On The Proving Method of Fermat's Last Theorem

Haofeng Zhang Beijing, China

Abstract: In this paper the author gives an elementary mathematics method to solve *Fermat's Last Theorem* (FLT), in which let this equation become an one unknown number equation, in order to solve this equation the author invented a method called "Order reducing method for equations", where the second order root compares to one order root, and with some necessary techniques the author successfully proved when $x^{(n-1)}+y^{(n-1)}-z^{(n-1)} <= x^{(n-2)}+y^{(n-2)}-z^{(n-2)}$ there are no positive solutions for this equation, and also proves with the increasing of x there are still no positive integer solutions for this equation when $x^{(n-1)}+y^{(n-1)}-z^{(n-1)} <= x^{(n-2)}+y^{(n-2)}-z^{(n-2)}$ is not satisfied.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent positive integers unless they are stated to be not.

Theorem 1.1. In the equation of

$$\begin{cases} x^{n} + y^{n} = z^{n} \\ \gcd(x, y, z) = 1 \\ n > 2 \end{cases}$$
(1-1)

x, y, z meet

 $x \neq y$,

x + y > z,

and if

x > y

then

$$z > x > y$$
.

Proof: Let

$$x = y$$
,

we have

$$2x^n = z^n$$

and

$$\sqrt[n]{2}x = 7$$

where $\sqrt[n]{2}$ is not an integer and x, z are all positive integers, so $x \neq y$.

Since

$$(x+y)^n = x^n + C_n^1 x^{n-1} y + ... + C_n^{n-1} x y^{n-1} + y^n > z^n,$$

so we get

$$x + y > z$$
.

Since

$$x^n + y^n = z^n,$$

so we have

$$z^n > x^n, z^n > y^n$$

and get

when

$$x > y$$
.

Theorem 1.2. In the equation of (1-1), x, y, z meet

$$\gcd(x, y) = \gcd(y, z) = \gcd(x, z) = 1.$$

Proof: Since $x^n + y^n = z^n$, if $\gcd(x,y) > 1$ then we have $(x_1^n + y^n) \times [\gcd(x,y)]^n = z^n$ which causes $\gcd(x,y,z) > 1$ since the left side contains the factor of $[\gcd(x,y)]^n$ then the right side must also contains this factor but contradicts against (1-1) in which $\gcd(x,y,z) = 1$, so we have $\gcd(x,y) = 1$. Using the same way we have $\gcd(x,z) = \gcd(y,z) = 1$.

Theorem 1.3. If there is no positive integer solution for

$$x^p + y^p = z^p$$

when p > 2 is a prime number then there is also no positive integer solution for

$$(x^p)^k + (y^p)^k = (z^p)^k.$$

Proof: Since $x^p + y^p = z^p$ has no positive integer solution, so there still no positive integer solution for

$$(x^k)^p + (y^k)^p = (z^k)^p$$

which means there is also no positive integer solution for

$$(x^p)^k + (y^p)^k = (z^p)^k.$$

So we only need to prove there is no positive integer solution for equation (1-1) when n is a prime number.

Theorem 1.4. There are no positive integer solutions for equation (1-1) when x or y is a

prime number.

Proof: When x is a prime number, since

$$x^{n} = z^{n} - y^{n} = (z - y)(z^{n-1} + z^{n-2}y + ... + zy^{n-2} + y^{n-1}),$$

so we have

$$\gcd(z-y,x)=x\,,$$

which means

$$z-y\geq x$$
,

we have

$$x + y \le z$$
,

that contradicts against **Theorem 1.1** in which x + y > z, so it is with y, which means there are no positive integer solutions for equation (1-1) when x or y is a prime number.

Theorem 1.5. There are no positive integer solutions for equation (1-1) when z is a prime number.

Proof: When z is a prime number, from Theorem 1.12 we only consider the case of n > 2 is a prime number, since

$$x^{n} + y^{n} = z^{n} = (x + y)(x^{n-1} + ... + y^{n-1})$$

so we have

$$\gcd(x+y,z)=z\,,$$

from **Theorem 1.1** we know x + y > z, so we get

$$x + y \ge 2z$$
,

that contradicts against **Theorem 1.1** in which $z > x > y \Longrightarrow x + y < 2z$, which means there are no positive integer solutions for equation (1-1) when z is a prime number.

