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Abstract. This paper describes about relation between circuit complexity

and accept inputs structure in Hamming space by using almost all monotone

circuit that emulate deterministic Turing machine (DTM).

Circuit family that emulate DTM are almost all monotone circuit family

except some NOT-gate which connect input variables (like negation normal

form (NNF)). Therefore, we can analyze DTM limitation by using this NNF

Circuit family.

NNF circuit have symmetry of OR-gate input line, so NNF circuit can-

not identify from OR-gate output line which of OR-gate input line is 1. So

NNF circuit family cannot compute sandwich structure effectively (Sandwich

structure is two accept inputs that sandwich reject inputs in Hamming space).

NNF circuit have to use unique AND-gate to identify each different vector of

sandwich structure. That is, we can measure problem complexity by counting

different vectors.

Some decision problem have characteristic in sandwich structure. Different

vectors of Negate HornSAT problem are at most constant length because we

can delete constant part of each negative literal in Horn clauses by using defi-

nite clauses. Therefore, number of these different vector is at most polynomial

size.

The other hand, we can design problem with coding theory. For the exam-

ple, we design new problem by using linear coding which expand vector space

with non linearity of primitive polynomial.

1. Introduction

In this paper, we consider the relation between circuit complexity and accept in-

puts structure in Hamming space by using almost all monotone circuit that emulate
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deterministic Turing machine (DTM). For example, we analyze Negation HornSAT

problem complexity and design new problem that include high complexity of prim-

itive polynomial non linearity.

In computational complexity, we use circuit family to analyze problem com-

plexity, and we find out some result such as PARITY /∈ AC0 [Ajtai, Furst],

CLIQUE /∈ mP monotone circuit family with polynomial size [Razborov]. The

purpose of this paper is to provide new approach to analyze problem complexity

by corresponding problem input structure in Hamming space and gate in circuit

family which emulate DTM.

2. NNF circuit family

First, we define NNF circuit family that is almost all monotone circuit. Explained

in book [Sipser] Circuit Complexity section 9.30, Circuit family can emulate DTM

only using NOT-gate in changing input values {0, 1} to {01, 10}. This “almost all

monotone circuit family” have simple structure like monotone circuit family.

Definition 2.1. 

We will use the terms;

“NNF Circuit Family” as circuit family that have no NOT-gate except connecting

INPUT-gates directly (like negation normal form).

“Input variable pair” as output pair of INPUT-gate and NOT-gate {01, 10} that

correspond to an input variable {0, 1}.

Figure 2.1 is example of a NNF circuit.

Theorem 2.2. 

Let t : N −→ N be a function where t (n) ≥ n.

If A ∈ TIME (t (n)) then NNF circuit family can emulate DTM that compute

A with O
(
t2 (n)

)
gate.

Proof. This Proof is based on [Sipser] theorem 9.30 proof. See [Sipser] for detail.
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Figure 2.1. NNF circuit

NNF circuit family can emulate DTM by computing every step’s cell values

(and head state if head on the cell). Figure 2.2 shows part of a NNF circuit block

diagram.

Input of this circuit is modified w1 · · ·wn to c1,1 · · · c1,n, and finally output result

at cout = ct(n),1 cell. This circuit emulate DTM behavior, so cu,v compute cell’s

state of step u from previous step cell cu−1,v and each side cells cu−1,v−1, cu−1,v+1

(because head affect at most side cells in each step).

Figure 2.3 shows example of cu,v sub circuit that transition function is “if state

is qk and tape value is 0, then move +1 and change state to qm”. This circuit shows

one of transition configuration which (cu−1,v−1, cu−1,v, cu−1,v+1) = (qk0, q−0, q−0).

q− means “no head on the cell”.
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Figure 2.2. NNF circuit block diagram

Each OR-gate ∨w,q in cu,v correspond to every step’s cell condition (cell value

w, and head status q if head exist on the cu,v cell), and output 1 if and only if cu,v

cell satisfy corresponding condition. Previous step’s ∨ output in cu−1,v−1, cu−1,v,

cu−1,v+1 are connected to next step’s AND-gate ∧δ in cu,v with transition wire.

Each ∧δ correspond to transition function δ, and each ∧δ output correspond to

each transition function’s result of cu,v. To simplify, NNF circuit include separate

three gates ∧δ,−1, ∧δ,0, ∧δ,+1 according to head exists position cu−1,v−1, cu−1,v,

cu−1,v+1, and special transition function δ− which correspond to no head transition

(keep current tape value). So ∧δ in cu,v output 1 if and only if previous step’s ∨

output in cu−1,v−1, cu−1,v, cu−1,v+1 satisfy transition function δ condition. Each

transition functions affect (or do not affect) next step’s condition, so ∧δ output is

connected to ∨w,qm in cu,v and decide cu,v condition. Because DTM have constant
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Figure 2.3. cu,v circuit

number of transition functions, NNF can compute each step’s cell by using constant

number of AND-gates and OR-gates (without NOT-gate).

