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Abstract- All forces in the universe are created from changes in 
energy levels that result from changes in the separation of 
bodies, whether electromagnetic or otherwise. Even when 
particles are constrained so that they cannot expend the energy 
giving rise to those forces they still experience them. For the 
force to exist the energy system creating it must exist, even if 
only in potential. We examine the second part of the Lorentz 
Force Equation, which looks at the forces experienced by an 
electron travelling through a fixed magnetic field. Here there is 
a transverse force on the electron normal to the direction of 
travel, and the electron’s path is deflected into a curve, with no 
expenditure of energy. However, the existence of the force still 
requires an energy mechanism and this paper sets out to identify 
it. There is no gradient in the electric field induced by the 
electron’s motion through the magnetic field, so the energy is 
the same at all positions of the electron in the magnetic field, and 
hence there is no potential energy well to be tapped to create 
forces. There are enough clues to reach a sound conclusion, such 
as the fact that a neutron, with a bounded electric field, is not 
deflected, whereas an electron, with an infinite electric field, is 
deflected. With an energy mechanism clearly defined, we find 
that the Lorentz Force Equation fails to take an important aspect 
of geometry into account. 
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I. INTRODUCTION (HEADING 1) 

In this paper we consider the second component of the 
Lorentz Force Equation, which describes the forces on a charge 
moving through a magnetic field. It affects how electrons move 
in magnetic fields and becomes important in more complex 
atoms. It also affects how we measure the strength of magnetic 
fields. It states that F=q(v x B) - force is equal to charge times 
the cross product of the magnetic field strength and the charge 
velocity through the field. How is this equation derived? - is it 
precise, or are there conditions under which it fails to describe 
the true situation? Although it states that the electron 
experiences forces when moving through a magnetic field, the 
electric field so induced has zero gradient, so generates no forces 
through its field gradient, as happens in the interaction between 
two electrons; the center of the electron will perceive no energy 
differentials wherever it is placed in the magnet so that cannot 
be the direct cause of the forces involved. We analyze the 
problem from first principles by using the integrated potential 

energy density, after working out the potential energy density at 
a point. We place ourselves in the rest frame of the moving 
electron, and use the electric field induced in that frame by the 
motion through the magnetic field.  

We have two conundrums to solve. 

A. The neutron is not deflected inside a magnetic field 

First, we know that the neutron has an electric field even 
though it is bounded at a tiny radius, yet it is not deflected inside 
a magnetic field, so the magnetic component of the Lorentz 
Force Equation seems to work with electrons, but not with 
neutrons. Our theory needs to show why this anomalous 
behavior happens. 

B. There is an apparent violation of the Conservation 

of Energy 

Second, the Lorentz Force Equation suggests that if we 
replace the magnetic field with an electric field (in order that the 
electric field always pointed in the same direction rather than 
remaining normal to B x v and thus causing the electron to 
follow a curved path) an infinite number of electrons could 
traverse the field, increasing their kinetic energy inside the field, 
without any expenditure of energy anywhere in the system; 
when they left the field with their augmented kinetic energy they 
would have gained something for nothing; this violates the 
Principle of Conservation of Energy. Again, our theory must 
demonstrate there is no such violation. Whilst this is a thought 
experiment rather than a practical one it nevertheless highlights 
an important issue. 

 

II. IDENTIFYING THE ENERGY SYSTEM 

Energy systems drive every force in the universe. We know 
that the energy system involved here is not the transverse electric 

 
Figure 1. Electron moving through magnetic field in plan view. 
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field curving the path of the electron as the induced electric field 
has no gradient. It is the gradient between two electric charges 
that gives rise to the forces between them. Since the gradient of 
the induced electric field is perfectly flat it cannot be the source 
of the deflecting force. 