Theorem 1.6. There are no positive integer solutions for

$$1^n + y^n = z^n.$$

Proof: Since

$$1 = z^{n} - y^{n} = (z - y)(z^{n-1} + z^{n-2}y + \dots + zy^{n-2} + y^{n-1})$$

where

$$\begin{cases} z - y = 1 \\ \left(z^{n-1} + z^{n-2}y + \dots + zy^{n-2} + y^{n-1}\right) = 1 \end{cases}$$

that causes z, y to be non positive integers, so there are no positive integer solutions for

$$1^n + v^n = z^n.$$

Theorem 1.7. There are no positive integer solutions for

$$2^n + y^n = z^n.$$

Proof: Since

$$2^{n} = z^{n} - y^{n} = (z - y)(z^{n-1} + z^{n-2}y + ... + zy^{n-2} + y^{n-1}),$$

if

$$\begin{cases} z - y = 1 \\ z^{n-1} + z^{n-2}y + \dots + zy^{n-2} + y^{n-1} = 2^n \end{cases}$$

then taking the least value for y = 2, z = 3, we have

$$3^{n-1} + 2 \times 3^{n-2} + ... + 2^{n-1} > 2^n$$

when n > 2 that is impossible. If

$$\begin{cases} z - y = 2^{i} \\ z^{n-1} + z^{n-2}y + \dots + zy^{n-2} + y^{n-1} = 2^{j} \\ i + j = n \\ i \ge 1 \end{cases}$$

then z > 2 and taking the least value of y = 2, z = 3, we get

$$3^{n-1} + 2 \times 3^{n-2} + \dots + 2^{n-1} > 2^{j}$$

with n > 2 that is also impossible, so there are no positive integer solutions for

$$2^n + y^n = z^n.$$

Theorem 1.8. There are no positive integer solutions for equation (1-1) when $n \to \infty$ and x, y, z in equation (1-1) meet

$$z < \sqrt[n]{2}x, x > 2, y > 1, z > 3.$$

Proof: Since $x^n + y^n = z^n$, let x > y, we get

$$\left(\frac{z}{x}\right)^n - \left(\frac{y}{x}\right)^n = 1$$
,

since

$$z > x > y$$
,

so we have

$$z<\sqrt[n]{2}x\,,$$

and

$$\lim_{n \to \infty} \left(\frac{z}{x}\right)^n - \left(\frac{y}{x}\right)^n = \infty > 1$$

which means there are no positive integer solutions for equation (1-1) when $n \to \infty$.

According to **Theorem 1.6, 1.7** we have x > 2, y > 1, z > 3.

Theorem 1.9. There are no positive integer solutions for equation (1-1) when $x, y, z \le 100$.

Proof: From **Theorem1.8**, we know $z < \sqrt[n]{2}x$, so we have

$$\frac{100}{\sqrt[n]{2}} < x,$$

when n = 3, we have the smallest values for x, so we get

$$\left(\frac{100}{\sqrt[3]{2}} < x\right) \Rightarrow (79 < x),$$

from **Theorem 1.4, 1.5** we know x, y, z are all not prime numbers. There are below combinations of x, y, z when $x, y, z \le 100$:

$$\begin{cases} (x = 80 \sim 99)^n + (y = 4 \sim (x - 1))^n = (z = 81 \sim 100)^n \\ x + y > z \\ x^2 + y^2 > z^2 \\ x^j + y^j > z^j \\ j < n \end{cases}$$

Here we take $7^n + 9^n = 10^n$ for example to explain how to prove. We plot the graph for this equation as showed in **Figure 1-1**.

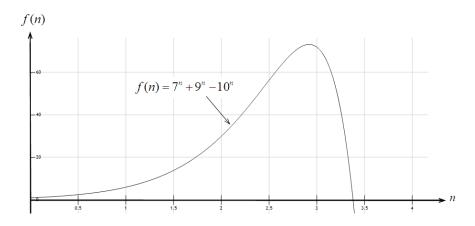


Figure 1-1 *Graph of* $f(n) = 7^n + 9^n - 10^n$

Obviously for equation $f(n) = 7^n + 9^n - 10^n$ in **Figure 1-1**, we have 3 < n < 4 is not an integer so there are no positive integer solutions, using this method we have the conclusion of there are no positive integer solutions for equation (1-1) when $z \le 100$.

