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ABSTRACT
This paper presents a method of capturing 3D scene informa-
tion using an array of single pixel cameras. Based on the re-
cent results for distributed compressive sampling, it is shown
here that there could be considerable savings in the measure-
ments required to construct the whole scene, when the corre-
lations between the images captured by the individual cam-
eras in the array is exploited. A technique for doing so for
an array of cameras separated by translations along one axis
only is illustrated.

Index Terms— Cameras, stereo vision, signal sampling,
compressive sensing.

1. INTRODUCTION

Conventional wisdom in image acquisition and sampling dic-
tated that the number of samples in the frequency domain
match the resolution of the image, i.e. total number of pixels.
This hinged on Nyquist sampling theory, which stated that the
number of samples required to reconstruct a signal accurately
depends on its bandwidth. Recently, a technique called com-
pressive sampling has shown that signals can be reconstructed
fairly accurately from a set of observations far less than the
resolution desired. Typical signals and images have some in-
herent structure, which is exploited by compressive sampling
techniques. The same structure is also taken advantage of by
image compression methods like transform coding and quan-
tization JPEG. These compression methods use the fact that
signals have sparse representation in some chosen basis, and
one needs to store only such adaptively chosen transform co-
efficients instead of all the signal samples.

This usually works as follows: the complete signal is ac-
quired, then transform coded, followed by encoding of the
largest transform coefficients; rest of the coefficients are dis-
carded. It is wasteful to retain all signal samples only to later
reduce it to a compact representation. Instead, compressive
sampling acquires the signal directly in its compact represen-
tation [1]. Recently, an actual single pixel camera architecture
was proposed in [2] which is based on compressive sampling.

In the case of multiple sensors (Eg: Camera arrays) a dis-
tributed compressive sampling (DCS) theory has been devel-
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oped [3]. In a typical DCS scenario, a number of sensors
measure signals that are each individually sparse in some ba-
sis and also correlated from sensor to sensor. Each sensor in-
dependently encodes its signal by projecting it onto another,
incoherent basis (such as a random one) and then transmits
just a few of the resulting coefficients to a single collection
point. Under the right conditions, a decoder at the collection
point can reconstruct each of the signals precisely. The DCS
theory tries to exploit the joint sparsity of a signal ensemble.

In this paper, we propose a method for 3D scene capture
based on the DCS framework. We propose the use of multiple
single pixel cameras to form a camera array. We outline the
procedure for the acquisition of the common sparse compo-
nent as well as the innovative part of the signal at each camera.
This paper is organized as follows: Section 2 briefly outlines
compressive sampling and section 3 describes the single pixel
camera. This is followed by section 4 which describes the
DCS model we use. Section 5 explains our proposed method.
Results are presented in section 6 and section 7 concludes the
paper.

2. COMPRESSIVE SAMPLING (CS)

This section provides a brief summary of the compressive
sampling theory [1], [5]. Consider a length N real val-
ued signal (a vectorized signal for images) x of any di-
mension indexed as x(n), n 2 1, 2, · · · , N . Let the basis
 = [ 1, psi2, · · · , N ] provide a K sparse representation
of x, in which case we have:

x =  ✓ =
NX

n=1

✓(n) n =
KX

l=1

✓(nl) nl (1)

Here, x is written as a linear combination of k vectors
chosen from , nl being the indices of these vectors, and ✓(n)
are the coefficients. In matrix notation, x is a N ⇥ 1 column
vector, the sparse basis matrix  is N ⇥ N with the basis
vectors  n as columns, and ✓ is a N ⇥ 1 columns vector with
K nonzero elements, i.e. k ✓k0 = K where k · kp is the lp

norm.
We measure and encode M < N projections of the signal

onto a second set of basis functions. In matrix notation, we



measure
y = �x (2)

where y is a M ⇥1 column vector and the measurement basis
matrix � is M ⇥ N with each row a basis vector �m. Since
M < N , recovery of the signal x from the measurements
y is ill-posed in general; however the additional assumption
of signal sparsity makes recovery possible and practical. The
CS theory tells us that when certain conditions hold, namely
that the basis �m cannot sparsely represent the elements of
the basis  m (a condition known as incoherence of the two
bases), and M being large enough, one can recover the signal.