Let us start with a simple square magnetic field with the 
electron travelling in the field, parallel to one of the sides, as 
shown in Figure 1 in plan view. This shows a magnetic field B 
depicted in half-tone with the magnetic field vector pointing up 
out of the page. A test electron ‘e-’ is travelling through this field 
with a velocity v, and perceives an electric field E induced in its 
own frame of reference. The electron will perceive forces that 
direct it towards the left in this picture. These forces must be 
derived from a reduction in energy somewhere in the system that 
creates attractive forces to the left via the equation F=dE/dl 
where force F equals rate of change of Energy E over distance 
l, and/or repulsive forces from the right that will have the same 
effect. The fact that energy is not consumed but the electron 
merely deflected into a curved path by these forces does not 
change this argument. So where is the energy system that drives 
this deflection? 

Although Figure 1 refers to a simple slice through the 
magnetic field, it is important not to make the mistake of 
analyzing only one slice. Looking at the magnet side-on in 
Figure 2 shows how the field extends in three dimensions. As 
before, the magnetic field is shown in halftone and its vector by 
B, and the induced electric field by E. The electron is shown 
travelling into the page inside the gap between the two poles of 
the magnet. As can be seen, the magnetic field, and therefore the 
induced electric field, continues through the poles of the magnet. 
The moving electron interacts with the whole field, including 
that inside the magnet poles. This is because the electron’s 
electric field penetrates even into the atoms of the poles. Hence 
the computation must be over all interacting space, not just the 
gap between the poles. 

In Figure 3 we show the interaction between the electron’s 
field and the induced electric field. Two separate points are 
highlighted in inset pictures that show the electric vectors just 
within the edges of the magnet. The electron’s field is shown in 
by dashed vectors Ee and the induced field is shown by solid 
vectors Em describing the electric field induced by the magnetic 
field. In the right-hand inset the vertical component of the 
electron’s field vector (a downward pointing vector) is not 
shown for clarity; it has no effect on the path of the electron, 
being balanced by an opposing vector below the electron. The 
cutaways show only the effect on the horizontal component and 
the resultant electric field vector Er is shown in black. 

The energy system that drives the deflection of the electron 
inside the magnet is in fact the interaction of the electron’s fields 
with the edges of the magnet. If the electron moves a little to the 
left those parts of the fields of the electron that remain inside the 
magnetic field see no change in their energy density as the 
induced electric field is constant everywhere inside the magnet, 
so those parts of the field produce no force. Equally all those 
parts of the fields that remain outside the magnet see no change 
in their energy density and produce no force. However, those 
horizontal components of the electron’s field that enter at the 
right edge of the magnet as a result of this movement will go 
from their normal field to a partial cancellation with the 
magnet’s induced electric field and hence to a reduced energy 
density and a leftwards force. Those horizontal components of 
the electron’s field leaving the magnet on the left will go from 
the increased energy density of interaction with the induced 
electric field to their normal independent energy density outside 
the magnet, leading to a drop in energy density and a leftwards 
force. Hence there is a drop in the energy densities at both edges 
leading to forces that tend to force the electron to the left.  

 

 
Figure 2. Side view of electron in magnet 

 
Figure 3. Electric field interaction at edges s of magnet 
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III. COMPARISON WITH THE LORENTZ FORCE EQUATION 

How does this compare with the Lorentz Force Equation? 
Let us use the following co-ordinate system for Figure 4. The x-
axis is parallel with the lines of the induced electric field, that is, 
left to right in Figures 2 and 3. The y-axis is parallel with the 
lines of the magnetic flux, that is, vertically in Figure 2. The z-
axis is parallel with the electron’s velocity vector, that is, 
vertically in Figure 3. In Figure 4 the z-axis points out of the 
page. 

The whole of the induced electric field from the magnet is 
constant (there being no gradient) and normal to the direction of 
motion. There is no component of the induced field in any other 
axis and the potential energy lies along only the x-axis 
component field of the electron. Hence all forces will be along 
the x-axis. 