Using the method of which we prove **Theorem 1.6, 1.7** we can prove when $x, y \le 100$, there are no positive integer solutions for equation (1-1).

Theorem 1.10. In the equation of (1-1), x, y, z meet

$$x^{n-i} + y^{n-i} > z^{n-i}$$
,

$$x^{n+i} + y^{n+i} < z^{n+i},$$

where

$$n > i \ge 1$$
.

This theorem holds true when x, y, z are positive real numbers but n must be a positive integer.

Proof: From equation (1-1), since

$$x^n + v^n = z^n,$$

from **Theorem 1.1**, since z > x > y, we have

$$x^{n-i} + y^{n-i} > \left[\left(\frac{x}{z} \right)^i x^{n-i} + \left(\frac{y}{z} \right)^i y^{n-i} = z^{n-i} \right],$$

$$x^{n+i} + y^{n+i} < (z^i x^{n-i} + z^i y^{n-i} = z^{n+i}),$$

so we have

$$x^{n-i} + y^{n-i} > z^{n-i}$$
.

$$x^{n+i} + v^{n+i} < z^{n+i}.$$

This theorem means given x, y, z if equation (1-1) has one positive integer solution then this solution is the only one.

Theorem 1.11. There are no positive integer solutions for equation (1-1) when

$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \le 1.$$

And in order to have positive integer solutions for equation (1-1),

$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} > 40$$

must be satisfied.

Proof: In equation (1-1), let

$$\begin{cases} a = x^{n-2} \\ b = y^{n-2} \\ c = z^{n-2} \end{cases}$$

we have

$$\begin{cases} ax^2 + by^2 = cz^2 \\ a^{\frac{n-1}{n-2}}x + b^{\frac{n-1}{n-2}}y = c^{\frac{n-1}{n-2}}z \end{cases}.$$

Since we reduce the order of equation so the method is called "Order reducing method for equations". Let x > y and

$$\begin{cases} y = x - f \\ z = x + e \end{cases},$$

we have

$$\begin{cases} ax^2 + b(x - f)^2 = c(x + e)^2 \\ a^{\frac{n-1}{n-2}}x + b^{\frac{n-1}{n-2}}(x - f) = c^{\frac{n-1}{n-2}}(x + e) \end{cases}$$

and

$$\begin{cases} (a+b-c)x^2 - 2(bf+ce)x + (bf^2 - ce^2) = 0\\ a^{\frac{n-1}{n-2}}x + b^{\frac{n-1}{n-2}}(x-f) - c^{\frac{n-1}{n-2}}(x+e) = 0 \end{cases},$$

the roots are

$$x = \frac{(bf + ce) \pm \sqrt{(bf + ce)^2 - (a + b - c)(bf^2 - ce^2)}}{x^{n-2} + y^{n-2} - z^{n-2}},$$
(1-2)

and

$$x = \frac{c^{\frac{n-1}{n-2}}e + b^{\frac{n-1}{n-2}}f}{a^{\frac{n-1}{n-2}} + b^{\frac{n-1}{n-2}} - c^{\frac{n-1}{n-2}}} = \frac{bfy + cez}{x^{n-1} + y^{n-1} - z^{n-1}}.$$
(1-3)

Case A: If $bf^2 \ge ce^2$, from (1-2) when

$$x = \frac{\left(bf + ce\right) + \sqrt{\left(bf + ce\right)^2 - \left(a + b - c\right)\left(bf^2 - ce^2\right)}}{x^{n-2} + y^{n-2} - z^{n-2}},$$

from **Theorem 1.10** we know $a+b-c=x^{n-2}+y^{n-2}-z^{n-2}>0$, so we have

$$x \le \frac{2(bf + ce)}{x^{n-2} + y^{n-2} - z^{n-2}},$$

also from **Theorem 1.10** we have $x^{n-1} + y^{n-1} - z^{n-1} > 0$, compare to (1-3) we get

$$\frac{bfy + cez}{x^{n-1} + y^{n-1} - z^{n-1}} \le \frac{2(bf + ce)}{x^{n-2} + y^{n-2} - z^{n-2}}.$$

When
$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \le 1$$
, we have

$$bfy + cez \le 2(bf + ce)$$

that is impossible since from **Theorem 1.8** we know $y \ge 2$ and z > 3.