First step’s cells are handled in a special way. Input is {0, 1}∗ and above mono-

tone circuit cannot manage 0 value. So NNF circuit compute {0, 1}∗ −→ {01, 10}∗

by using NOT-gate.

�

Corollary 2.3. 

NNF circuit family can compute P problem with polynomial number of gates of

input length.

Confirm NNF circuit family behavior. We define some term that decide relation

of inputs.
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Figure 2.4. First step

Definition 2.4. 

We will use the term;

“Neighbor input (pair)” as accept inputs pair that no accept inputs exists between

these accept input in Hamming space.

“Boundary input (set) of neighbor input” as reject inputs that exist between

neighbor inputs in Hamming space.

“Different variables” as all difference part of values in neighbor input pair.

“Different vector” as vector and inverse vector pair which start and end point is

neighbor input pair in Hamming space. To simplify, we use 1 = −1.

“Neighbor distance” as different vector length.

“Sandwich structure” as connected graph which nodes are accept inputs in Ham-

ming space.
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Figure 2.5. Sandwich structure

Figure 2.5 shows example of sandwich structure which neighbor input pair is

0000111110011000 and 0000000000000000. In this case, ____11111__11___

and ____00000__00___ are different variables, and (0000111110011000) and(
0000111110011000

)
are different vector, neighbor distance is 7.

“Effective circuit of accept input t” as one of minimal sub circuit in NNF circuit

that decide circuit output as 1 with accept input t. Effective circuit do not include

gates which output 0, or even if these gates change output 0 and effective circuit

keep output 1.

Figure 2.7 shows example of effective circuit which circuit is 2.1 and input is

{x1, x2, x3} = {1, 1, 0}. Dotted gates do not affect OUTPUT-gate even if the gate

negate output, so effective circuit do not include them.

Theorem 2.5. 
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Figure 2.6. Different vector

All input variable pair of different variables join at OR-gate in effective circuit.

Proof. Because all input variable pair is {01, 10} and do not include 11 in every

input. NNF circuit is almost monotone circuit, so effective circuit have to to join

another accept input {01, 10} at OR-gate to connect OUTPUT-gate. �

Figure 2.8 shows example of effective circuit which circuit is 2.1 and input are

{x1, x2, x3} = {1, 1, 0} , {0, 0, 1}. Effective circuit include one of input variable pair,

and other side of variable pair do not become 1 in same input. So AND-gate cannot

meet another effective circuit.

Theorem 2.6. 

NNF circuit have at least one unique AND-gate which correspond to different

vector to differentiate neighbor input and boundary input.
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Figure 2.7. Effective circuit

Proof. Mentioned above 2.5, all accept input variable pair of different variables join

at OR-gate. Because NNF circuit is almost all monotone circuit, there are a) b)

case to join effective circuits;

a) some partial different variables meet at AND-gate, and join at OR-gate these

AND-gate output, and meet at AND-gate all OR-gate output. (see 2.8)

b) all different variables meet at AND-gate, and join at OR-gate after meeting

AND-gate. (see 2.9)

Case a), because no boundary input become accept input, some OR-gate which

join different variables become 0 if input is boundary input (2.8 1,2). That is,

effective circuit become 0 if some of these OR-gate become 0, and become 1 if all

of these OR-gate become 1. Therefore, it is necessary that effective circuit include

AND-gate (2.8 3) that meet all these OR-gate which join all different variables.
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Figure 2.8. Different variable pair

Such AND-gate become 1 if and only if input include different variables of one

side of neighbor input pair. Each pair of different variables correspond to different

vector, so the AND-gate correspond to different vector.

Case b), some AND-gate become 1 if and only if input include one side of different

variables. Therefore, trunk of these AND-gate (2.9 4,5) does not become 1 if input

AND-gate does not include these different variables. Each pair of different variables

correspond to different vector, so the AND-gate correspond to different vector.

Therefore, NNF circuit have at least one unique AND-gate that correspond to

different vector to differentiate neighbor input and boundary input. �

NNF circuit can emulate DTM in polynomial size, and NNF circuit include

unique AND-gate that correspond to different vector. Therefore, we can measure

problem complexity by counting different vector in problem’s sandwich structure.
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Figure 2.9. Example of b)

3. Negation HornSAT

Consider different vector in actual problems. Let consider Negation HornSAT

problem HornSAT . HornSAT can delete some negative literal which correspond

definite clauses. This means that each HornSAT accept input are close each other

in Hamming space. In fact, we can close neighbor distance within constant distance

by devising HornSAT description.

Definition 3.1. 

We will use the term HornSAT as problem if and only if Horn CNF is ⊥.

In HornSAT , we use special description as following;

xi : Variables in HornSAT . i in xi is variable code, and x in xi is constant

code. Negative literal x is constant code which length is same as x.
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⊥i : Disabled Variables in HornSAT that ⊥i = ⊥. ⊥ in ⊥i is constant code

which length is same as x.

