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Abstract 

This paper shows that the solution of a class of Schrödinger equations may be 

performed in terms of the solution of the equation of constant coefficients. 

Introduction 

The analytical integration of Schrödinger equations leads in general to express 

bound and scattering state solutions in terms of special functions of 

mathematical physics so that these solutions may be sometimes very 

complicated mathematical formulas. Even the discrete bound state solutions of 

the prototype of dynamical systems, that is, the linear harmonic oscillator, must 

be explicited in terms of special functions called Hermite polynomials. To 

compute analytically these solutions, many mathematical methods for solving 

eigenvalue problems are used in the literature. In this way several methods like 

the contact transformation, the point transformation and the nonlocal 

transformation, which allow one to map the initial Schrödinger equation into an 

equation with well known solution are widely used to solve the Schrödinger 

equation with constant mass as well as with position-dependent mass. However, 

there appears reasonable to ask whether these methods may be used to map the 

Schrödinger equation into the free particle equation or in general into an 

equation with constant coefficients. Such a problem is very interesting since it 

may lead to compute the general solution to the Schrödinger equation in terms 

of elementary functions with well-known analytical properties. The underlined  

problem has been examined effectively by some authors. Thus the problem of 

finding Schrödinger equations with time-dependent potentials which can be 

mapped into the free particle equation has been explored in [1] under nonlocal 

transformations. Under point transformation Boyer [2] has been able to show 

that the Schrödinger equation with time-independent potential may be mapped 

into free particle equation if the potential is a quadratic polynomial. Recently it 

has been shown that the Schrödinger equation with position-dependent mass can 

be mapped by variable transformation into equations of constant coefficients to 
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compute bound and scattering solutions in terms of elementary functions [3]. 

More recently, it has been shown that the bound state solutions of the 

Schrödinger equation with the purely exponential potential may be expressed in 

terms of elementary functions by mapping the initial Schrödinger equation into 

an equation of constant coefficients [4]. In this perspective the problem of 

finding Schrödinger equation with time-independent potentials of  diverse types 

which can be mapped into equations of constant coefficients, or precisely into 

the free particle equation, is an interesting question to be answered in 

mathematical physics since it may also lead to detect new exactly solvable 

potentials. To be specific, in this work, the question to be answered is to ask 

whether the Schrödinger equation may be mapped into constant coefficient 

equations in general, and in particular into the free particle equation by nonlocal 

transformation with time-independent potential which is not quadratic 

polynomial. The present work assumes such a prediction. To demonstrate, the 

considered nonlocal transformation is clearly formulated and applied to map the 

free particle equation and the constant coefficient equation into  general classes 

of Schrödinger equations (section 2) so that examples of potentials in addition to 

the quadratic polynomial potential may be highlighted (section 3). Finally these 

results are discussed (section 4) and a conclusion for the work is carried out.  

2. Classes of Schrödinger equations  

This part is devoted to solve in a straightforward fashion the mathematical 

problem of interest by application of nonlocal transformation to the constant 

coefficient equation and to the free particle equation. In this way the appropriate 

classes of Schrödinger equations are carried out so that involved time-

independent potentials may be generated.  

2.1 Mathematical problem 

Let 

0)()('' =+ ττ cyy                                                                                                     (1) 

be the constant coefficient equation and the free particle equation when the 

constant ,0=c  where prime means a differentiation with respect to the argument. 

For ,0=c  the solution of (1) may take the form 

BAy += ττ )(                                                                                                         (2) 
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where A  and B  are arbitrary constants. If ,0fc  then the general solution to (1) 

reads 

( ) ( )τττ cKcKy cossin)( 21 +=                                                                              (3) 

where 1K  and 2K are arbitrary parameters. 

For ,0pc  the general solution to (1) may be written 

( ) ( )τττ cKcKy −+−= coshsinh)( 43                                                                      (4) 

where 3K  and 4K are arbitrary parameters. Therefore the following problem may 

be stated: Find the classes of Schrödinger equations whose the general solution 

may be expressed in terms of (2), (3) or (4) by nonlocal transformation (1).  

To achieve this goal, it is needed first to define appropriately the nonlocal 

transformation to be considered and secondly to show that its application to (1) 

may lead to a Schrödinger differential equation of the form 

[ ] 0)()()('' =−+ xuxVExu                                                                                        (5) 

where )(xu is the wave function, E  is the spectral parameter and )(xV
 
denotes the 

time-independent potential. 

