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This is the writer’s poison-pen letter addressed to differential forms, also known as exterior calculus. Having avoided
them for years, at the urging of a colleague I decided to learn the formalism to see for myself if it’s of any practical
use for physics students. The answer is: no, differential forms really have no practical use, but there is one aspect
of the formalism that makes them of some interest to students, which is that they point to a profound connection
between general relativity, electromagnetism and quantum physics. This connection, which is difficult to see
without the formalism, is provided by the Cartan structure equations, which all physics students should at least be
aware of.

The key idea of differential forms is that they dispense with the usual indices of tensor analysis, thus making them
valid in any coordinate system. However, certain indices invariably go along for the ride, and when it comes to
actually calculating something truly useful (like the Schwarzschild metric) the student finds that the usual indices
are necessary after all. Consequently, outside of some aesthetic appeal, differential forms can be safely omitted
from the standard student curriculum.

In this paper I derive the Cartan structure equations in the most elementary manner possible. The mathematical
formalism is not difficult, but the rules associated with the antisymmetry of differential forms can be exasperating
to deal with, especially since most textbooks on the subject are overly mathematical and don’t bother to adequately
explain them. While it is assumed that the student has some familiarity with the notions of parallel transport and
covariant derivatives, it’s just basic algebra from there on out.

1. Preliminaries

The student is expected to be familiar with the notion of a metric, a symmetric tensor that determines the length
or magnitude of a vector. In a flat (Minkowski) space, vector length is given by

L2 = ηµν d xµd xν

where ηµν is the Minkowski tensor which, in four dimensions, is represented by the constant matrix

ηab =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







The length of a vector in a curved space (in which gravitational, electromagnetic or other fields are present) is
determined by

L2 = gµν d xµd xν

where gµν(x) is in general a non-constant tensor whose components appear in the more involved symmetric
matrix

gµν =







g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33







In a flat space gµν may or may not degenerate into the Minkowski metric, depending on which coordinate system
is being employed.
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In addition to the metric, there is another 4× 4 matrix that determines the rotations (and boosts) of vector
quantities whose components are usually expressed as Λµν. They play an essential role in the calculus of
differential forms, where they are normally written as ωµν (the notation we will be using). For pure rotations in a
flat space, the matrix is antisymmetric in its off-diagonal elements ωi

j (where i, j = 1, 2, 3), a property that will be
useful later on.

1.1. Some Notation

We will be using quantities labeled by Latin and/or Greek indices, each spanning any dimension (although n= 4
is the most common). We will designate a vector in a flat (Minkowski) space as a Lorentz vector wearing a Latin
index (V a or Va), the kind normally encountered in undergraduate physics courses. It acts like a scalar under a
change of coordinates, but is changed by Lorentz transformations according to

V ′ a = Λa
bV b, V ′a = Λ

b
aVb

Conversely, we have the world vector or coordinate vector having a Greek index (Vµ or Vµ), which changes under a
transformation of coordinates:

V ′µ =
∂ x ′µ

∂ xν
V ν, V ′µ =

∂ xν

∂ x ′µ
Vν

Lorentz vectors thus live in a flat space devoid of gravitational, electromagnetic and other fields, while coordinate
vectors live in a curved space.

Because we will be dealing with quantities that are antisymmetric with respect to an interchange in world indices,
it is convenient to adopt a notation in which the lower-case indices of various differential form terms and their
derivatives appear as close to these indices as possible. We therefore adopt the notation of Adler et al., which uses
a single subscripted bar to denote partial differentiation,

∂µ Aν =
∂ Aν
∂ xµ

= Aν|µ, (1.1.1)

while covariant differentiation is denoted by a double subscripted bar, as in

Aµ||ν = Aµ|ν − AλΓ
λ
µν (1.1.2)

where the Γ quantities are the Levi-Civita (or world) connection coefficients, symmetric in their lower indices.

