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Abstract: This paper aims at developing new methods for multi-attribute decision making (MADM)
under a single-valued neutrosophic hesitant fuzzy environment, in which each element has sets of
possible values designed by truth, indeterminacy, and falsity membership hesitant functions. First,
taking advantage of the Choquet integral and that it can reflect more correlations of attributes
in MADM, two aggregation operators are defined based on the Choquet integral, specifically,
the single-valued neutrosophic hesitant fuzzy Choquet ordered averaging (SVNHFCOA) operator
and single-valued neutrosophic hesitant fuzzy Choquet ordered geometric (SVNHFCOG) operator,
and their properties are also discussed in detail. Then, novel MADM approaches based on the
SVNHFCOA and SVNHFCOG operators are established to process single-valued neutrosophic
hesitant fuzzy information. Finally, this work provides a numerical example of investment
alternatives to validate the application and effectiveness of the proposed approaches.

Keywords: multi-attribute decision making (MADM); aggregation operator; single-valued neutrosophic
hesitant fuzzy set (SVNHFS); the Choquet integral

1. Introduction

Multi-attribute decision making (MADM) is a common approach to help people to select the
most desirable alternative(s) from some feasible choices. However, in many cases, decision makers
find it is hard to precisely express their preferences under imprecise and uncertain environment [1].
Then, fuzzy set (FS) theory, as proposed by Zadeh, is proven to be useful to deal with fuzzy MADM
problems, especially when subjective assessments are involved [2]. On basis of Zadeh’s work, rough
set (RS), fuzzy multiset (FMS), hesitant fuzzy set (HFS), Interval-valued intuitionistic fuzzy set (IVIFS),
and neutrosophic set (NS) have been successively proposed and successfully applied in dealing with
various uncertain problems in artificial intelligence, pattern recognition, information fusion, and so
on [3–7]. In the practical application of FSs and its extensions, utilizing various techniques to aggregate
information in MADM is of vital importance, and the aggregation operators are one of these effective
techniques to aggregate data in the information fusion process [8,9].

As a generalization of FSs, the NS was introduced by Smarandache to deal with incomplete,
indeterminate, and inconsistent decision information, which include truth, falsity, and indeterminacy
memberships, and their correspondingly membership functions TA(x), IA(x), FA(x) are non-standard
subsets of ]−0, 1+[ [7]. However, without a specific description, it is difficult to apply the NS in
real scientific and other areas. Therefore, some researchers proposed the interval neutrosophic set
(INS), single-valued neutrosophic set (SVNS), multi-valued neutrosophic set (MVNS), and rough
neutrosophic set (RNS) in [10–14], and studied their related properties in detail, among them,
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the membership functions of SVNSs are standard subsets of [0, 1]. The study on aggregation
operators is a practical subject, which has been received growing attention. For SVNSs,
single-valued neutrosophic averaging/geometrical (SVNA/G) operators, correlated aggregation
operators, Hamacher aggregation operators, and Choquet integral operators under single-valued
neutrosophic environment are proposed in recent years [15–17]. As another generalization of FSs,
the HFS was defined by Torra, which permit its membership function to have a set of possible
values [18,19]. Some hesitant fuzzy aggregation operators have also been put forward, such
as the hesitant fuzzy weighted averaging/geometric (HFWA/G) operators, the hesitant fuzzy
ordered weighted averaging/geometric (HFOWA/G) operators, the hesitant fuzzy Choquet ordered
averaging/geometric (HFCOA/G) operators, the generalized hesitant fuzzy Choquet ordered
averaging/geometric (GHFCOA/G) operators, and etc, which have been widely used to deal with
MADM problems under hesitant fuzzy environment [20–23].

Furthermore, Ye proposed the concept of the single-valued neutrosophic hesitant fuzzy set
(SVNHFS) by combining the advantages of the SVNS and HFS, which encompasses FS, HFS, DHFS,
SVNHFS as special cases, and permits its membership functions to have sets of possible values, which
are denoted by truth, indeterminacy, and falsity membership hesitant functions [24]. On basis of
the SVNS and HFS, some properties of SVNHFSs were discussed to solve MADM problems; for
instance, Ye introduced the basic operational relations and cosine measure function of SVNHFSs
and developed the single-valued neutrosophic hesitant fuzzy weighted averaging/geometric
(SVNHFWA/G) operators [24]. Sahin further studied the correlation and correlation coefficient
of SVNHFSs [25]. Distance and similarity measures for MADM with single-valued neutrosophic
hesitant fuzzy information are defined in [26]. Liu. P defined the Hamming distance measure and
neutrosophic hesitant fuzzy Heronian mean aggregation operators of SVNHFSs and then extended the
VIKOR method to process the single-valued neutrosophic hesitant fuzzy information [27]. BISWAS
put forward some weighted distance measures of SVNHFSs [28]. Liu. C proposed the single-valued
neutrosophic hesitant fuzzy ordered weighted averaging/geometric (SVNHFOWA/G) operators and
applied them to deal with practical MADM problems [29].

In the existing research on MADM methods with single-valued neutrosophic hesitant fuzzy
information, it is generally assumed that the attributes are independent, which are characterized
by an independent index. However, for practical MADM problems, due to the dependence among
attributes, more correlations are required to be considered. For example, when we use three courses
as attributes to measure comprehensive performances of students, i.e., English, probability theory,
and mathematical statistics, obviously, students with high performance in probability theory are
highly likely to have high scores in mathematical statistics, so the three indexes cannot be regarded as
independent from each other, we need to further consider the interrelationships among these attributes.
The Choquet integral provides an approach to process the correlation among the attributes in MADM
with respect to fuzzy measure, and various kinds of hesitant fuzzy Choquet aggregation operators,
intuitionistic fuzzy Choquet aggregation operators, neutrosophic Choquet aggregation operators have
been put forward to deal with MADM problems under fuzzy environment [30–34].