The recovery of the sparse set of significant coefficients
✓(n) can be achieved using optimization by searching for the
signal with l0-sparsest coefficients ✓(n) that agrees with the
M observed measurements in y, i.e. one needs to solve for:

✓̂ = arg min k✓k0 s.t. y = � ✓ (3)

For a K sparse signal, K + 1 random measurements need
to be made. Since solving Equation (3) is NP complete, the l0

optimization is replaced with an l1 norm based optimization,
the price paid being that the number of measurements now
need to be M = cK where c > 1 is an oversampling factor.
This is also called basis pursuit.

3. CS BASED SINGLE PIXEL CAMERA

In the system in [2], a Texas Instruments (TI) digital micro
mirror device (DMD) is used. The DMD consists of an array
of electrostatically actuated micro-mirrors where each mirror
the array is suspended above an individual SRAM cell. The
DMD micro-mirrors form a pixel array of size 1024 ⇥ 768.
Each mirror rotates about a hinge and can be positioned in
one of two states (+12 degrees and -12 degrees from hori-
zontal); thus light falling on the DMD may be reflected in
two directions depending on the orientation of the mirrors.
The light from a given configuration of the DMD mirrors is
summed at the photodiode to yield an absolute voltage that
yields a coefficient y(m) for that configuration. The output is
amplified through an op-amp circuit and then digitized by a
12-bit analog-to-digital converter. M such measurements are
taken with M different (random) mirror configurations to get
y. The image is recovered from these M measurements using
l1 norm based optimization.

4. DISTRIBUTED COMPRESSIVE SAMPLING (DCS)

In the model proposed in [3], all signals share a common
sparse component while each individual signal contains a
sparse innovation component; that is,

xj = zC + zj , j 2 1, 2, , · · · , J (4)

with zC =  ✓C , k✓Ck0 = K and zj =  ✓j , k✓jk0 = K.

Thus, the signal zC is common to all of the xj and has
sparsity K in basis. The signals zj are the unique portions of
the xj and have sparsity Kj in the same basis.

It was shown in [3] that for 2 signals, given the (K+K1)c
measurements for x1 as side information, and assuming that
the partitioning of x1 into zC and z1 is known, cK2 mea-
surements that describe z2 should allow reconstruction of x2.
Also, (K + K1 + K2)c coefficients should suffice to recon-
struct both x1 and x2, since we have K + K1 + K2 nonzero
elements in x1 and x2. This can be extended to arbitrary num-
ber of signals.

5. THE PROPOSED DCS SINGLE PIXEL CAMERA
ARRAY FRAMEWORK

The DCS model explained above fits our approach, where
projections of the scene are captured as images on different
cameras, which are all K1, K2, · · · sparse. Consider the sim-
ple case where the camera are all aligned along a single base-
line (i.e. their relative positions vary by translations along one
coordinate only). Although this is a fairly restrictive model,
it is a very common setup for camera arrays. In this case, the
projected images are related to each other through disparity
maps (ignoring occlusions). The disparity maps are again K

sparse in the same basis set as the individual projected im-
ages. (An example of such a basis is wavelets).

Our approach for the case of 2 single pixel cameras
(which can be trivially extended to the N camera case) is
explained below:

• Using camera 1, we take K

0

1 measurements of the im-
age of the 3D scene as seen by that camera. Note that
the relationship between K1 and K

0

1 is that, K

0

1 =
K1 + K. Here, it was assumed that the disparity map
is K sparse in the basis. In other words, K

0

1 measure-
ments enable us to reconstruct projected image of cam-
era one accurately, without the need of extra measure-
ments from other cameras.

• Using camera 2, we take K measurements of the scene
as projected onto that camera. It was assumed that the
disparity map is K sparse in the basis. Note: Here,
it is implicitly assumed that the disparity map is far
less complex than each of the projected camera images
themselves (i.e. K < K1, K < K2), which is almost
always the case. The disparity map almost always has
a smaller dynamic range as well as smoother regions
than the actual images.

• Based on the K

0

1 measurements, we reconstruct image
for camera 1 accurately (Call it Image 1). Based on K

measurements,we can reconstruct only a blurry version
of the projected image onto camera 2 (Call it image
2’). This is because an accurate image would require
K

0

2 = K2 + K measurements.