1.2 Tetrads

Einstein’s principle of equivalence states that at the local level a material body cannot distinguish between a
gravitational field and an acceleration. Consequently, there must be a way to transform away a gravitational field
at a point, so that the space appears locally flat. This is accomplished with the use of tetrads or vierbeins ea

µ(x),
which mix Lorentz and world indices. When applied to the curved-space metric gµν, they allow a Minkowski
frame to be set up at that point:

ηab = gµν(x) e
µ
a(x) e

ν
b(x) (1.2.1)

Tetrads work the other way, too:
gµν(x) = ηab ea

µη
b
ν (1.2.2)

Tetrads can be viewed as 4× 4 spacetime-dependent matrices that have one ‘‘leg’’ (Bein in German) in flat space
and the other in curved space. They obey the identities

eµa eb
µ = δ

b
a, ea

ν eµa = δ
µ
ν (1.2.3)

where the deltas are Kronecker deltas.

Tetrads can also change a Lorentz vector into a world vector and vice versa:

V a = Vµ ea
µ , Vµ = V beµb, (1.2.4)
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which also works for the lower-index cases

Va = Vµ eµa , Vµ = Va ea
µ (1.2.5)

In general, a tetrad is specified with the Lorentz index on top (ea
µ), so that the ‘‘flipped’’ tetrad is the matrix

inverse, eµa = (e
a
µ)
−1.

2. Review of Parallel Transport

If we move a vector in a flat space from one point to another, the vector’s direction can either remain the same (as
it would in a Cartesian coordinate system) or rotate (as it would in polar or spherical coordinates). However, a
vector in a gravitational field is generally obliged to always change direction, since we cannot establish a
locally-flat frame at two separate points (even if the distance between them is infinitesimal). This presents a
problem when the issue of vector differentiation is considered: how can we compare the original vector and its
transported version in a covariant manner, since the derivative of the vector depends on our ability to compare the
vector at two different points? Remember that to be strictly covariant, we need to compare the vectors at the same
point, which seems an impossible task.

The answer was worked out in the early 20th century by Elie Cartan and Hermann Weyl, who assumed the
existence of a quantity which, when added to the transported vector at the new point, provides a ‘‘parallel’’ version
of the original vector. This is the basis of parallel transport in differential geometry, which effectively allows the
original and transported vector to be compared at the same point. In a curved space, we denote the infinitesimal
difference between the original and transported vectors as

δVµ = − Γ µ
αβ

Vαd xβ (2.1)

That is, the difference is proportional to the original vector and the distance it has been transported, with the
connection acting as the proportionality term. The notion of parallel transport then provides a means for a
covariant version of vector differentiation:

Vµ||α = Vµ|α + Γ
µ

αβ
Vαd xβ (2.2)

Similarly, for lower-indexed vectors we have

Vµ||α = Vµ|α − Vλ Γ
λ
µα (2.3)

The notion of covariant differentiation is easily extended from vectors to tensors.

In the absence of a gravitational field, the connection term Γ vanishes whenever gµν→ ηµν. However, a vector
can still rotate when transported (depending on the coordinate system), so we need a different way to express
covariant differentiation for Lorentz vectors. In proceeding with this idea, from this point on we’ll utilize Latin
indices exclusively for all Lorentz quantities and Greek indices for all world quantities.)

In a flat space, all we have left to work with is the set of Lorentz transformations Λa
b, which we now identify with

ωa
b. Parallel transport of a Lorentz vector is then given by

δV a = −ωa
bλ V b d xλ and δVa =ω

b
aλ Vb d xλ (2.4)

where ωa
bλ is a new kind of connection coefficient associated with flat-space parallel transport called the spin

connection. Its resemblance to the Lorentz rotation matrix is not a coincidence, as we we see shortly. Thus, for
Lorentz vectors we have the covariant derivatives

V a
||µ = V a

|µ + Vbω
b
aµ and Va||µ = Va|µ − Vbω

b
aµ (2.5)

with similar definitions for Lorentz tensors.
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3. Metricity

In Riemannian geometry the covariant derivative of the metric tensor gµν vanishes, a condition called metricity.
We thus have the important identities

gµν||λ = gµν||λ = 0

As is shown in any text on general relativity, metricity provides for a unique definition of the world connection
coefficient:

Γ λµν =
1
2

gλβ
�

gµβ |ν + gβν|µ − gµν|β
�

Consequently, the connection vanishes in a flat space where the metric tensor is constant.