Therefore, it is necessary to develop some single-valued neutrosophic hesitant fuzzy operators
based on Choquet integral to consider more correlations between attributes in MADM problem. Thus,
the purposes of this article are to (i) introduce the Choquet integral with respect to fuzzy measures to
into SVNHFSs to consider more correlations among attributes in MADM, (ii) propose a single-valued
neutrosophic hesitant fuzzy Choquet ordered averaging (SVNHFCOA) operator and a single-valued
neutrosophic hesitant fuzzy Choquet ordered geometric (SVNHFCOG) operator (iii) establish MADM
methods based on the SVNHFCOA and SVNHFCOG operators under single-valued neutrosophic
hesitant fuzzy environment.

To do so, the rest of this paper is organized as follows: Section 2 recalls some basic concepts
related to the Choquet integral, SVNS, HFS, and SVNHFS; In Section 3, the SVNHFCOA and
SVNHFCOG operators are put forward and basic properties of them are discussed; In Section 4,
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we put forward MADM methods based on the SVNHFCOA and SVNHFCOG operators under
single-valued neutrosophic hesitant fuzzy environment; Section 5 utilizes an illustrative example
to validate the proposed MADM approaches. Finally, conclusions and future research directions are
drawn in Section 6.

2. Preliminaries

Some basic concepts related to the SVNHFS and Choquet integral are briefly reviewed in this section.

2.1. Single-Valued Neutrosophic Hesitant Fuzzy Sets (SVNHFS)

As a generalization of FSs, the SVNHFS is a combination of the SVNS with HFS.

Definition 1. ([10]) Let X be a non-empty fixed set, a SVNS on X is defined as:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X }, (1)

where TA(x), IA(x), FA(x) ∈ [0, 1], denoting the truth, indeterminacy and falsity membership degree of the
element x ∈ X, respectively, and satisfying the limit: 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2. ([18]) Let X be a non-empty fixed set, a HFS on X is represented by:

E = {〈x, hE(x)〉|x ∈ X}, (2)

where hE(x) is a set of values in [0, 1], denoting the membership hesitant degrees of x ∈ X.

Definition 3. ([24]) Let X be a non-empty fixed set, a SVNHFS on X is expressed by:

N = {(x, t̃(x), ĩ(x), f̃ (x))|x ∈ X }, (3)

where t̃(x) = {γ|γ ∈ t̃(x)}, ĩ(x) = { δ|δ ∈ ĩ(x)}, f̃ (x) = {η|η ∈ f̃ (x)} are three sets with values in [0, 1],
representing truth, indeterminacy and falsity membership hesitant degrees of the element x ∈ X, which satisfy
limits: γ ∈ [0, 1], δ ∈ [0, 1], η ∈ [0, 1] and 0 ≤ sup γ + sup δ + sup η ≤ 3.

For convenience, we call ñ = (t̃(x), ĩ(x), f̃ (x)) a neutrosophic hesitant fuzzy element (SVNHFE),
some basic operations of SVNHFEs are defined by Ye [24], as follows:

Definition 4. ([24]) Let ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2) be two SNVHFEs, then:

1. ñ1 ∪ ñ2 = {t̃1 ∪ t̃2, ĩ1 ∩ ĩ2, f̃1 ∩ f̃2};
2. ñ1 ∩ ñ2 = {t̃1 ∩ t̃2, ĩ1 ∪ ĩ2, f̃1 ∪ f̃2};
3. ñ1 ⊕ ñ2 = ∪

γ1∈t̃1, σ1∈ĩ1,η1∈ f̃1 γ2∈t̃2, σ2∈ĩ2,η2∈ f̃2
{γ1 + γ2 − γ1γ2, σ1σ2, η1η2};

4. ñ1 ⊗ ñ2 = ∪
γ1∈t̃1, σ1∈ĩ1,η1∈ f̃1 γ2∈t̃2, σ2∈ĩ2,η2∈ f̃2

{γ1γ2, σ1 + σ2 − σ1σ2, η1 + η2 − η1η2};

5. kñ1 = ∪
γ1∈t̃1, σ1∈ĩ1,η1∈ f̃1

{1− (1− γ1)
k, σ1

k, η1
k};

6. ñ1
k = ∪

γ1∈t̃1, σ1∈ĩ1,η1∈ f̃1
{γ1

k, 1− (1− σ1)
k, 1− (1− η1)

k}.

The score function and accuracy function are effective tools to rank SVNHFEs, and here we give
definitions of these functions:

Definition 5. ([29]) For ñ, the score function s(ñ) and accuracy function a(ñ) are defined as:

s(ñ) = (
1
l

l

∑
i=1

γi +
1
p

p

∑
i=1

(1− σi) +
1
q

q

∑
i=1

(1− ηi))/3; (4)
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a(ñ) =
1
l

l

∑
i=1

γi −
1
q

q

∑
i=1

(1− ηi); (5)

where l, p, q are the number of the values in t̃, ĩ, f̃ . Obviously, s(ñ), a(ñ) ∈ [0, 1]. If s(ñ1) > s(ñ2), then
ñ1 > ñ2; if s(ñ1) = s(ñ2) and a(ñ1) > a(ñ2), then ñ1 > ñ2.

2.2. The Fuzzy Measure and Choquet Integral

The Choquet integral is a powerful operator to aggregate kinds of fuzzy information in MADM
with respect to fuzzy measure.

Definition 6. ([31]) Let (X, A, µ) be a measurable space and µ : A → [0, 1] , if it satisfies the conditions:

1. µ(∅) = 0;
2. µ(A) ≤ µ(B) whenever A ⊂ B, A, B ∈ A;
3. I f A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . , An ∈ A, then µ (∪∞

n=1 An) = limn→∞µ(An) ;
4. I f A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . , An ∈ A, then µ (∩∞

n=1 An) = limn→∞µ(An) ;

then we call µ be a fuzzy measure defined by Sugeno M.

In addition, to avoid the problems with computational complexity, gλ fuzzy measure, a special
kind of fuzzy measure, was proposed by Sugeno M [31], which satisfies the additional properties:
µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B), λ ∈ (−1, ∞) for all A, B ∈ A and A ∩ B = ∅. Specially,
the expression of gλ fuzzy measure on a finite set can be simplified as follows:

Theorem 1. ([31]) When X is a finite set (X = {x1, x2, . . . , xm}), gλ fuzzy measure can be expressed as:

µ(X) =


1
λ ( ∏

i∈X
(1 + λµ(xi))− 1), i f λ 6= 0,

∑
i∈X

µ(xi), i f λ = 0,
(6)

where xi ∩ xj = ∅ for all i, j = 1, 2, · · · , m and i 6= j.