When

$$x = \frac{(bf + ce) - \sqrt{(bf + ce)^2 - (a + b - c)(bf^2 - ce^2)}}{x^{n-2} + y^{n-2} - z^{n-2}}.$$

we have

$$x \le \frac{bf + ce}{x^{n-2} + v^{n-2} - z^{n-2}},$$

compare to (1-3) we get

$$\frac{bfy + cez}{x^{n-1} + v^{n-1} - z^{n-1}} \le \frac{bf + ce}{x^{n-2} + v^{n-2} - z^{n-2}}.$$

When
$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \le 1$$
, we have

$$bfy + cez \le bf + ce$$

that is impossible since from **Theorem 1.8** we have already known $y \ge 2$ and z > 3.

Case B: If $bf^2 < ce^2$, from (1-2) when

$$x = \frac{(bf + ce) + \sqrt{(bf + ce)^2 + (a + b - c)(ce^2 - bf^2)}}{x^{n-2} + y^{n-2} - z^{n-2}},$$

we can prove $(bf + ce)^2 > (a + b - c)(ce^2 - bf^2)$ since if not we have

$$(bf + ce)^2 \le (a + b - c)(ce^2 - bf^2)$$

and

$$[(2b+a)-c]bf^2+2bfce+[2c-(a+b)]ce^2 \le 0$$

that is impossible since a+b-c>0 and c>a,c>b,2c-(a+b)>0. So we have

$$x < \frac{(bf + ce)(1 + \sqrt{2})}{x^{n-2} + y^{n-2} - z^{n-2}}$$

compare to (2-4) we get

$$\frac{bfy + cez}{x^{n-1} + y^{n-1} - z^{n-1}} < \frac{(bf + ce)(1 + \sqrt{2})}{x^{n-2} + y^{n-2} - z^{n-2}}.$$

When
$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \le 1$$
, we have

$$bfy + cez < (bf + ce)(1 + \sqrt{2}) < 2.5(bf + ce)$$

and

$$bf(x-f)+ce(x+e) < 2.5(bf+ce)$$

that leads to

$$x < \left\lceil \frac{2.5(bf + ce) + bf^2 - ce^2}{bf + ce} \right\rceil = 2.5 - \frac{ce^2 - bf^2}{bf + ce}$$

where possible values for x are 1, 2 but according to **Theorem 1.6**, **1.7** we know there are no positive integer solutions.

When

$$x = \frac{(bf + ce) - \sqrt{(bf + ce)^2 + (a + b - c)(ce^2 - bf^2)}}{x^{n-2} + y^{n-2} - z^{n-2}}$$

is not possible since $x \le 0$.

So we have the conclusion of there are no positive integer solutions for equation (1-1) when

$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \le 1.$$

Obviously we have

$$bfy + cez < 2.5 \left(\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} \right) (bf + ce),$$

from **Theorem 1.9** we know $x, y, z \le 100$ there are no positive integer solutions for equation

(1-1), so we have

$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} > 40,$$

which must be satisfied to have positive integer solutions for equation (1-1).

Theorem 1.12. Function $f(x) = A^{x}$ and $g(x) = A^{x} + B^{x}$ are all monotonically increasing

"Convex functions", where A, B are all positive real numbers and X is a real number.

Proof: Since monotonically increasing "Convex functions" meets

$$f'(x) = \frac{df(x)}{dx} > 0,$$

$$f''(x) = \frac{d^2 f(x)}{dx^2} > 0,$$

for $f(x) = A^{X}$ and $g(x) = A^{X} + B^{X}$, we have

$$f'(x) = A^{X} \ln A > 0$$
,

$$f''(x) = A^{X} \ln^{2} A > 0$$

$$g'(x) = A^{X} \ln A + B^{X} \ln B > 0,$$

$$g''(x) = A^{X} \ln^{2} A + B^{X} \ln^{2} B > 0,$$

so $f(x) = A^{X}$ and $g(x) = A^{X} + B^{X}$ are all monotonically increasing "Convex functions".

This theorem means that functions $g(n) = x^n + y^n$, $f(n) = z^n$ are all monotonically increasing "Convex functions".