Next, if we consider that the induced electric field is constant 
within the magnet and zero elsewhere, then for any point on the 
electron’s field the potential energy density will be constant 
inside the induced electric field and zero outside. There are 
changes in potential energy density only on the boundaries of 
the induced field. We need therefore consider only the potential 
energy associated with a plane of infinitesimal thickness at the 
induced-field boundary plane normal to the x-axis as shown in 
Figure 4. 

The magnetic field B lies vertically along the y-axis and the 
motion v of the electron is instantaneously along the z-axis.  

This potential energy density integrated over this boundary 
plane, being of infinitesimal thickness, is effectively the 
derivative dU/dx = F, where dU/dx is the derivative of the 
potential energy with respect to motion of the electron along the 
x-axis, giving force F directly and causing the electron to 
accelerate along the x-axis, thereby curving its path. There are 
two such planes, one on positive-x and one on negative-x with 
respect to the center of the magnet. 

Using Figure 4 we can derive the equation for the energy 
density at a point [x,y,z] on one of these planes as the x-
component of the electric field strength from the electron at the 
boundary, times the induced electric field strength from the 
magnet. 

  

  

Then to get the energy density of the sheet we have... 

  

We can simplify this integration by recognizing that the term 
(y2+z2) = r2 is constant for a circle around the x-axis, where ‘r’ 
is the radius of the circle. Substitute semi-polar co-ordinates and 
multiply the function by 2πr, then integrate over radius r from r 
equals zero to r equals infinity. 

  

  

  

Evaluate from r=0 to r=infinity. 

  

The same result holds for the edge plane at the opposite side 
of the magnet. The force in both cases is in the same direction as 
there is repulsion on the electron from one edge and attraction 
from the other, so the total force is twice the above, namely Ftotal 
= q(v x B). This is simply the Lorentz result, and so it can be 
seen that the Lorentz force for an induced electric field is caused 
by the interaction of the electron’s field with the edges of the 
induced field. 

 

IV. AN ANALYSIS OF THE DISCREPANCIES 

However, the integration above is between plus and minus 
infinity – the left and right edges of the induce electric field 
parallel to the motion of the electron are assumed to be an 
infinite plane; anything less and we do not get the Lorentz result. 
It can therefore be seen that the result agrees with Lorentz only 
where the areas of the left and right sides of the magnet are 
infinite in extent and at a finite normal distance from the center 
of the electron, and the particle’s electric field extends across the 
edges of the magnetic field (as it does for the electron, but not 
the neutron). Cutting the sides down in size to some finite area 
will reduce the integration sum and so one can expect significant 
discrepancies for short magnets between the actual magnetic 

 
Figure 4. The interacting edges of the magnetic field 
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field strength and that strength as measured by the deflecting 
force on a charged particle. Any measurement of a practical 
magnetic field made by looking at the deflective force on a 
moving charged particle will therefore be artificially low in 
value, although it will obviously be in full agreement with any 
experiment involving the deflection of moving charged 
particles. 

The term in ‘x’ disappears for the infinite-area integration. It 
does not matter what finite width the magnet is in ‘x’ if the 
length of the sides is infinite. For any specific solid angle 
projected from the electron onto the edge of the magnetic field, 
there will be a constant potential energy density across that the 
projection surface. Hence ‘x’ disappears from the equation when 
measuring potential energy in terms of solid angles (not the way 
derived here). Since the solid angle projected from a finite 
distance onto an infinite surface must always be a hemisphere, 
it follows that the length of the normal projection to that surface, 
passing through the center of the electron, is immaterial when 
the edges are infinite in extent. 