Definition 7. ([32]) Let µ be a fuzzy measure, X = {x1, x2, . . . , xm} be a finite set. The Choquet integral of a
function f : X → [0, 1] with respect to fuzzy measure µ is expressed as follows:

∫
f dµ =

m

∑
i=1

(µ(Fφ(i))− µ(Fφ(i−1)))· f (xφ(i)), (7)

where (φ(1), φ(2), . . . , φ(m)) is a permutation of (1, 2, . . . , n) such that f (xφ(1)) ≥ f (xφ(2)), . . . ,
Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)} and Fφ(0) = ∅.

3. New Single-Valued Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators

Based on the operational laws of SVNHFEs and Choquet integral, new aggregation operators
SVNHFCOA and SVNHFCOG are proposed in this section.

3.1. Single-Valued Neutrosophic Hesitant Fuzzy Choquet Ordered Averaging (SVNHFCOA) Operator

Definition 8. Let ñj(j = 1, 2, . . . , m) be a collection of SVNHFEs, X be the set of attributes and µ be fuzzy
measures on X, then the SVNHFCOA operator is defined as follows:

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = ⊕m
j=1((µ(Fφ(j))− µ(Fφ(j−1)))ñφ(j)) (8)
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where µφ(j) = µ(Fφ(j))− µ(Fφ(j−1)) and (φ(1), φ(2), . . . , φ(m)) is a permutation of (1, 2, . . . , m) such that
ñφ(1) ≥ ñφ(2), . . . , ñφ(m), Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)} and Fφ(0) = ∅.

Theorem 2. Let ñj(j = 1, 2, . . . , m) be a collection of SVNHFEs, then the aggregated value obtained by the
SVNHFCOA operator is also a SVNHFE, and

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = ⊕m
j=1((µ(Fφ(j))− µ(Fφ(j−1)))ñφ(j))

= ∪
γφ(j)∈t̃φ(j), σφ(j)∈ĩφ(j),ηφ(j)∈ f̃φ(j)

{{1−
m
∏
j=1

(1− γφ(j))
µφ(j)}, {

m
∏
j=1

σφ(j)
µφ(j)}, {

m
∏
j=1

ηφ(j)
µφ(j)}} (9)

Proof. By means of mathematical induction, the proof of Theorem 2 can be done, i.e., the aggregated
value with SVNHFCOA operator is also a SVNHFE.

(a) For m = 1, since

SVNHFCOAµ{ñ1} = (µ(Fφ(1))− µ(Fφ(0)))ñφ(1) = ñφ(1),

Obviously, Equation (9) holds for m = 1.

(b) When m = 2, since

µφ(1)ñφ(1) = ∪
γφ(1)∈t̃φ(1), σφ(1)∈ĩφ(1),ηφ(1)∈ f̃φ(1)

{1− (1− γφ(1))
µφ(1) , σφ(1)

µφ(1) , ηφ(1)
µφ(1)},

µφ(2)ñφ(2) = ∪
γφ(2)∈t̃φ(2), σφ(2)∈ĩφ(2),ηφ(2)∈ f̃φ(2)

{1− (1− γφ(2))
µφ(2) , σφ(2)

µφ(2) , ηφ(2)
µφ(2)}

then, we have

SVNHFCOAµ{ñ1, ñ2} = µφ(1)ñφ(1) ⊕ µφ(2)ñφ(2)

= ∪
γφ(j)∈t̃φ(j), σφ(j)∈ĩφ(j),ηφ(j)∈ f̃φ(j)

{{1− (1− γφ(1))
µφ(1)(1− γφ(2))

µφ(2)}, {σφ(1)
µφ(1)σφ(2)

µφ(2)}, {ηφ(1)
µφ(1)ηφ(2)

µφ(2)}} .

Thus, Equation (9) holds for m = 2.

(c) If Equation (9) holds for m = k, then

SVNHFCOAµ{ñ1, ñ2, . . . , ñk} = ⊕k
j=1µφ(j)ñφ(j)

= ∪
γφ(j)∈t̃φ(j), σφ(j)∈ĩφ(j),ηφ(j)∈ f̃φ(j)

{{1−
k

∏
j=1

(1− γφ(j))
µφ(j)}, {

k
∏
j=1

σφ(j)
µφ(j)}, {

k
∏
j=1

ηφ(j)
µφ(j)}}

When m = k + 1, for ∀γφ(j) ∈ t̃φ(j), σφ(j) ∈ ĩφ(j), ηφ(j) ∈ f̃φ(j) , then,

SVNHFCOAµ{ñ1, ñ2, . . . , ñk+1} = ⊕k+1
j=1 µφ(j)ñφ(j)

= ∪
γφ(j)∈t̃φ(j), σφ(j)∈ĩφ(j),ηφ(j)∈ f̃φ(j)

{{1−
k

∏
j=1

(1− γφ(j))
µφ(j)}, {

k
∏
j=1

σφ(j)
µφ(j)}, {

k
∏
j=1

ηφ(j)
µφ(j)}}⊕

∪
γφ(k+1)∈t̃φ(k+1), σφ(k+1)∈˜iφ(k+1),ηφ(k+1)∈ ˜fφ(k+1)

{1− (1− γφ(k+1))
µφ(k+1) , σφ(k+1)

µφ(k+1) , ηφ(k+1)
µφ(k+1)}
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which can be obtained by (⊕) calculation,

SVNHFCOAµ{ñ1, ñ2, . . . , ñk+1} = ⊕k+1
j=1 µφ(j)ñφ(j)

= ∪
γφ(j)∈t̃φ(j), σφ(j)∈ĩφ(j),ηφ(j)∈ f̃φ(j)

{{1−
k+1
∏
j=1

(1− γφ(j))
µφ(j)}, {

k+1
∏
j=1

σφ(j)
µφ(j)}, {

k+1
∏
j=1

ηφ(j)
µφ(j)}}.

i.e., Equation (9) holds for m = k + 1, thus we confirm Equation (9) holds for all m. �

Some special cases of the SVNHFCOA operator are given as follows:

1. If µ(F) ≡ 1, then SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = max{ñ1, ñ2, . . . , ñm};
2. If µ(F) ≡ 0, then SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = min{ñ1, ñ2, . . . , ñm};
3. The SVNHFCOA operator reduces to the single-valued neutrosophic hesitant fuzzy weighted

averaging (SVNHFWA) operator, if the independent condition µ(xφ(j)) = µ(Fφ(j))− µ(Fφ(j−1)) holds.