2.2 Nonlocal transformation of the constant coefficient equation 

The nonlocal transformation of the constant coefficient equation is necessary to 

establish the class of Schrödinger equations which admit general solutions in 

terms of (3) or (4). Thus define the change of variables 

)()()( xexuy ϕτ l=  ,     dxed x)(ϕγτ =                                                                             (6) 

From (6), it follows 

)()()( xeyxu ϕτ l−=                                                                                                     (7) 

where l  and γ  are arbitrary parameters and )(xϕ  an arbitrary function. Then 

consider the following theorem. 

Theorem 1. Let l2=γ . Then equation (1) is reducible to 

0)(])(')(''[)('' )(422 =+−+ xuecxxxu xϕϕϕ l
ll                                                             (8) 
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Proof. Using the nonlocal transformation (6), one may compute 

)()(])(')()('[)(' xexxuxuy ϕγϕτ −+= l
l    

from which it follows after a few mathematical manipulations 

{ } )()2(2 )(]))(')(()(''[)(')(')2()('')('' xexuxxxuxxuy ϕγϕγϕϕγτ −−++−+= l
llll                  (9) 

The substitution of (9) into (1) knowing (6) yields the differential equation 

0)(]))(')(()(''[)(')(')2()('' )(22 =+−++−+ xucexxxuxxu xγϕϕγϕϕγ llll                       (10) 

Putting ,2l=γ one may arrive at the differential equation (8). The equation (8) 

may take the form of Schrödinger equation (5) once the function )(xϕ  suitably is 

convenently choosen, so that (8) defines a new class of Schrödinger equations 

which may be mapped into the constant coefficient equation (1) where 0≠c . 

The differential equation (8) is very interesting from the physical point of view 

since the functional choice ,
4

1
)( xax =ϕ where a  is a control parameter, leads to 

the important Schrödinger equation with the purely exponential potential 

0)(
16

)(''
22

=







+−+ xuce

a
xu xall

                                                                             (11) 

where 
16

22a
E

l
−=  and ,)( xacexV l−=  which has been exactly and explicitly solved 

in terms of elementary functions [5]. It has been, in this context, for the first 

time, possible to show that the repulsive exponential potential may exhibit 

bound state solutions with negative energy spectrum [5]. Now, if ,
4

)( 2x
b

x =ϕ   

where b is a control parameter, then (8) reduces to  

0)(]
42

[)(''
22

22

=+−+ xucex
bb

xu xblll
                                                                     (12) 

where, compared with (5), ,
2

b
E

l
= and 

22
22

4
)( xbcex

b
xV ll

−= . 

The general solution to (12) may be expressed, knowing (3) for ,0fc as 

222

42
2

2
1 cossin)(

x
b

x
b

x
b

edxecKdxecKxu
lll

−




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
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











+








= ∫∫                                           (13) 
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For ,0pc the general solution to (12), knowing (4), may take the expression 

222

42
4

2
3 coshsinh)(

x
b

x
b

x
b

edxecKdxecKxu
lll

−
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
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
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







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


−+








−= ∫∫                                  (14) 

If ),ln(
4

1
)( baxx +=ϕ  and  ,2=l  then the corresponding Schrödinger equation (8) 

takes the expression 

0)()(
)(4

3
)('' 2

2

2

=
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




++

+
−+ xubaxc

bax

a
xu                                                              (15)  

The exact general solution may be written, for ,0fc as 

bax
bxaxcKbxaxcKxu

+
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
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1
cos

2

1
sin)( 2

2

2

1                            (16) 

where cbE 2= . 

2.3 Nonlocal transformation of the free particle equation  

Now, consider the following theorem, as a consequence of the theorem 1. 

Theorem 2. Let 0=c . Then (8) becomes 

0)(])(')(''[)('' 22 =−+ xuxxxu ϕϕ ll                                                                        (17)  

Proof. It is easy to see that the theorem 2 is a special case ( 0=c ) of theorem 1.  

Equation (17) is the nonlocal transformation of (1) where ,0=c that is of the free 

particle equation. This equation may take the form of (5) under the condition 

that 

)()(' xfqx +=ϕ                                                                                                    (18) 

where q  is an arbitrary constant and )(xf  is an arbitrary function of .x  From 

(18) one may obtain the condition on ),(xϕ that is 

∫+= dxxfqxx )()(ϕ                                                                                              (19) 

In this context, (17) becomes 

0)()](2)()('[)('' 22222 =−−+−+ xuxfqxfxfqxu llll                                                 (20) 
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The comparison of (20) with (5) allows one to write 

22qE l−=                                                                                                             (21) 

and  

)(2)()(')( 222 xfqxfxfxV lll ++−=                                                                        (22) 

If xxf β=)( , where β  is an arbitrary constant, the spectral parameter is defined 

as ,22 βll +−= qE  and the potential )(xV
 
must read ,2)( 2222 xqxxV ββ ll += which is 

a quadratic polynomial, as highlighted in [2]. If the potential is defined as 

βββ lll −+= xqxxV 2222 2)( , then E  must be .22qE l−=  The time-independent 

potential (22) defines the desired new class of Schrödinger equations (20) which 

may be mapped into the free particle equation (1) where 0=c . In this situation 

the general solution to the Schrödinger equation (20) may take, after (7), the 

form 

{ } )()(2)( xx eBdxeAxu ϕϕ ll −+= ∫                                                                                 (23) 

where )(xϕ is given by (19). 