If we make the reasonable assumption that the covariant derivative of the Minkowski metric tensor ηab also
vanishes, then we have the important expression

ηab||λ = ηab|λ −ωc
aληcb −ωc

bληac = 0

Since ηab|λ = 0, this reduces to
ωc

aληcb +ω
c
bληac = 0 (3.1)

or
ωbaλ +ωabλ = 0 (3.2)

If we strip off the λ term, we recover the antisymmetry condition for the Lorentz rotation matrix:

ωba +ωab = 0

At this point the student may rightly question how we could so cavalierly drop the λ index from (3.1). The answer
lies in the nature of ωab, which is related to a quantity known as a differential 1-form.

Before moving to the subject of differential forms, it is interesting to note that the connections associated with the
metric gµν and ηab are symmetric and antisymmetric, respectively.

4. Differential Forms

In ordinary multivariable calculus, the student learns to treat integration arguments like d xd y and d xd ydz with
no regard to their ordering, so that d xd y = d yd x , etc. But since d xd y represents an infinitesimal element of
area, it is necessarily directional (in this simple case, along the z-axis), so it is easy to imagine that if the normal
vector associated with d xd y points along the z-axis, then the normal vector of d yd x should point along the
negative z-axis, so that d xd y = −d yd x . The same reasoning holds for the infinitesimal volume element d xd ydz
and elements of higher order, although the associated normal vectors are more difficult to visualize.

This odd behavior belongs to a class of mathematical quantities known as Grassmann variables, in which products
change sign under reordering (e.g., AB = −BA). Consequently, in the calculus of differential forms the sign of a
form is critically dependent on the ordering of the element string d xµd xν . . . associated with the form. We restrict
this antisymmetry behavior to the differential elements d xµ themselves (sometimes called ur-vectors in view of
their fundamental nature), while the ordering of the underlying product terms is immaterial. These elements will
always wear world indices; while elements such as d xa are perfectly legitimate, we will not be using them. The
reason for this is that differentiation in this paper will always be associated with a lower-case world index, making
world indices for the vectors d x a necessity.

(The literature on differential forms often uses the wedge symbol ∧ to denote exchange antisymmetry, as in
d xµ ∧ d xν = −d xν ∧ d xµ. Per Zee’s text, we will omit that symbol here, since the context of the arithmetic will
always be evident.)

A differential 1-form is defined by
A= Aµ d xµ (4.1)
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where summation over the index (µ = 0, 1, 2 . . .) is always assumed. Since A is itself a kind of differential, it is not
uncommon to see it used in integral form,

∫

A=

∫

Aµ d xµ

but in this elementary paper we will not be using it.

Similarly, there are differential 2-forms, which we define as

A=
1
2

Aµν d xµd xν = −
1
2

Aµν d xνd xµ (4.2)

An arbitrary p-form is defined as

A=
1
p!

Aµ1µ2...µp
d xµ1 d xµ2 . . . d xµp (4.3)

For example, a 3-form is written as

A=
1
6

Aµνα d xµd xνd xα

Note that the underlying terms in differential forms all obey strict antisymmetrization rules. If, for example,
Aµν = Aνµ, then the form vanishes identically because the symmetric terms cancel in pairs against the
antisymmetric d xµd xν term.

Sums of differing forms are allowed, provided they are both of the same p-form:

A+ B = B + A=
1
p!

�

Aµ1µ2...µp
+ Bµ1µ2...µp

�

d xµ1 d xµ2 . . . d xµp (4.4)

Lastly, please note that xµ and d xµ are not considered to be forms.

4.1. Products of Forms

Meanwhile, products can be expressed for differing forms (say, a p-form and a q-form) but, somewhat like
matrices, they do not necessarily commute. Consider the product AB, where A is p-form and B is a q-form:

AB =
1

p!q!