SVNHFWA{ñ1, ñ2, . . . , ñm} = ⊕m
j=1(µ(xj) · ñj)

= ∪
γj∈t̃J ,σj∈l̃Z J ,ηj∈ f̃ J

{{
1−

m
∏
j=1

(1− γj)
µ(xj)

}
,

{
m
∏
j=1

σj
µ(xj)

}
,

{
m
∏
j=1

ηj
µ(xj)

}}
.

4. If µ(xj) = 1/m, for j = 1, 2, . . . , m, then both the SVNHFCOA and SVNHFWA operators reduce
to the single-valued neutrosophic hesitant fuzzy averaging (SVNHFA) operator, which is shown
as follows:

SVNHFWA{ñ1, ñ2, . . . , ñm} = ∪
γj∈t̃j , σj∈ĩj ,ηj∈ f̃ j

{{1−
m
∏
j=1

(1− γj)
1
m }, {

m
∏
j=1

(σj)
1
m }, {

m
∏
j=1

(ηj)
1
m }}.

5. If µ(F) = ∑
|F|
j=1ωj for all F ⊆ X, where |F| is the number of elements in F, then ωj = µ(Fφ(j))−

µ(Fφ(j−1)), j = 1, 2, . . . , m, where ω = (ω1,ω2, . . . ,ωm)T such that ωj ≥ 0 and ∑m
j=1ωj = 1.

In this case, the SVNHFCOA operator reduces to the single-valued neutrosophic hesitant fuzzy
ordered weighted averaging (SVNHFOWA) operator as:

SVNHFOWA{ñ1, ñ2, . . . , ñm} = ∪
γj∈t̃j , σj∈ĩzj ,ηj∈ f̃ j

{{1−
m

∏
j=1

(1− γωj)
ωj}, {

m

∏
j=1

σj
ωj}, {

m

∏
j=1

ηj
ωj}};

Particularly, if µ(F) = |F|/m, for all F ⊆ X, then both the SVNHFCOA and SVNHFOWA operators
reduce to the SVNHFA operator.

Theorem 3. The SVNHFCOA operator has the following desirable properties:

1. (Idempotency) Let ñj = ñ for all j = 1, 2, . . . , m, and ñ = {{γ}, {σ}, {η}}, then:

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = {{γ}, {σ}, {η}}.

2. (Boundedness) Let ñ− = {min{γj}, max{σj}, max{ηj}}, ñ+ = { max{ γj}, min{σj}, min{ηj}}, so:

ñ− ≤ SVNHFCOAµ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3. (Commutativity) If {ñ′1, ñ′2, . . . , ñ′m} is a permutation of {ñ1, ñ2, . . . , ñm}, then,

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = SVNHFCOAµ{ñ′1, ñ′2, . . . , ñ′m}.
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4. (Monotonity) If ñj ≤ ñ′j for ∀j ∈ {1, 2, . . . , n}, then,

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} ≤ SVNHFCOAµ{ñ′1, ñ′2, . . . , ñ′m}.

Proof. Suppose (1, 2, . . . , m) is a permutation such that ñ1 ≥ ñ2, . . . ,≥ ñm.

1. For ñ = {{γ}, {σ}, {η}}, according to Theorem 1, it follows that

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} =

{{1− (1− γ)∑m
j=1 (µ(Fj)−µ(Fj−1))}, {σ∑m

j=1 (µ(Fj)−µ(Fj−1))}, {η∑m
j=1 (µ(Fj)−µ(Fj−1))}} = {{γ}, {σ}, {η}}.

2. Since y = xa(0 < a < 1) is a monotone increasing function when x > 0, therefore, it holds

1−
m
∏
j=1

(1−min{γj})(µ(Fj)−µ(Fj−1)) ≤ 1−
m
∏
j=1

(1− γj)
(µ(Fj)−µ(Fj−1))

≤ 1−
m
∏
j=1

(1−max{γj})(µ(Fj)−µ(Fj−1)),

which is equivalent to

1− (1−min{γj})∑m
j=1 (µ(Fj)−µ(Fj−1)) ≤ 1−

m
∏
j=1

(1− γj)
(µ(Fj)−µ(Fj−1))

≤ 1− (1−max{γj})∑m
j=1 (µ(Fj)−µ(Fj−1))

i.e.,

min{γj} ≤ 1−
m

∏
j=1

(1− γj)
(µ(Fj)−µ(Fj−1)) = γ ≤ max{γj}

Analogously, we have

min{σj} ≤
m

∏
j=1

σj
(µ(Fj)−µ(Fj−1)) ≤ max{σj} and min{ηj} ≤

m

∏
j=1

ηj
(µ(Fj)−µ(Fj−1)) ≤ max{ηj}.

Since s(ñ−) ≤ S(ñ) ≤ s(ñ+), namely, ñ− ≤ SVNHFCOAµ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3. Suppose (φ(1), φ(2), . . . , φ(m)) is a permutation of both {ñ′1, ñ′2, . . . , ñ′m} and {ñ1, ñ2, . . . , ñm},
such that ñφ(1) ≥ ñφ(2), . . . ,≥ ñφ(m), Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)}, then,

SVNHFCOAµ{ñ1, ñ2, . . . , ñm} = SVNHFCOAµ{ñ′1, ñ′2, . . . , ñ′m} = ⊕m
j=1((µ(Fφ(j))− µ(Fφ(j−1)))ñφ(j)).