Therefore, if we make both the magnet’s y-axis and z-axis 
very much larger than its x-axis we find that the resultant 
computed force on the electron approaches the value given by 
the Lorentz Force Equation. Conversely,  as the y-axis and/or 
the z-axis length of the magnet reduce in size, the resultant force 
drops further below the Lorentz value. It should be clear that in 
such circumstances the deflection of an electron by the field is 
reduced. Since many measurements of magnetic field strength 
are made by measuring the effect of the field on the motion of 
an electron they often report a lower magnetic field than they 
should; however this is not usually a problem as the field is then 
generally used to provide a deflective force to electron motion, 
whether in an electric motor or a particle accelerator. 

The treatment here has been simplified. The electron in 
Figure 4 interacts with all of the magnetic field, not just that 
inside the magnet. In actuality the field diverges beyond the end 
of the magnetic poles and then loops around to meet up with the 
flux lines from the opposite pole in a return loop outside the 
magnet. The initial diverging flux lines near a pole acts to extend 
the effective length of the magnet, but we can ignore the region 
where they have looped back to meet the flux from the opposite 
pole as every electric flux line from the electron intersects both 
the inside and outside edges of the return flux and the effects at 
the two edges therefore cancel out. The return flux path edges 
are often not well defined in magnets without a yoke where the 
path is through air rather than soft iron, as the field intensity in 
free space generally drops slowly as we move away from the 
magnet but this does not affect the cancellation. These 
calculations are best done using Finite Element Analysis 
because of the complexity of applying limits near the poles. 

 

V. THE SOLUTIONS TO OUR CONUNDRUMS 

The solutions to our two conundrums are then:- 

A. The neutron is not deflected inside a magnetic field 

A neutron will not be subject to any forces inside the magnetic 

field despite having a strong electric field, because its electric 

field is wholly contained within the magnet where the induced 

electric field gradient is flat, and it has no interaction with the 

edges of the magnetic field. There is therefore no change in 

potential energy density as it moves through the magnetic field, 

and hence no forces exist. 

B. There is an apparent violation of the Conservation 

of Energy 

What if we replace the magnetic field with an electric field 
so that the electric field always pointed in the same direction 
rather than remaining normal to B x v and thus following a 
curved path? A theoretical electron falling from infinity is 
indeed accelerated across the field. But it is decelerated before 
entering the field by the interaction of the leading edge of the 
field with the electron’s field, its effect being reversed by the 
center of the electron being on the other side of the boundary, 
and likewise decelerated after exit from the field, the sum of the 
two decelerations matching the single acceleration. The overall 
effect is of no net change in the kinetic energy. The Principle of 
Conservation of Energy stands. 

 

VI. TESTING THE CONCEPT 

This concept makes predictions at odds with the Lorentz 
Force Equation which can be tested. For example, consider an 
electron e- circling inside a magnet, where the plan view of the 
magnetic field gap is rectangular, as shown in Figure 5 (i.e. the 
magnetic field lines lie vertically up out of the page). Here the 
Lorentz Force Equation predicts a perfect circle. However, our 
analysis predicts that the forces on the electron are greater when 
the electron is travelling parallel to the longer sides, causing the 
electron to follow an elliptical rather than a circular path. The 
major axis of the ellipse would therefore be parallel to the shorter 
sides. 

Another prediction is that a short wide magnet and a long 
narrow magnet that have the same measurement of magnetic 
field strength when measured by electron deflection will have 
different measurements of magnetic field strength when 
measured by Paramagnetic resonance. 

 

VII. CONCLUSION 

The magnetic-deflection component of the Lorentz Force 
Equation fails to take into account the geometry of the magnetic 
field. Where the magnetic field strength is measured by the 
deflection of an electron inside the field in equipment such as 
Hall-effect devices and applied involving the deflection of 
electrons in the field, there is no conflict as identical errors 
appear in both cases. However, discrepancies may appear when 
a magnetic field is calibrated by electron deflection and then 

 
Figure 5. Electron circulating in magnet gap in plan view 
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used to measure a magnetic dipole, as in paramagnetic 
resonance. For most geometries electron deflection 
measurements will underestimate the magnetic field. 