�

Aµ1µ2...µp
Bν1ν2...νq

�

d xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . . d xνq (4.1.1)

At this point it’s important to realize that the terms Aµ1µ2...µp
and Bν1ν2...νq

are just numbers, so they commute. This
allows us to write (4) equivalently as

AB =
1

p!q!

�

Bν1ν2...νq
Aµ1µ2...µp

�

d xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . . d xνq (4.1.2)

The trick now is to move all of the d xνi terms to the left, past all of the d xµk terms, so they will sit together. This
will leave the B form in the lead, followed by the Aµ and d xµ terms as A on the right of B. If p is an even number,
then each of the d xνi terms can be moved past the d xµk terms without changing the overall sign. For example, if
p = 2, then for any d x i we have

d x1d x2d x i = −d x1d x id x2 = +d x id x1d x2

so that (4.1.2) is just AB = BA. On the other hand, if p is an odd number, an overall minus sign will result. For
example, if p = 3 then

d x1d x2d x3d x i = −d x1d x2d x id x3 = +d x1d x id x2d x3 = −d x id x1d x2d x3
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However, if q is also an even number, this minus sign will cancel. For example, if q = 2 we will have

d x1d x2d x3d xν1 d xν2 = − d x1d x2d xν1 d x3d xν2 = + d x1d xν1 d x2d x3d xν2 = − d xν1 d x1d x2d x3d xν2

= + d xν1 d x1d x2d xν2 d x3 = − d xν1 d x1d xν2 d x2d x3 = + d xν1 d xν2 d x1d x2d x3

(isn’t this fun?) so that again we have AB = BA. Similarly, if q is also an odd number we’ll end up with AB = −BA.
To summarize, if either p or q is an even number then we’ll always have AB = BA. It is only when both p and q are
odd numbers that have AB = −BA. This product behavior can be expressed simply as

AB = (−1) pq BA (4.1.3)

It is easy for the student to get confused by all this interchanging, but practice should resolve any difficulties.

Lastly, let us consider a simple misconception. Consider the product of two 1-forms:

AB = AµBν d xµd xν = −AµBνd xνd xµ, or AB = −AµBd xµ

where we restored the 1-form B, now sandwiched between Aµ and its associated d xµ. It is tempting to now
assume that Bd xµ = −d xµB, but the student must not make this basic mistake for differential products in general.
When interchanging terms in a differential product, everything must be broken down into the underlying terms, or
there will be problems.

Notationally, that’s pretty much it. All that remains now is for us to consider derivatives of forms, which will lead
us into their gravitational and electromagnetic representations.

5. The Exterior Derivative

Consider the total differential operator d operating on an arbitrary function f :

d f =
∂ f
∂ xµ

d xµ

which is valid in any coordinate system. This can also be expressed as

d = d xµ
∂

∂ xµ
(5.1)

Thus, the total differential operator looks exactly like a differential 1-form, and it indeed is. It’s conventionally
known as the exterior derivative, but the student can safely go on calling it the total derivative. We will shortly see
that there exists a covariant version known as the exterior covariant derivative.

Let us take the derivative of the 1-form A= Aµd xµ:

dA= d xµ
∂ A
∂ xµ

= d xµ
∂

∂ xµ
(Aν d xν) = Aν|µ d xµd xν (5.2)

Please note two things about this expression, which apply to the exterior derivative of any form: we didn’t bother
to differentiate d xν, and we placed the d xµ term directly after the derivative of Aν. The reason for both is purely
conventional, although there’s an important (and for the case of d d xν, amusing) reason why double derivatives
in the formalism are always set to zero.

Since the d xµd xν term in (5.2) is antisymmetric, we can also write dA as

dA=
1
2

�

Aν|µ − Aµ|ν
�

d xµd xν (5.3)

which we recognize as a 2-form. Let us now differentiate an arbitrary 2-form B, where we have

dB =
1
2

Bµν|λ d xλd xµd xν
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By a cyclic permutation of indices in three copies of this equation (and taking into account the antisymmetry of
the d x terms), this can be written as

dB =
1
3!