4. Considering ñj ≤ ñ′j for ∀j ∈ {1, 2, . . . , n}, we have

γ = 1−
m
∏
j=1

(1− γj)
(µ(Fj)−µ(Fj−1)) ≤ 1−

m
∏
j=1

(1− γ′j)
(µ(Fj)−µ(Fj−1)) = γ′,

σ =
m
∏
j=1

σj
µ(Fj)−µ(Fj−1) ≥

m
∏
j=1

(σ′j )
µ(Fj)−µ(Fj−1) = σ′,

η =
m
∏
j=1

ηj
µ(Fj)−µ(Fj−1) ≥

m
∏
j=1

(η′j)
µ(Fj)−µ(Fj−1) = η′.

Since s(ñj) ≤ s(ñ′j), namely, SVNHFCOAµ{ñ1, ñ2, . . . , ñm} ≤ SVNHFCOAµ{ñ′1, ñ′2, . . . , ñ′m}. �
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3.2. Single-Valued Neutrosophic Hesitant Fuzzy Choquet Ordered Geometric (SVNHFCOG) Operator

Similarly, we can develop the SVNHFCOG operator for SVNHFSs:

Definition 9. Let ñj(j = 1, 2, . . . , m) be a collection of SVNHFEs, X be the set of attributes and µ be fuzzy
measures on X, then the SVNHFCOG operator is defined as follows:

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = ⊗m
j=1(ñφ(j)

(µ(Fφ(j))−µ(Fφ(j−1)))), (10)

where µφ(j) = µ(Fφ(j))− µ(Fφ(j−1)) and (φ(1), φ(2), . . . , φ(m)) is a permutation of (1, 2, . . . , m) such that
ñφ(1) ≥ ñφ(2), . . . , ñφ(m), Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)} and Fφ(0) = ∅.

Theorem 4. Let ñj(j = 1, 2, . . . , m) be a collection of SVNHFEs, then the aggregated value obtained by the
SVNHFCOA operator is also a SVNHFE, and

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = ⊗m
j=1(ñφ(j)

(µ(Fφ(j))−µ(Fφ(j−1))))

= ∪
γφ(j) ∈ t̃φ(j), σφ(j) ∈ ĩφ(j),

ηφ(j) ∈ f̃φ(j)

{{
m
∏
j=1

(γφ(j))
µφ(j)}, {1−

m
∏
j=1

(1− σφ(j))
µφ(j)}, {1−

m
∏
j=1

(1− ηφ(j))
µφ(j)}} (11)

Some special cases of the SVNHFCOA operator are given as follows:

1. If µ(F) ≡ 1, then SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = max{ñ1, ñ2, . . . , ñm};
2. If µ(F) ≡ 0, then SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = min{ñ1, ñ2, . . . , ñm};
3. The SVNHFCOG operator reduces to the single-valued neutrosophic hesitant fuzzy weighted

geometric (SVNHFWG) operator, if the independent condition µ(xφ(j)) = µ(Fφ(j)) −
µ(Fφ(j−1)) holds.

SVNHFWG{ñ1, ñ2, . . . , ñm} = ⊗m
j=1(µ(xj)⊗ ñj)

= ∪
γj∈t̃j , σj∈ĩzj ,ηj∈ f̃ j

{{
m
∏
j=1

γj
µ(xj)

}
,

{
1−

m
∏
j=1

(1− σj)
µ(xj)

}
,

{
1−

m
∏
j=1

(1− ηj)
µ(xj)

}}
.

4. If µ(xj) = 1/m, for j = 1, 2, . . . , m, then both the SVNHFCOG and SVNHFWG operators reduce
to the single-valued neutrosophic hesitant fuzzy geometric (SVNHFG) operator, which is shown
as follows:

SVNHFWG{ñ1, ñ2, . . . , ñm}

= ∪
γj∈t̃j , σj∈ĩj ,ηj∈ f̃ j

{{
m
∏
j=1

(γj)
1
m

}
,

{
1−

m
∏
j=1

(1− σj)
1
m

}
,

{
1−

m
∏
j=1

(1− ηj)
1
m

}}
.

5. If µ(F) = ∑
|F|
j=1ωj for all F ⊆ X, where |F| is the number of elements in F, then ωj = µ(Fφ(j))−

µ(Fφ(j−1)), j = 1, 2, . . . , m, where ω = (ω1,ω2, . . . ,ωm)T such that ωj ≥ 0 and ∑m
j=1ωj = 1.

Then, the SVNHFCOG operator reduces to the single-valued neutrosophic hesitant fuzzy ordered
weighted geometric (SVNHFOWG) operator as follows:

SVNHFOWG{ñ1, ñ2, . . . , ñm}

= ∪
γj∈t̃j , σj∈ĩzj ,ηj∈ f̃ j

{{
m
∏
j=1

(γj)
ωj

}
,

{
1−

m
∏
j=1

(1− σj)
ωj

}
,

{
1−

m
∏
j=1

(1− ηj)
ωj

}}
.
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Particularly, if µ(F) = |F|/m, for all F ⊆ X, then the SVNHFCOG and SVNHFOWG operators
reduce to the SVNHFG operator.

Theorem 5. The SVNHFCOG operator has the following desirable properties:

1. (Idempotency) Let ñj = ñ for all j = 1, 2, . . . , m, and ñ = {{γ}, {σ}, {η}}, then:

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = {{γ}, {σ}, {η}}.

2. (Boundedness) Let ñ− = {min{γj}, max{σj}, max{ηj}}, ñ+ = { max{ γj}, min{σj}, min{ηj}}, so:

ñ− ≤ SVNHFCOGµ{ñ1, ñ2, . . . , ñm} ≤ ñ+

3. (Commutativity) If {ñ′1, ñ′2, . . . , ñ′m} is a permutation of {ñ1, ñ2, . . . , ñm}, then,

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} = SVNHFCOGµ{ñ′1, ñ′2, . . . , ñ′m}

4. (Monotonity) If ñj ≤ ñ′j for∀j ∈ {1, 2, . . . , n}, then,

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} ≤ SVNHFCOGµ{ñ′1, ñ′2, . . . , ñ′m}.