Consider now some illustrative potentials. 

3. Examples 

Example 1 

Let ),ln()( αϕ axqxx += where α  is an arbitrary parameter. Then, the Schrödinger 

equation (17) reduces to 

0)(
2)1(

)(''
2

2

22 =







−

+
−−+ xu

x

q

x
qxu

ααα lll
l                                                          (24) 

where ,22qE l−=  and the potential takes the form 

x

q

x
xV

ααα 2

2

2)1(
)(

lll
+

+
=                                                                                     (25)  

Such a potential (25) is a special case of the singular Coulomb potential [6] 

which arises in Kepler problem and has been used by Kratzer in molecular 

physics [7].                            

The general solution to (24) may be written in the form 
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{ } xqxq exBdxexaaxu llllll −−− ∫ += αα 222)(                                                                    (26)                                                                                      

Example 2 

Consider now .)( xbe
b

a
qxx +=ϕ Then the corresponding Schrödinger equation (17) 

becomes 

)(])2([)('' 22222 xueqbaeaqxu xbxb
llll −+−−+                                                          (27) 

Therefore the spectral parameter ,22qE l−= and 

xbxb eqbaeaxV )2()( 222
lll −−=                                                                               (28) 

The potential (28) is a special case of the generalized Morse potential [6].    

If ,bq =  then (28) reduces to     

xbxb eabeaxV )21()( 222
lll −−=                                                                               (29)   

From (29) one may recover for ,1=b  the Morse type potential [5] 

xx eaeaxV )21()( 222
lll −−=                                                                                   (30) 

In other words, the Schrödinger equation with the generalized Morse potential 

can be mapped into the free particle equation under the form (28). Now one may 

write the general solution to (27) as 


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+= ∫

xbxb e
b

a
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a
qx

eBdxeAxu
ll2

)(                                                                     (31) 

4. Discussion 

The importance of mappings for solving differential equations has been widely 

underlined in the literature. Several transformations like contact transformation, 

point transformation and nonlocal transformation have been found to be a 

powerfull mathematical tool to solve exactly in closed form solutions linear as 

well as nonlinear differential equations. As such, these transformation methods 

have been intensively used to investigate the Schrödinger equation with a great 

variety of potentials. However the results are often to map such an equation into 

the hypergeometric type equation leading to a general solution in terms of 

special functions. In this way there appears appropriate to ask whether the 

Schrödinger equation can be mapped into the constant coefficient equation 
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which can lead to express the bound and scattering state solutions in terms of 

elementary functions. It is easy to see that a few works are performed in this 

regard, due to the difficulty to find the convenient transformation of variables. 

Previous works have shown that the Schrödinger equation can be mapped into 

the free particle equation if and only if the time-independent potential is a 

quadratic polynomial [2]. The present work has been able to extend this result 

using a nonlocal transformation. Thus it offers the possibility to detect new 

exactly solvable potentials but also well-known potentials for which the 

Schrödinger equation can be mapped into the free particle equation. In this 

perspective the Schrödinger equation with the Morse potential and with the 

singular Coulomb potential for example, have been mapped to the free particle 

equation. Due to the proposed nonlocal transformation, it has also been possible 

to show the existence of a new class of Schrödinger equations which can be 

mapped into the constant coefficient equation of the second order leading to 

express the bound state solutions in terms of elementary solutions. On the basis 

of these findings this work may be concluded. 

Conclusion 

Some works in the literature are devoted to investigate Schrödinger equations 

which may be mapped into differential equations of constant coefficients, more 

precisely into the free particle equation, which may allow solutions in terms of 

elementary functions. This work has been designed to enlarge this class of 

Schrödinger equations using a nonlocal transformation of the constant 

coefficient equation. In so doing a new class of Schrödinger equations which 

can be exactly and explicitly solved in terms of trigonometric functions but also 

in terms of hyperbolic sine functions has been highlighted. In this regard a new 

class of Schrödinger equations which may be mapped into the free particle 

equation has been also established. As a major finding it has been noted that 

some Schrödinger equations with well known potentials can be mapped into 

constant coefficient equations. 
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