�

Bµν|λ + Bλµ|ν + Bνλ|µ
�

d xλd xµd xν

which is a 3-form. In general, differentiation of a p-form yields a (p+ 1)-form.

What happens when we take twice the exterior derivative of a form? For the 1-form in (5.3), we have

d dA= d2A= Aν|µ|λ d xλd xµd xν

From elementary calculus we know that the above derivative is symmetric in µ,λ; the antisymmetry of the
corresponding d xλd xµ term cancels this in pairs, so we have the very important identity d dA= 0 or, in minimal
notation,

d d = 0 (5.4)

which is an identity that holds for any differential form. As noted earlier, it is amusing to assume that the term
d d xν must also vanish for the same reason, even though d xν is not a form!

Also of great importance is the exterior derivative of form products, ie., d (AB). As compared with the exchange
behavior of products derived earlier, the derivative problem is actually much easier to deal with. Consider the
product of a p-form A with any other kind of form B. We have

d (AB) = d
�

Aµ1µ2...µp
Bν1ν2...

�

d xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . .

or
d (AB) =

�

Aµ1µ2...µp |λ Bν1ν2... + Aµ1µ2...µp
Bν1ν2...|λ

�

d xλd xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . .

The first term will always be just (dA)B. The second term,

Aµ1µ2...µp
Bν1ν2...|λ d xλd xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . .

can be written as
Bν1ν2...|λ Aµ1µ2...µp

d xλd xµ1 d xµ2 . . . d xµp d xν1 d xν2 . . .

As we did before, we must now drag all the d xνi terms to the left, past the d xµk terms, and marry them up with
the B terms. If p is an even number, there will be no sign change, and we’ll have d(AB) = (dA)B + A(dB). But if p
is odd, there will be an overall minus sign, giving d(AB) = (dA)B − A(dB). This rule can be summarized with

d (AB) = (dA)B + (−1)p A(dB) (5.5)

Note that this holds for any form B, including B = A!

6. The Tetrad Postulate and the First Cartan Structure Equation

With the completion of the above discussions, we can now begin the derivation of the Cartan structure equations.
The first of these equations involves the exterior derivative of the tetrad.

It was noted earlier that the Lorentz and world versions of vectors can be connected using

V a = ea
µVµ

Let us parallel transport the vectors on both sides of this expression. The tetrad is not a vector, so it ‘‘transports’’
via the ordinary partial derivative:

δV a = ea
µ|λ Vµd xλ + ea

µδVµ

Using the identities provided earlier, we then have

−V bωa
bλd xλ = ea

µ|λ Vµd xλ − ea
µΓ
µ

νλ
V νd xλ
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Using (1.2.4), we can write this as

− eb
νV νωa

bλd xλ = ea
ν|λ V νd xλ − ea

µΓ
µ

νλ
V νd xλ

Dividing out the common V b and d xλ terms, we’re left with

− eb
νω

a
bλ = ea

ν|λ − ea
µΓ
µ

νλ

or
ea
ν|λ − ea

µΓ
µ

νλ
+ eb

νω
a
bλ = 0 (6.1)

The tetrad is not a vector, but it is a mixed tensor, and the above expression shows that its covariant derivative
vanishes:

ea
µ||λ = 0 (6.2)

The vanishing of the covariant derivative of the tetrad is known as the tetrad postulate. It might have been
expected, given the metricity condition.

Let us now take a leap of faith and assume, as Cartan did, that the tetrad is a 1-form, which we write in condensed
notation as

ea = ea
νd xν (6.3)

Its exterior derivative is given by
d ea = ea

ν|µd xµd xν

We can use the tetrad postulate to get rid of the partial derivative, leaving us with

d ea = − eb
νω

a
bµ + ea

λΓ
λ
µν

Let us now convert this to differential form notation:

d ea =
�

− eb
νω

a
bµ + ea

λΓ
λ
µν

�

d xµd xν

The world connection is symmetric, so it drops out by virtue of the antisymmetry of d xµd xν, leaving

d ea = − eb
νω

a
bµd xµd xν (6.4)

Let us now take another leap of faith, and assume that the spin connection is itself a 1-form,

ωa
b =ω

a
bµ d xµ (6.5)

confirming our earlier assertion that the ‘‘stripped’’ version (ωa
b) of the ωa

bµ is related to the Lorentz rotation
elements.