− : Ignored filler code in HornSAT .

All another symbol ∧ ∨ () are also constant length code which is same as x.

Theorem 3.2. 

In HornSAT , there is some sandwich structure which neighbor distance is at

most constant size, and number of different vector is at most polynomial size.

Proof. Let t = xi ∧ (xi ∨ · · · ) ∧ · · · ∈ HornSAT . can reduce another t′ = xi ∧

(⊥i ∨ · · · ) ∧ · · · ∈ HornSAT because we can delete all literal xi by using definite

clauses xi. Neighbor distance between t, t′ is constant because difference between xi

and ⊥i is constant part of x,⊥. Because all ⊥i = ⊥, we can reduce all ⊥i → · · · →

⊥− → ⊥ by overwriting − at most constant size in each steps, and each neighbor

distance are at most constant. That is, we can reduce t′ to t′′ = xi∧(⊥ ∨ · · · )∧· · · ∈

HornSAT with overwriting constant distance.

The other hand, we can apply above steps all reduction of negative literals.

When some clauses have no variables like (⊥ ∨ · · · ∨ ⊥), we can overwrite any code

in formula because the formula is ⊥. Therefore, all of HornSAT have neighbor

input that distance is at most constant.

Consider number of HornSAT different vectors. Let different distance is con-

stant k. Because different distance is k, number of different vector is combination

of different variables

 n

k

 and combination of variables pair in constant code 2k.

 n

k

× 2k = n!
k!×(n−k)! × 2k ≤ O

(
nk
)

Therefore we obtain theorem. �

4. Design high complexity problem

Consider designing high complexity problem. Mentioned in this paper, compu-

tational complexity correspond to problem structure in Hamming space, especially
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number of different vector. Therefore, we can design high complexity problem by

designing high cardinal number of different vector.

We use linear code to design high cardinal number of different vector. Linear code

have high symmetry with linearity of codes, so we can code with high efficiency and

compact. Point of linear code is base vector, and these base vector are correspond

to different vector of each codes. So we can make high complexity problem by

expanding linear code that switch base vector with inputs. To simplify, each code

are vector space of finite field F2, and polynomial expressions are polynomial codes

of vector.

Definition 4.1. 

We will use the term;

“BSLC” as problem with input w and input length |w| which message length

code is d, u is code, and |u| is code length;

w = uu1 · · ·ud

|u| = |u1| = · · · = |ud| ≥ O ((log |w|)c)

(c : constant that c > 1)

and code u have polynomial solution αu1 · · ·αud as linear code basis with minimal

polynomial f (x).

Theorem 4.2. 

BSLC ∈ PH

Proof. We can compute constant alternating Turing Machine (ATM) by computing

following way.

(1) Select minimal polynomial f (x) as existence.

(2) Check polynomial solution α as following;

Reject w if α2d−1 6= 1.

Select αr (0 < r < 2d − 1) as universal, and reject f (x) if αr = 1

(3) Select αu1 · · ·αud from αup · · ·αuq as existence, and if u = αup + · · ·+ αuq

then accept w.
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We can compute above procedure in polynomial step with constant alternation. So

BSLC ∈ PH. �

Theorem 4.3. 

In BSLC, there are many vector ur which do not resolute any vector

(ur, α
ur ) 6= (up, α

up)⊕ (uq, α
uq )

(⊕ is vector additional)

Number of these vector is at least 2|ur|−2.

Proof. Let (ur, αur ) which α|ur|−1 coefficient of αur is 0 and

(ur, α
ur ) = (up, α

up)⊕ (uq, α
uq )

Because α|ur|−1 coefficient of αur is 0, αur+1 is

αur+1 = ααur = α (αup ⊕ αuq ) = αup+1 ⊕ αuq+1

However, ur = up ⊕ uq then

ur + 1 6= (up + 1)⊕ (uq + 1)

and
(
ur + 1, αur+1

)
cannot resolute any vector.

And also, number of ur that α|ur|−1 coefficient of αur become 0 is 2|ur|−1, and

every (ur, α
ur ) that can resolute any vector have

(
ur + 1, αur+1

)
that cannot res-

olute any vector. Therefore BSLC have 2|ur|−2 vectors that cannot resolute any

vector. �

Theorem 4.4. 

BSLC have over polynomial number of different vector.

Proof. Mentioned above 4.1, BSLC have many linear code which basis is (αu1 , · · · , αud).

That is, BSLC change basis of code u as u1 · · ·ud, and BSLC have different vector

as these linear code basis.

Mentioned above 4.3, BSLC have 2|ur|−2 vectors of ur which cannot resolute

any vectors up, uq. So BSLC have some base vector number of which is at least

2|ur|−2;

2|ur|−2 ≥ 2O((log|w|)c) = |w|O((log|w|)
c−1) > O (|w|c)

(k is constant)
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Therefore, number of different vector in BSLC is over polynomial size, and we

obtain theorem. �
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