2. Proving Method

From Theorem 1.11 we know in order to have positive integer solutions for this equation,

$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} > 1$$
 must be satisfied. We give the graph of this equation as showed in

Figure 2-1 when
$$\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} > 1$$
, where $AB // CD'$.

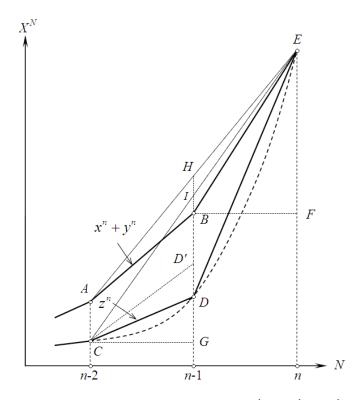


Figure 2-1 Graph of $x^n + y^n = z^n$ when $\frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} > 1$

1. In Figure 2-1 we have

$$\angle CDE = 360^{\circ} - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right) - 90^{\circ},$$

and

$$BD = x^{n-1} + y^{n-1} - z^{n-1},$$

$$AC = x^{n-2} + y^{n-2} - z^{n-2}.$$

When
$$\frac{BD}{AC} > 1$$
 we have

$$\angle ABE - \angle CDE = \angle D'CD + \angle BED > 0$$
,

which means

$$\angle ABE > \angle CDE$$
.

It is also very clear that if $\angle ABE \le \angle CDE$ then $\frac{BD}{AC} < 1$.

From **Theorem 1.9** we know if $z \le 100$ then there are no positive integer solutions for equation (1-1), when n = 3 (which is the worst case) we have

$$\angle CDE = 270^{0} - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right)$$

$$= 270^{0} - \arctan\left(100^{3} - 100^{2}\right) - \arctan\left(\frac{1}{100^{2} - 100}\right) > 179.99^{0}$$

and

$$\angle ABE > \angle CDE > 179.99^{\circ}$$

which means $\angle ABE$, $\angle CDE \rightarrow 180^{0}$, so ABE, CDE are almost lines with z > 100, $n \ge 3$, that leads to $\frac{BD}{AC} \rightarrow \frac{1}{2} < 1$, which contradicts against BD > AC. So when z, n is large enough then $\frac{BD}{AC} = \frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} < 1$, from **Theorem 1.11** we know there are no positive integer solutions for equation (1-1).

2. For function

$$f(z) = \angle CDE = 270^{0} - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right)$$
$$= \frac{3}{2}\pi - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right)$$

we give the function plot for it in **Figure 2-2**.

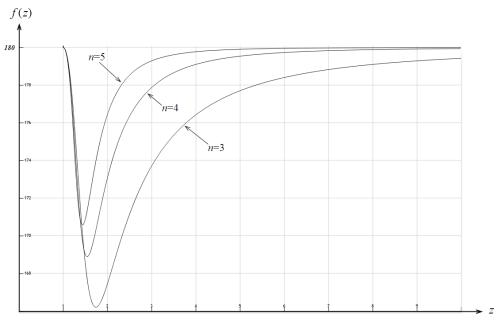


Figure 2-2 Graph of $f(z) = \angle CDE = 270^{\circ} - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right)$

where we take $\pi = 3.1415926535897932$

Obviously $f(z) = \angle CDE$ is a "Monotonically increasing function" when $z \ge 3$, and with the increasing of z the value of $f(z) = \angle CDE$ is close to 180° . It is very clear that $\angle ABE - \angle CDE$ is decreasing with the increasing of z, since

$$(\angle ABE - \angle CDE = \angle D'CD + \angle BED) < 180^{\circ} - \angle CDE$$
,

where $\angle CDE$ is increasing. When n = 3 since $\angle CDE > 179.99^{\circ}$, so we have

$$(\angle D'CD + \angle BED) < 180^{\circ} - \angle CDE < 180^{\circ} - 179.99^{\circ} < 0.01^{\circ},$$

which means

$$\angle BED$$
, $\angle D'CD < 0.01^{\circ}$,

and when z or n is large enough, we have

$$\angle ABE - \angle CDE = (\angle BED + \angle D'CD) \rightarrow 0$$
,

which means BD < AC that contradicts against BD > AC. So when z or n is large enough then $\frac{BD}{AC} = \frac{x^{n-1} + y^{n-1} - z^{n-1}}{x^{n-2} + y^{n-2} - z^{n-2}} < 1$, from **Theorem 1.11** we know there are no positive integer solutions for equation (1-1).