So, we finally have the first Cartan structure equation (6.4), which we can also express in condensed notation as

dea = −ωa
b eb (6.6)

which is often written simply as de = −ωe. The above equation is not of much utility in itself, but is used to derive
the second Cartan equation, which expresses the gravitational equations of general relativity in differential form.

Before moving on, let us note that the first Cartan equation de = −ωe can also be written as (d +ω) e = 0,
strongly suggesting that the operator d +ω is the covariant form of the exterior derivative, making the covariant
exterior derivative of the tetrad equal to zero, which the student has probably already surmised. This is in fact the
case, and we’ll employ it in the next section, but using a somewhat different approach.
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7. The Second Cartan Structure Equation—the Riemann Curvature Tensor

In general relativity there are several ways to derive the Riemann curvature tensor, but the simplest involves
taking the double covariant derivative of an arbitrary contravariant vector and subtracting its skew counterpart:

Vλ||µ||ν − Vλ||ν||µ = Vα Rλαµν

where Rλαµν is the Riemann curvature tensor

Rλαµν = Γ
λ
αν|µ − Γ

λ
αµ|ν + Γ

β
αν Γ

λ
µβ − Γ

β
µα Γ

λ
νβ

We can do exactly the same thing using a Lorentz vector, in which case we get the Lorentz form of the curvature
tensor:

Ra
bµν =ω

λ
bν|µ −ω

λ
bµ|ν +ω

a
cµω

c
bν −ω

a
cνω

c
bµ (7.1)

Now for a final leap of faith. We propose that the curvature tensor is in fact a differential 2-form which, following
multiplying by d xµd xν and consolidating, is

Ra
b =

1
2

Ra
bµνω

a
bν|µ d xµd xν +ωa

cµω
c
bν d xµd xν (7.2)

But ωa
bν|µd xµd xν = dωa

bν d xν, so we can write (7.2) as the curvature 2-form

Ra
b = dωa

b +ω
a
cω

c
b (7.3)

or even more compactly as R= dω+ω2 = (d +ω)ω, with the covariant exterior derivative again making its
presence known.

7.1. Several Properties of the Curvature Tensor

Let us take the second exterior derivative of the tetrad, which we know vanishes according to the dd = 0 rule:

d dea = − d
�

ωa
bµeb

ν

�

d xµd xν = 0

Carrying out the differentiation in condensed notion, we get
�

dωa
b

�

eb − ωa
b

�

deb
�

= 0

where the minus sign results from the product law (4). Using dea = −ωb
ce

c , this reduces to

�

dωa
b +ω

a
cω

c
b

�

eb = Ra
beb = 0 (7.1.1)

Thus, the curvature 2-form is orthogonal to the tetrad 1-form. To see why this result is important, let us expand
(7.1.1) in full differential form notation:

Ra
beb =

1
2

Ra
bµν eb

λ d xµd xνd xλ =
1
2

ea
αeβb eb

λ Rαβµν d xµd xνd xλ = 0

where we have introduced world indices into the curvature tensor using tetrads. Two of these tetrads contract,
leaving

ea
α Rαλµνd xλd xµd xν = 0

The remaining tetrad is now a mere spectator and can be divided out. By a cyclic permutation of the indices
λ,µ,ν, the student should have no difficulty showing that this is equivalent to

Rαλµν + Rανλµ + Rαµνλ = 0 (7.1.2)

which is a fundamental property of the Riemann curvature tensor.
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The contracted curvature identity Rλ
λµν
= 0 is also easily derived from the above formalism. This corresponds to

the contracted variant Ra
a = R (not to be confused with the Ricci scalar). We therefore demand that

Ra
a = dωa

a +ω
a
bω

b
a = 0 (7.1.3)

That (7.1.3) holds can be shown by the following argument. For one thing, the quantity ωa
a = η

abωba is
identically zero in view of the symmetry of the Minkowski metric. The remaining term is a little more subtle. It is
symmetric with respect to exchange of a, b but antisymmetric with respect to the form exchange
ωa

bω
b
a →ω

b
aω

a
b, since it’s a product of two 1-forms; see (4.1.3). This requires that ωa

bω
b
a = 0, establishing the

Riemann identity (7.1.2).

