doesn’t gravitate inside that shell. So the fact that

two pure models can be made to partially fit the rotation curve actually reveals a lot of the

underlying dynamics, reproducing known baryonic behavior.
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FIG. 6. NGC1560 Plot1, V 2
orb against r, pure model 1 with M=0.09 and R=2.
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FIG. 7. NGC1560 Plot3, V 2
orb against r, pure model 3 with M=0.4 and R=4.7.
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FIG. 8. NGC1560 Plot2, V 2
orb against r, fixed galactic time bubble model of 1. Datasheet in the

appendix.
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FIG. 9. NGC1560 Plot4, V 2
orb against r, fixed galactic time bubble model of 3. Datasheet in the

appendix.
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III. SOME MORE ROTATION CURVE FITS: F583-1, F579V1 AND U11648

The data from the following fitting curves are from (McGaugh et al., 2001) and were

retrieved from the data website of McGaugh.

FIG. 10. F583-1 Plot1, V 2
orb against r, pure model 3 with M=0.4 and R=4.7.
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FIG. 11. F583-1 Plot 2, V 2
orb against r, fixed galactic time bubble model of 3. Datasheet in the

appendix.
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FIG. 12. F579-V1 Plot1, V 2
orb against r, pure model 3 with M=0.145 and R=1.34.
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FIG. 13. F579-V1 Plot 2, V 2
orb against r, fixed galactic time bubble model of 3. Datasheet in the

appendix.
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FIG. 14. U11648 Plot 1, V 2
orb against r, pure model 3 with M=0.14 and R=6.
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FIG. 15. U11648 Plot 2, V 2
orb against r, fixed galactic time bubble model of 3. Datasheet in the

appendix.
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FIG. 16. NGC 1560 Excell datasheet 1, V 2
orb against r, fixed model.
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FIG. 17. NGC 1560 Excell datasheet 2, V 2
orb against r, fixed model.

FIG. 18. F583 1 Excell datasheet 1, V 2
orb against r, fixed model.
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FIG. 19. F579 V1 Excell datasheet 1, V 2
orb against r, fixed model.

FIG. 20. U11648 Excell datasheet 1, V 2
orb against r, fixed model.
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