3. In Figure 2-1 we have

$$\angle ABE = \frac{3}{2}\pi - \arctan\left(\frac{x^{n} + y^{n} - x^{n-1} - y^{n-1}}{1}\right) - \arctan\left(\frac{1}{x^{n-1} + y^{n-1} - x^{n-2} - y^{n-2}}\right),$$

$$\angle CDE = \frac{3}{2}\pi - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right),$$

so

$$\angle ABE - \angle CDE =$$

$$\begin{bmatrix} \arctan\left(\frac{z^{n}-z^{n-1}}{1}\right) + \arctan\left(\frac{1}{z^{n-1}-z^{n-2}}\right) - \arctan\left(\frac{x^{n}+y^{n}-x^{n-1}-y^{n-1}}{1}\right) \\ -\arctan\left(\frac{1}{x^{n-1}+y^{n-1}-x^{n-2}-y^{n-2}}\right) \end{bmatrix}.$$

From (1-1) we have

$$z = \left(x^n + y^n\right)^{\frac{1}{n}},$$

we get

We give the plot of $f(x, y) = \angle ABE - \angle CDE$ using Excel VBA program that showed below:

```
n = 3
For x = 1 To 10 ^ 5 Step 1
   For y = 1 To x - 1 Step 1
      z = (x ^n + y ^n) ^n (1 / n)
      t1 = z ^n n - z ^n (n - 1)
      t2 = 1 / (z ^ (n - 1) - z ^ (n - 2))
      t3 = (x ^n + y ^n) - (x ^n (n - 1) + y ^n (n - 1))
      t4 = 1 / ((x^{(n-1)} + y^{(n-1)}) - x^{(n-2)} - y^{(n-2)})
      CDE = Application.Atan2(t1, 1) - Application.Atan2(t2, 1)
      ABE = Application.Atan2(t3, 2) - Application.Atan2(t4, 2)
      R = CDE - ABE
       Cells(i, 1) = "z=" \& z
       Cells(i, 2) = "x=" & x
       Cells(i, 3) = "y=" & y
       Cells(i, 4) = R
      i = i + 1
      If i > 65536 Then End
   Next y
```

Figure 2-3 shows the results, obviously $f(x, y) = \angle ABE - \angle CDE, n = 3$ is decreasing.

Next x

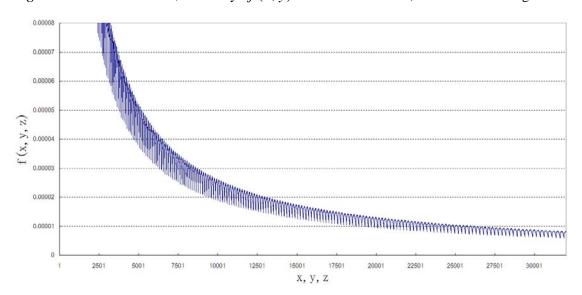


Figure 2-3 *Graph of*
$$f(x, y) = \angle ABE - \angle CDE, n = 3$$

4. In Figure 2-1 we have

$$BD^{2} = BE^{2} + DE^{2} - 2BE \times DE \times \cos(\angle BED)$$

$$= \begin{bmatrix} (z^{n} - z^{n-1})^{2} + 1 + \\ (x^{n} + y^{n} - x^{n-1} - y^{n-1})^{2} + 1 \\ -2\sqrt{(z^{n} - z^{n-1})^{2} + 1} \times \sqrt{(x^{n} + y^{n} - x^{n-1} - y^{n-1})^{2} + 1} \times \\ \cos\left(\arctan\left(\frac{1}{x^{n} + y^{n} - x^{n-1} - y^{n-1}}\right) - \arctan\left(\frac{1}{z^{n} - z^{n-1}}\right)\right) \end{bmatrix},$$