• In order to get the full scene, our goal is to now recon-
struct an accurate version of the projected image onto
camera 2 (Call it image 2). Now we take advantage of
the correlations between the 2 camera images as fol-
lows. We re-encode the Image 1 (with K nonzero co-
efficients) to obtain a blurred version called Image 1’.
Using image 1’ and Image 2’, we calculate the dispar-
ity map D [4]. Using D and accurate Image 1, we re-
construct (accurate) image 2 by simply compensating
Image 1 with the motion(s) indicated by the map D in
different regions. Now, we can reconstruct the scene
using accurate images Image 1 and Image 2.

Here, we outline how our method leads to a saving in
the number of measurements jointly taken by taking advan-
tage of the correlations between the images, as opposed to
applying the compressed sampling framework for individual
images captured by each of the single cameras in the cam-
era array. In the case of N camera images, we would need
K

0

1 + K

0

2 + · · · + K

0

N measurements if each image was com-
pressive sampled independent of the other. In the case of the
proposed framework, we would need only K

0

1 + (N � 1)K
measurements. For an illustration, in the case that each image
is roughly of the same complexity, i.e. all the K

0

i ’s are equal to
K

0, then our framework results in a saving of (N�1)K
0�K

measurements.
As an example, consider N 256x256 images of the same

scene captured from different positions. Each projected
image would independently require about 30000 measure-
ments for good quality reconstruction, making a total of
30000N measurements. In our framework, the first im-
age would require 30000 measurements. It was found that
to get a fairly accurate disparity map, about 20000 mea-
surements suffice for the rest of the image, which makes it
30000 + (20000)(N � 1) measurements, which for N=10,
results in savings of 300000�(30000+20000⇤9)

300000 ⇥ 100 = 30 per-
cent of the measurements. Lesser number of measurements
results in lesser time for data acquisition as well as faster
communication of the information from the sensors to the
main processor, which are important considerations for any
sensor network.

6. RESULTS

In this section, we provide results for simulations of the cam-
era array with 2 cameras; position of camera 2 varies from
that of camera 1 by a translation along one axis only. Figures
1 and 5 show the original left and right images for the scenes
considered (’Coke’ and ’Dog’), we cropped regions of size
128x128 from each of the images for faster testing, which are
shown in Figures 2 and 6 for either scene considered. 4000
measurements were taken to reconstruct the left image Im-
age L fairly accurately. For the right image, 2000 measure-
ments were taken and the blurry image Image R’ was recon-

structed. To get the disparity map, we use a blurred version of
the left image (Image L’) with image R’. The disparity map
was constructed using the method outlined in [4]. The dis-
parity map contains values from �8 to +8, which is a much
smaller dynamic range as compared to the images themselves
which have pixels ranging from 0 to 255. Figure 3 shows
images R’ and the blurred version L’ for the ’Coke’ scene.
Figure 4 shows accurate image L along with the accurately
reconstructed right image R using the disparity map’s values
to motion compensate the pixels in image L (all for the scene
’Coke’). Similarly, Figure 7 shows images R’ and the blurred
version L’ for the ’Dog’ scene. Figure 8 shows accurate image
L along with the accurately reconstructed right image R using
the disparity map’s values to motion compensate the pixels in
image L (all for the scene ’Dog’).

Fig. 1. The actual full sized ’coke’ L and R images

Fig. 2. Original cropped ’coke’ L and R images

Fig. 3. Blurry reconstructed ’Coke’ images: Image L’ and
Image R’, used to build the disparity map.

From the results, it is clear that a fairly accurate recon-
struction can be made for both the left and right images by
using the correlations between them, as proposed.



Fig. 4. Accurately reconstructed ’Coke’ images using dispar-
ity map: Images L and R.

Fig. 5. The actual full sized ’Dog’ L and R images

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a single pixel camera array
framework which offers considerable savings in the number
of measurements (using the theory of distributed compressed
sampling) as compared to using the compressive sampling
framework at each individual single pixel camera indepen-
dent of others in the camera array. Although our framework
is restricted right now to camera arrays in which the cam-
eras are separated by a translation along one axis only, we be-
lieve that it is still useful since this array configuration is by
far the most common. Future work could involve extension
of the framework to camera arrays with general relationships
between the component camera positions. Also, thus far, we
have not taken occlusions into account, which are an impor-
tant practical consideration. This could be addressed in the
future.
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