Theorem 6. Let ñj(j = 1, 2, . . . , m) be a collection of SVNHFEs, X be the set of attributes and m be a fuzzy
measure on X, then we have

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} ≤ SVNHFCOAµ{ñ1, ñ2, . . . , ñm}

Proof. Based on Lemma 1, ∀ ñj = {{γj}, {σj}, {ηj}}, (j = 1, 2, . . . , m), it follows that

m

∏
j=1

γj
µφ(j) ≤

m

∑
j=1

µφ(j)γj = 1−
m

∑
j=1

(µφ(j))(1− γj) ≤ 1−
m

∏
j=1

(1− γj)
(µφ(j))

Analogously, we have

m

∏
j=1

σj
µφ(j) ≤ 1−

m

∏
j=1

(1− σj)
µφ(j) ;

m

∏
j=1

ηj
µφ(j) ≤ 1−

m

∏
j=1

(1− ηj)
µφ(j) .

Next, by calculation of their score functions, we can know that

SVNHFCOGµ{ñ1, ñ2, . . . , ñm} ≤ SVNHFCOAµ{ñ1, ñ2, . . . , ñm}

�

4. Approaches for MADM with Single-Valued Neutrosophic Hesitant Fuzzy Information

For a MADM problem with single-valued neutrosophic hesitant fuzzy information, assume that
there are n alternatives A = {a1, a2, . . . , an} and m interrelated attributes X = {x1, x2, . . . , xm}. Thus,
let N = (ñij = {t̃ij, ĩij, f̃ij})n×m denotes values assigned to n alternatives with respect to m attributes,

in detail, t̃ij, ĩij, f̃ij indicate the truth, indeterminacy and falsity membership hesitant functions of
ai satisfying xj given by decision-makers, respectively. Then, to determine the most desirable
alternative(s), the SVNHFCOA and SVNHFCOG operators are utilized to establish MADM methods
with single-valued neutrosophic hesitant fuzzy information, which involves the following steps:
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Step 1. Reorder the Decision Matrix

Reorder m SVNHFEs ñij from smallest to largest of ai (i = 1, 2, . . . , n) in N = (ñij)n×m: (1) if
their score values s(ñij) are different, we can rank them by Equation (12); (2) if some of their score
values are same, we continue to calculate accuracy values a(ñij) by Equation (13). Then, the reorder
sequence is expressed as ñiφ(1), ñiφ(2), . . . , ñiφ(m), where (iφ(1), iφ(2), . . . , iφ(m)) is a permutation of
(i1, i2, . . . , im), such that ñiφ(1) ≥ ñiφ(2), . . . ,≥ ñiφ(m).

s(ñij) =

[
1

#γ

#γ

∑
l=1

γij +
1

#σ

#σ

∑
p=1

(1− σij) +
1

#η

#η

∑
q=1

(1− ηij)

]
/3, (12)

a(ñij) =
1

#γ

#γ

∑
l=1

γij −
1

#η

#η

∑
q=1

(1− ηij). (13)

Step 2. Confirm Fuzzy Measures of m Attributes

Since the existing MADM methods using single-valued neutrosophic hesitant fuzzy information
ignore the interrelationships of attributes, thus, by combining the Choquet integral with respect to
fuzzy measures, more correlations can be considered in the MADM process. So, we use gλ fuzzy
measure to determine fuzzy measures µ of X.

µiφ(j) = µ(Fiφ(j))− µ(Fiφ(j−1)), (i = 1, 2, . . . n, j = 1, 2, . . . , m) (14)

Step 3. Aggregate All Decision Information by SVNHFCOA or SVNHFCOG Operator

Aggregate m SVNHFEs ñiφ(j) of ai based on the SVNHFCOA or SVNHFCOG operator in
Equation (15) or (16).

ñi = SVNHFCOAµ{ñi1, ñi2, . . . , ñim} = ⊕m
j=1((µ(Fiφ(j))− µ(Fiφ(j−1)))ñiφ(j)), (15)

ñi = SVNHFCOGµ{ñi1, ñi2, . . . , ñim} = ⊗m
j=1(ñiφ(j)

(µ(Fiφ(j))−µ(Fiφ(j−1)))). (16)

Step 4. Rank the Alternatives

Calculate and rank n alternatives to select the most desirable one: (1) if their score values s(ñj)

are different, we can rank n alternatives by Equation (17); (2) if some of their score values s(ñj) are
same, we continue to calculate accuracy values a(ñj) by Equation (18) to get the best choice.

s(ñj) =

[
1

#γ

#γ

∑
l=1

γj +
1

#σ

#σ

∑
p=1

(1− σj) +
1

#η

#η

∑
q=1

(1− ηj)

]
/3, (17)

a(ñj) =
1

#γ

#γ

∑
l=1

γj −
1

#η

#η

∑
q=1

(1− ηj). (18)

5. Numerical Example and Analysis

5.1. Numerical Example

An illustrative example about investment alternatives for a MADM problem adapted from Ye [24]
is utilized to illustrate the applications of the proposed approaches in this paper, and to demonstrate
their feasibility and effectiveness.

Suppose that there is a problem to deal with potential evaluation of emerging technology
commercialization, which is a typical MADM problem. There is a panel with four possible emerging
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technology enterprises denoted by a1, a2, a3, a4. During the decision making process, three attributes
need to be considered: (1) x1 is the potential market and market risk; (2) x2 is the industrialization
infrastructure, human resources, and financial conditions; (3) x3 is the employment creation and
development of science and technology.

To avoid influence others, decision makers are required to evaluate the four possible
emerging technology enterprises ai (i = 1, 2, 3, 4) under the above three attributes in anonymity,
and single-valued neutrosophic hesitant fuzzy decision matrix N = (ñij)4 × 3 is constructed, shown in
Table 1.

Table 1. Single-valued Neutrosophic Hesitant Fuzzy Decision Matrix N.

x1 x2 x3

a1 {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}} {{0.5, 0.6}, {0.2, 0.3}, {0.3, 0.4}} {{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}}
a2 {{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}} {{0.6, 0.7}, {0.1}, {0.3}} {{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}}
a3 {{0.5, 0.6}, {0.4}, {0.2, 0.3}} {{0.6}, {0.3}, {0.4}} {{0.5, 0.6}, {0.1}, {0.3}}
a4 {{0.7, 0.8}, {0.1}, {0.1, 0.2}} {{0.6, 0.7}, {0.1}, {0.2}} {{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}}

Step 1. Get the score matrix of ñij calculated by Equation (11), shown in Table 2, and the reordered
decision matrix shown in Table 3.