7.2. Alternative Form of the Exterior Covariant Derivative

We would now like to derive the Bianchi identity from our formalism, which we assume will involve the use of the
standard exterior covariant operator d +ω on the 2-form Ra

b. While we will indeed show that (d +ω)R= 0, its
connection with the Bianchi identity is not at all obvious, so we’ll employ a somewhat different approach. We’ve
in fact already used such an approach when we derived the tetrad postulate, when we showed that its covariant
derivative vanishes.

Consider the possibility that there are actually two types of covariant derivatives, one that applies only to world
vectors (involving the world connection Γ ) and another that applies only to Lorentz vectors (involving the Lorentz
connection ω). Call the first covariant derivative D(Γ ) and the other D(ω). When applied to vectors, we’ll then
have identities like

D(ω)V a =
�

V a
|λ + V bωa

bλ

�

d xλ and D(Γ )Vµ =
�

Vµ|λ + V β Γ µ
βλ

�

d xλ (7.2.1)

We’ll also have the ‘‘null’’ identities

D(ω)Vµ = Vµ|λd xλ and D(Γ )V a = V a
|λd xλ (7.2.2)

Let us now consider what we’ll call the total exterior covariant derivative operator D(Γ +ω), which acts on mixed
quantities. For example, the total exterior covariant derivative of the tetrad is

D(Γ +ω) ea
µ =

�

ea
µ|λ + eb

µω
a
bλ − ea

βΓ
β

µλ

�

d xλ = 0 (7.2.3)

which confirms the earlier result in (6.2).

7.3. The Bianchi Identity in Differential Form Notation

We now proceed to derive the familiar Bianchi identity which, in world notation, is

Rλµνα||β + Rλλµν||α + Rλαλν||µ = 0 (7.3.1)

which incidentally serves as the gateway to Einstein’s gravitational field equations. So let us apply the total
covariant derivative to the 2-form Ra

b:

D(Γ +ω)Ra
b = D(ω)Ra

b = Ra
b|λd xλ + Rc

bω
a
cλd xλ − Ra

cω
c
bλd xλ

Using the identities R= dω+ω2, d dω= 0 and the product rule for derivatives, we have, after restoring the
appropriate indices,

D(ω)Ra
b =

�

dωa
cω

c
b −ω

a
c dωc

b +
�

dωc
b +ω

c
sω

s
b

�

ωa
c −

�

dωa
c +ω

a
sω

s
c

�

ωc
b

�

d xλ

All of the terms on the right cancel, and we’re left with

D(ω)Ra
b = 0 (7.3.2)
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Let us now perform the same calculation using the total exterior covariant derivative on the full 2-form version of
Ra

b = ea
αeβb Rα

β
, where we have converted the Lorentz indices in R to world indices with the tetrads. Since the

tetrads act as constants under covariant differentiation, this is

D(Γ +ω)Ra
b =

1
2

ea
αeβb D(Γ )Rαβµνd xµd xν = 0

But this is just
ea
αeβb Rαβµν||λ d xλd xµd xν = 0 (7.3.3)

The two tetrads are spectators as far as the indices λ,µ,ν indices are concerned and can be dropped. By
considering a cyclic permutation of these indices, along with the antisymmetry behavior of the d xλd xµd xν term,
the student should have no difficulty showing that (7.3.3) reduces to the Bianchi identity in (7.3.1).