and

$$AC^{2} = AE^{2} + CE^{2} - 2AE \times CE \times \cos(\angle AEC)$$

$$= \begin{bmatrix} (z^{n} - z^{n-2})^{2} + 4 + \\ (x^{n} + y^{n} - x^{n-2} - y^{n-2})^{2} + 4 \\ -2\sqrt{(z^{n} - z^{n-2})^{2} + 4} \times \sqrt{(x^{n} + y^{n} - x^{n-2} - y^{n-2})^{2} + 4} \times \\ \cos\left(\arctan\left(\frac{2}{x^{n} + y^{n} - x^{n-2} - y^{n-2}}\right) - \arctan\left(\frac{2}{z^{n} - z^{n-2}}\right)\right) \end{bmatrix},$$

from (1-1) we have

$$y = \left(z^n - x^n\right)^{\frac{1}{n}}.$$

We give the plot of $f(z, x) = \frac{BD}{AC}$ using Excel VBA program that showed below:

```
For z = 10 ^ 7 To 10 ^ 9 Step 1

For x = z / (2 ^ (1 / n)) To z - 1 Step 1

y = (z ^ n - x ^ n) ^ (1 / n)

t1 = z ^ n - z ^ (n - 1)

t2 = x ^ n + y ^ n - x ^ (n - 1) - y ^ (n - 1)

t3 = z ^ n - z ^ (n - 2)

t4 = x ^ n + y ^ n - x ^ (n - 2) - y ^ (n - 2)

BD = (t1 ^ 2 + t2 ^ 2 + 2 - 2 * Sqr((t1 ^ 2 + 1) * (t2 ^ 2 + 1)) * Cos(Application.Atan2(t2, 1) - Application.Atan2(t1, 1)))

AC = (t3 ^ 2 + t4 ^ 2 + 8 - 2 * Sqr((t3 ^ 2 + 4) * (t4 ^ 2 + 4)) * Cos(Application.Atan2(t4, 2) - Application.Atan2(t3, 2)))

R = (BD / AC) ^ 0.5

Cells(j, 1) = "z=" & z

Cells(j, 2) = "x=" & x

Cells(j, 3) = "y=" & y
```

Cells(j, 4) = R
$$j = j + 1$$
If j > 65536 Then End
$$Next x$$

$$Next z$$

We give the plot of $f(z, x) = \frac{BD}{AC}$, n = 3 when $z = 10^7$, $x = \frac{z}{\sqrt[n]{2}} \sim z$, n = 3, it is showed in

Figure 2-4.

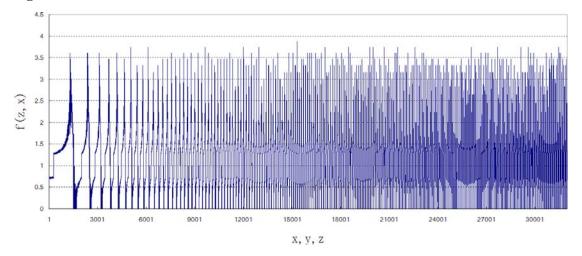


Figure 2-4 Graph of $f(z, x) = \frac{BD}{AC}$, n = 3

With the increasing of z, n the value of $f(z, x) = \frac{BD}{AC}$ will be smaller, and we are sure of when $z, n \to \infty$ or get larger, the conclusion holds. In fact even $z = 10^6$, we can still have a result of $f(z, x) = \frac{BD}{AC} < 40$.

5. In Figure 2-1 let S_{CDE} , S_{ABE} be the areas of triangles ΔCDE , ΔABE , we have

$$S_{CDE} = \frac{CD \times DE \times \sin(\angle CDE)}{2}$$

$$= \frac{\left[\sqrt{(z^{n} - z^{n-1})^{2} + 1} \times \sqrt{(z^{n-1} - z^{n-2})^{2} + 1} \times \left(\frac{3}{z^{n} - \arctan\left(\frac{z^{n} - z^{n-1}}{1}\right) - \arctan\left(\frac{1}{z^{n-1} - z^{n-2}}\right)\right)\right]}{2}$$

$$= \frac{-\left[\sqrt{(z^{n}-z^{n-1})^{2}+1} \times \sqrt{(z^{n-1}-z^{n-2})^{2}+1} \times - \left[\cos\left(\arctan\left(\frac{z^{n}-z^{n-1}}{1}\right) + \arctan\left(\frac{1}{z^{n-1}-z^{n-2}}\right)\right)\right]}{2}$$