Table 2. Score values of ñij.

x1 x2 x3

a1 0.65 0.65 0.52
a2 0.75 0.75 0.78
a3 0.63 0.57 0.72
a4 0.83 0.78 0.67

Table 3. Reordered decision matrix N′.

xœ(1) xœ(2) xœ(3)

a1 {{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}} {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}} {{0.5, 0.6}, {0.2, 0.3}, {0.3, 0.4}}
a2 {{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}} {{0.6, 0.7}, {0.1}, {0.3}} {{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}}
a3 {{0.6}, {0.3}, {0.4}} {{0.5, 0.6}, {0.4}, {0.2, 0.3}} {{0.5, 0.6}, {0.1}, {0.3}}
a4 {{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}} {{0.6, 0.7}, {0.1}, {0.2}} {{0.7, 0.8}, {0.1}, {0.1, 0.2}}

Since s(ñ11) = s(ñ12) = 0.65, s(ñ21) = s(ñ22) = 0.75, we calculate accuracy values and
get a(ñ11) = −0.25, a(ñ12) = −0.1; a(ñ21) = −0.1, a(ñ22) = −0.05. Thus, reorder sequences
for a1, a2, a3, a4 are as follows: ñ1σ(1)

= ñ13, ñ1σ(2)
= ñ11,ñ1σ(3)

= ñ12; ñ2σ(1)
= ñ21,ñ2σ(2)

= ñ22,

ñ2σ(3)
= ñ23; ñ3σ(1)

= ñ32, ñ3σ(2)
= ñ31,ñ3σ(3)

= ñ33; ñ4σ(1)
= ñ43,ñ4σ(2)

= ñ42, ñ4σ(3)
= ñ41.

Step 2. Suppose that the fuzzy measures of attributes of X are given as follows:
µ(x1) = 0.362, µ(x2) = 0.2, µ(x3) = 0.438. Firstly, according to Equation (7), the value of λ is
obtained: λ = 0.856. Thus, µ(x1, x2) = 0.626, µ(x2, x3) = 0.713, µ(x1, x3) = 0.936, µ(X) = 1, thus,

µ(xφ(1)) = 0.362; µ(xφ(2)) = 0.264; µ(xφ(3)) = µ(X)− µ(x1, x2) = 0.374.
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Step 3. Aggregate ñij(i = 1, 2, 3, 4; j = 1, 2, 3) by using the SVNHFCOA operator to derive the
comprehensive score value ñi for ai (i = 1, 2, 3, 4). Take a1 for an example, the comprehensive score
value ñ1 of a1 is calculated as follows:

ñ1 = {{1− (1− 0.2)0.362(1− 0.3)0.264(1− 0.5)0.374, 1− (1− 0.2)0.362(1− 0.3)0.264(1− 0.6)0.374,

1− (1− 0.2)0.362(1− 0.4)0.264(1− 0.5)0.374, 1− (1− 0.2)0.362(1− 0.4)0.264(1− 0.6)0.374,

1− (1− 0.2)0.362(1− 0.5)0.264(1− 0.5)0.374, 1− (1− 0.2)0.362(1− 0.5)0.264(1− 0.6)0.374,

1− (1− 0.3)0.362(1− 0.3)0.264(1− 0.5)0.374, 1− (1− 0.3)0.362(1− 0.3)0.264(1− 0.6)0.374,

1− (1− 0.3)0.362(1− 0.4)0.264(1− 0.5)0.374, 1− (1− 0.3)0.362(1− 0.4)0.264(1− 0.6)0.374,

1− (1− 0.3)0.362(1− 0.5)0.264(1− 0.5)0.374, 1− (1− 0.3)0.362(1− 0.5)0.264(1− 0.6)0.374

{0.10.3620.10.2640.20.374, 0.10.3620.10.2640.30.374, 0.20.3620.10.2640.20.374, 0.20.3620.10.2640.30.374},
{0.50.3620.30.2640.30.374, 0.50.3620.30.2640.40.374, 0.50.3620.40.2640.30.374, 0.50.3620.40.2640.40.374,

0.60.3620.30.2640.30.374, 0.60.3620.30.2640.40.374, 0.60.3620.40.2640.30.374, 0.60.3620.40.2640.40.374}},

and obtain the following collective SVNHFEs:

ñ1 = {{0.352, 0.401, 0.386, 0.432, 0.424, 0.468, 0.378, 0.425, 0.41, 0.455, 0.447, 0.488}, {0.127, 0.147, 0.157, 0.181},
{0.35, 0.387, 0.387, 0.428, 0.369, 0.408, 0.408, 0.452}}.
ñ2 = {{0.6, 0.629, 0.64, 0.641, 0.666, 0.667, 0.676, 0.7}, {0.1, 0.129, 0.13, 0.167}, {0.172, 0.199, 0.223, 0.258}};
ñ3 = {{0.538, 0.568, 0.572, 0.6}, {0.223}, {0.294, 0.332}};
ñ4 = {{0.56, 0.566, 0.592, 0.598, 0.611, 0.622, 0.639, 0.65}, {0.129}, {0.12, 0.154, 0.156, 0.179, 0.2, 0.232}}.

Step 4. Based on the score function of SVNHFEs, we get:

s(ñ1) = 0.599, s(ñ2) = 0.77, s(ñ3) = 0.678, s(ñ4) = 0.767.

Therefore, we can see that a2 > a4 > a3 > a1 and a2 is the best choice.
If we utilize the SVNHFCOG operator for the MADM problem, the decision-making procedure

can be described as follows:

Step 3′. Aggregate ñij (i = 1, 2, 3, 4; j = 1, 2, 3) by using the SVNHFCOG operator to derive the
comprehensive score value ñ′i for ai (i = 1, 2, 3, 4).