8. The Electromagnetic Field as a Differential Form

As is noted in many texts, differential forms are almost tailor-made for the electromagnetic field, whose associated
tensor is defined by the antisymmetric quantity

Fµν = Aν|µ − Aµ|ν

where Aa is the electromagnetic four-potential, a 1-form:

A= Aµd xµ

This invites the identification of Fµν as a 2-form,

F =
�

Aν|µ − Aµν
�

d xµd xν =
1
2

Aν‖µ d xµd xν (8.1)

which can be written as simply
F = dA (8.2)

It is now quite easy to see that the quantity
dF = ddA= 0 (8.3)

not only preserves the dd = 0 identity for differential forms but also expresses the homogeneous set of Maxwell’s
equations,

Fµν|λ + Fλµ|ν + Fνλ|µ = 0 (8.4)

which correspond to

~∇ · ~E +
1
c
∂ ~B
∂ d t

= 0

~∇ · ~B = 0

of elementary electromagnetic theory.

For the non-homogeneous Maxwell equations, we need to introduce another kind of form, ∗F , where the so-called
‘‘Hodge star’’ formalism often makes its first appearance. Briefly (all too briefly), the Hodge star operator
essentially raises the indices of a p-form, allowing subsequent differentiation of upper-indexed quantities. For the
Maxwell source equations, the necessity of index-raising might have been expected, since

Fµν|ν = Jµ

expresses the two non-homogeneous Maxwell equations. In differential form format, these equations appear
simply as

d ∗ F = J
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where J is the electromagnetic source vector (note that charge conservation is implied by dd ∗ F = dJ = 0). For
the curious, the Hodge formalism for F is given by

∗F =
1
2

p

−g εµναβ Fµνd xαd xβ (8.5)

where g is the determinant of the metric tensor gµν and εµναβ is the completely antisymmetric Levi-Civita symbol.
(Seeing this, the uninitiated student will probably be wondering where weird stuff like this comes from. She can
thank the mathematicians.)

It was noted earlier that a general 2-form CC = C2 like

C =
1
2

CµCν d xµd xν

will normally vanish, since the argument is symmetric with respect to interchange of Cµ and Cν. But what if Cµ is
not a number, but a matrix quantity? Then the argument need not commute, and we have the possibility of
augmenting the electromagnetic form F with an additional term. In non-abelian quantum field theory, the
four-potential A is indeed a matrix quantity that also acts as a connection term for the electromagnetic field. Since
the non-abelian 1-form A does not vanish, we are free to add it to the 2-form F :

F = dA+ A2 = (d + A) A (8.6)

It is tempting to consider d + A as the exterior covariant derivative associated with electromagnetism, and indeed
it is used to define the derivative of spinor quantities in the covariant treatment of quantum field theory in curved
space. At our elementary level, however, it is more important that the student simply recognize the unexpectedly
close similarity between the two form expressions

R= (d +ω) ω

F = (d + A) A

which serve as food for thought as to the possibility of an underlying theory unifying the gravitational and
electromagnetic fields.

9. Final Comments

The calculus of differential forms is interesting, but it is hindered by a tendency to become overly abstract in the
available literature, making it unappealing to the average physics student. The writer places the blame for this
entirely on the part of mathematicians, whose typical quest for preciseness and love of mathematical abstraction
often goes way beyond any relevance to physics. While this perhaps overly-harsh statement is not meant to
diminish the countless indispensable contributions mathematicians have given to physicists, the writer simply does
not feel that the calculus of differential forms is a truly necessary study topic for physics students.

The apparently deep connection between the gravitational and electromagnetic 2-forms revealed in this paper is
fascinating, but the writer prefers to stick with the sentiment he expressed originally in the paper’s abstract—the
physics student need not be proficient in the theory of differential forms to acquire a working knowledge of
gravity, electromagnetism and other basic fields in physics, up to and even beyond graduate school. It is hoped,
however, that the student will acquire a deep and lasting appreciation for the concepts of connections and
covariant derivatives, which profoundly link the physics of flat spaces with that of curved manifolds induced by
electromagnetic and matter fields. Indeed, modern quantum gauge theories, which today are believed to underlie
all mathematical theories of energy, matter and their interactions, would simply not be possible without these
concepts.
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