$$= \frac{DI}{2} + \frac{DI}{2} = DI,$$

$$S_{ABE} = \frac{AB \times BE \times \sin(\angle ABE)}{2}$$

$$= \frac{\left[\sqrt{\left(x^{n} + y^{n} - x^{n-1} - y^{n-1}\right)^{2} + 1} \times \sqrt{\left(x^{n-1} + y^{n-1} - x^{n-2} - y^{n-2}\right)^{2} + 1} \times \left[\sin\left(\frac{3}{2}\pi - \arctan\left(\frac{x^{n} + y^{n} - x^{n-1} - y^{n-1}}{1}\right) - \arctan\left(\frac{1}{x^{n-1} + y^{n-1} - x^{n-2} - y^{n-2}}\right)\right]}{2}$$

$$= \frac{-\left[\sqrt{\left(x^{n} + y^{n} - x^{n-1} - y^{n-1}\right)^{2} + 1} \times \sqrt{\left(x^{n-1} + y^{n-1} - x^{n-2} - y^{n-2}\right)^{2} + 1} \times \left(\cos\left(\arctan\left(\frac{x^{n} + y^{n} - x^{n-1} - y^{n-1}}{1}\right) + \arctan\left(\frac{1}{x^{n-1} + y^{n-1} - x^{n-2} - y^{n-2}}\right)\right)\right]}{2}$$

$$=\frac{BH}{2}+\frac{BH}{2}=BH,$$

from (1-1) we have

$$y = \left(z^n - x^n\right)^{\frac{1}{n}}.$$

We give the plot of $f(z, x) = \frac{BH}{DI}$ using Excel VBA program that showed below:

n = 7For z = 3 To $10 ^ 7$ Step 1For $x = z / (2 ^ (1 / n))$ To z - 1 $y = (z ^ n - x ^ n) ^ (1 / n)$ If y >= x Then y = x - 1 $t11 = z ^ n - z ^ (n - 1)$ $t12 = z ^ (n - 1) - z ^ (n - 2)$ CDE = Application.Atan2(1, t11) + Application.Atan2(t12, 1) $scde = -Sqr(t11 ^ 2 + 1) * Sqr(t12 ^ 2 + 1) * Cos(CDE) / 2$ $t21 = x ^ n + y ^ n - x ^ (n - 1) - y ^ (n - 1)$ $t22 = x ^ (n - 1) + y ^ (n - 1) - x ^ (n - 2) - y ^ (n - 2)$ ABE = Application.Atan2(1, t21) + Application.Atan2(t22, 1) $sabe = -Sqr(t21 ^ 2 + 1) * Sqr(t22 ^ 2 + 1) * Cos(ABE) / 2$ R = scde / sabe

```
Cells(i, j) = R
i = i + 1
If i = 65535 Then j = j + 1: i = 0
If j = 10 Then End
Next x
Next z
```

The result of this program shows that when $n \ge 7$, the values of S_{CDE} , S_{ABE} are all negative that contradicts against **Theorem 1.12** (since $\angle CDE$, $\angle ABE < 180^{\circ}$, so S_{CDE} , S_{ABE} must be positive values), which means there are no positive integer solutions for equation (1-1). In fact the results of this program include the possible positive integer solutions, so if there is a contradiction then (1-1) can not have positive integer solutions. Obviously the larger of z^n then ABE, CDE are almost lines, but for positive integers that could lead to negative values of S_{CDE} , S_{ABE} . For $f(z,x) = \frac{BH}{DI}$, the program shows that $f(z,x) = \frac{BH}{DI} \rightarrow 1$, which means $\frac{BD}{AC} \rightarrow \frac{1}{2}$ when $n \ge 3$.

3. Conclusion

In this paper we first prove there are no positive integer solutions for equation (1-1) when $\frac{x^{n-1}+y^{n-1}-z^{n-1}}{x^{n-2}+y^{n-2}-z^{n-2}} \le 1, \text{ and then prove with the increasing of } x \text{ the conclusion still holds when}$ $\frac{x^{n-1}+y^{n-1}-z^{n-1}}{x^{n-2}+y^{n-2}-z^{n-2}} > 1 \text{ under the assumption of } z < 10^6, n = 3. \text{ And when } n \ge 7 \text{ there are no}$ positive integer solutions for equation (1-1).