ñ′1 = {{0.20.3620.30.2640.50.374, 0.20.360.30.2640.60.374, 0.20.360.40.2640.50.374, 0.20.360.40.2640.60.374,

0.20.3620.50.2640.50.374, 0.20.360.50.2640.60.374, 0.30.360.30.2640.50.374, 0.30.360.30.2640.60.374,

0.30.3620.40.2640.50.374, 0.30.360.40.2640.60.374, 0.30.360.50.2640.50.374, 0.30.360.50.2640.60.374

1− (1− 0.1)0.362(1− 0.1)0.264(1− 0.2)0.374, 1− (1− 0.1)0.362(1− 0.1)0.264(1− 0.3)0.374,

1− (1− 0.2)0.362(1− 0.1)0.264(1− 0.2)0.374, 1− (1− 0.2)0.362(1− 0.1)0.264(1− 0.3)0.374},

{1− (1− 0.6)0.362(1− 0.3)0.264(1− 0.3)0.374, 1− (1− 0.6)0.362(1− 0.3)0.264(1− 0.4)0.374,

1− (1− 0.6)0.362(1− 0.4)0.264(1− 0.3)0.374, 1− (1− 0.6)0.362(1− 0.4)0.264(1− 0.4)0.374,

1− (1− 0.5)0.362(1− 0.3)0.264(1− 0.3)0.374, 1− (1− 0.5)0.362(1− 0.3)0.264(1− 0.4)0.374,

1− (1− 0.5)0.362(1− 0.4)0.264(1− 0.3)0.374, 1− (1− 0.5)0.362(1− 0.4)0.264(1− 0.4)0.374}},
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and obtain the following collective SVNHF ñ′1 :

ñ′1 = {{0.318, 0.339, 0.351, 0.374, 0.38, 0.405, 0.359, 0.382, 0.397, 0.423, 0.429, 0.457}, {0.136, 0.176, 0.166, 0.204},
{0.408, 0.439, 0.439, 0.469, 0.367, 0.4, 0.4, 0.432}}.
ñ′2 = {{0.6, 0.625, 0.634, 0.636, 0.661, 0.662, 0.672, 0.7}, {0.1, 0.138, 0.139, 0.175}, {0.193, 0.228, 0.231, 0.264}};
ñ′3 = {{0.533, 0.568, 0.563, 0.6}, {0.27}, {0.31, 0.337}};
ñ′4 = {{0.495, 0.515, 0.52, 0.541, 0.595, 0.62, 0.625, 0.651}, {0.138}, {0.128, 0.164, 0.165, 0.2, 0.203, 0.238}}.

Step 4′. Based on the score function of SVNHFEs, we get:

s(ñ1) = 0.599, s(ñ2) = 0.761, s(ñ3) = 0.658, s(ñ4) = 0.75.

Rank ai according to the score values a2 > a4 > a3 > a1. Therefore, we can see that a2 is the
best choice.

Obviously, the above two kinds of ranking orders are the same as the ones in Ref [24]. Thus,
the two kinds of ranking orders coincide with the results that are obtained in other references; therefore,
the above example clearly indicates that the proposed decision-making methods are applicable and
effective under a single-valued neutrosophic hesitant fuzzy environment.

5.2. Comparison Analysis and Discussion

To further validate the feasibility of above MADM methods, a comparison analysis was conducted
with other methods, it should be noted that all these approaches are not clarify how to solve a situation
where the attributes are inter-related. To be specific, the comparative study was based on the same
illustrative example in which the weight of attributes is ω = (0.35, 0.25, 0.4). Then, the results by
utilizing different approaches with complete weight information are shown in Table 4.

Table 4. Results obtained by utilizing the different methods based on the same illustrative example.

Methods Final Ranking Best Alternative Worst Alternative

SVNHFWA operator [24] a4 > a2 > a3 > a1 a4 a1
SVNHFWG operator [24] a2 > a4 > a3 > a1 a2 a1

Correlation coefficient [25] a2 > a4 > a3 > a1 a2 a1
Hamming distance [26] a2 > a4 > a3 > a1 a2 a1
SVNHFCOA operator a2 > a4 > a3 > a1 a2 a1
SVNHFCOG operator a2 > a4 > a3 > a1 a2 a1

For the compared methods in [24], Ye proposes two kinds of aggregation operators, the SVNHFWA
and SVNHFWG operators, which are applied to MADM problems with single-valued neutrosophic
hesitant fuzzy information in [25].

For the compared methods in [25], Sahin and Liu motivated by the idea of correlation coefficients
derived for HFSs, IFSs, SVNSs, they put forward correlation coefficients of SVNHFSs. Then, an
effective MADM example is used to demonstrate its validity.

For the compared methods in [26], Şahin R utilize the distance measure between each alternative
and ideal alternative to establish a multiple attribute decision making method under single-valued
neutrosophic hesitant fuzzy environment.

Thus, according to the results presented in Table 4, if the SVNHFCOG operator [24] is used,
the desirable alternative is a4, and if other five kinds of methods are utilized, the best choice is
a2, and for all the compared methods, the worst alternative is always a1. Therefore, for the same
single-valued neutrosophic hesitant fuzzy information, the results obtained by the proposed methods
in this paper are consistent with those obtained using the compared methods in [24–26], which further
demonstrates the effectiveness and feasibility of the SVNHFCOA and SVNHFCOG operators.
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6. Conclusions

In this paper, we put forward two novel MADM methods based on the SVNHFCOA and
SVNHFCOG operators, their advantages can be summarized below.

First, the SVNHFCOA and SVNHFCOG operators have desirable properties, like: idempotency,
boundedness, commutativity, and monotonity, and they can reduce to the existing aggregation
operators of SVNHFSs, which illustrate their validity in theory.

Second, when comparing with existing methods for MADM problems under neutrosophic hesitant
fuzzy environment, results obtained by the SVNHFCOA and SVNHFCOG operators are consistent
and accurate, which illustrates their practicability in application.

Third, the existing approaches cannot consider the interrelationships of attributes in practical
application; the proposed methods for MADM in this paper can further consider more correlations
between attributes, which means that they have higher accuracy and greater reference value.

Finally, like the Choquet aggregation operators applied and studied under other fuzzy
environments, like hesitant fuzzy environments, intuitionistic fuzzy environment, linguistic fuzzy
environment, and others, the research of this paper can lay the foundation for the following research,
which is of profound significance.
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