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Abstract: A neutrosophic number (NN) presented by Smarandache can express determinate and/or
indeterminate information in real life. NN (z = a + uI) consists of the determinate part a and the
indeterminate part uI for a, u ∈ R (R is all real numbers) and indeterminacy I, and is very suitable for
representing and handling problems with both determinate and indeterminate information. Based on
the concept of NNs, this paper presents for first time the concepts of neutrosophic linear equations
and the neutrosophic matrix, and introduces the neutrosophic matrix operations. Then, we propose
some solving methods, including the substitution method, the addition method, and the inverse
matrix method, for the system of neutrosophic linear equations or the neutrosophic matrix equation.
Finally, an applied example about a traffic flow problem is provided to illustrate the application and
effectiveness of handling the indeterminate traffic flow problem by using the system of neutrosophic
linear equations.
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1. Introduction

The condensed traffic flow along with the increasing number of vehicles is increasingly complex
and uncertain in actual road traffic situations [1]. Since fuzzy logic and fuzzy algebra were introduced
by Zadeh [2] in 1965, fuzzy theory has been successfully applied in a wide range of subject fields [1,3,4].
The main reason for this widespread application is that it can process various vague or uncertain data
and provide results that are suitable for decision making. In a fuzzy set, fuzzy numbers are proven
to be very suitable for expressing vague, imprecise, uncertain values [3,4]. Then, fuzzy numbers can
be defined by a membership/truth function, which specifies the membership/truth degree for each
element x from the universe X. In many real situations (e.g., traffic flow), the information obtained
by decision makers may be partial determinacy and/or partial indeterminacy due to a lack of data,
time pressure, measurement errors, or the decision makers’ limited attention and knowledge. However,
the fuzzy sets/numbers cannot represent data with both determinate and indeterminate information.
To express it, Smarandache [5–7] first proposed the concept of a neutrosophic number (NN) as a
subclass of neutrosophy. NN is composed of the determinate part a and the indeterminate part uI,
denoted by z = a + uI for a, u ∈ R (R is all real numbers), where I is indeterminacy. Hence, NN is much
more suitable for representing and handling real problems with both determinate and indeterminate
information. Recently, NNs have been applied to decision making [8,9] and fault diagnoses [10,11].

Then, Smarandache [12] further proposed the concept of the neutrosophic function, neutrosophic
precalculus, and neutrosophic calculus in 2015 as another subclass of neutrosophy to deal with various
indeterminate problems in the real world. In general, a neutrosophic function (thick function) f : R
→ F(R) can be defined as the forms of a closed interval function f (x) = [f 1(x), f 2(x)], an open interval
function f (x) = (f 1(x), f 2(x)), and semi-open/semi-closed interval functions f (x) = [f 1(x), f 2(x))/f (x)
= (f 1(x), f 2(x)]. Then, Ye et al. [13] applied the neutrosophic function to the expression of the joint
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roughness coefficient (JRC) and the shear strength in rock mechanics. However, the neutrosophic
functions introduced in [12,13] are interval functions (thick function), but they cannot express
and handle actual problems containing NN information. Furthermore, NNs were also applied to
expressions and analyses of rock joint roughness coefficient in rock mechanics [14–16]. Further, Ye [17]
put forth an NN linear programming method to obtain optimal solutions of NN linear programming
problems under NN environments. Unfortunately, there is no study on neutrosophic linear equations
and their solution methods in the currently existing literature. It is obvious that existing fuzzy
sets/numbers cannot express neutrosophic linear equations with both determinate and indeterminate
information (NNs).

In this paper, based on NNs we propose for the first time the new concepts of neutrosophic linear
equations and the neutrosophic matrix, and the solving methods of the system of neutrosophic linear
equations by using the substitution method, the addition method, and the inverse matrix method.
To do so, the rest of this paper is organized as follows. Section 2 describes some basic concepts and
operational laws of NNs. In Section 3, we propose some new concepts in neutrosophic linear equations
and neutrosophic matrices and introduce some neutrosophic matrix operations. Section 4 introduces
the solving methods of the system of neutrosophic linear equations or the neutrosophic matrix equation
by using the substitution, addition, and inverse matrix methods. In Section 5, an applied example
about a traffic flow problem is provided to illustrate the application and effectiveness of handling the
indeterminate traffic flow problem by means of a system of neutrosophic linear equations. Section 6
contains some conclusions and further research.

2. Neutrosophic Numbers and Their Operational Laws

Smarandache [5–7] presented an NN concept which is composed of the determinate part a and
the indeterminate part uI, and is denoted by z = a + uI for a, u ∈ R (R is all real numbers), where I
is indeterminacy.

For example, if an NN is z = 3 + 2I for I ∈ [0, 0.2], it is equivalent to z ∈ [3, 3.4], which means that
its determinate part is 3 and its indeterminate part is 2I = [0, 0.4] for the indeterminacy I ∈ [0, 0.2] and
the possibility for the number “z” is within the interval [3, 3.4], and then for I ∈ [0.1, 0.3], the possible
value of z is within the interval [3.2, 3.6]. As another example, the possible value of the fraction 5/3 is
within the interval [1.66, 1.67], which can be expressed as the neutrosophic number z = 1.66 + 0.01I for
I ∈ [0, 1].

It is obvious that an NN z = a + uI is equivalent to a changeable interval number z = [a + u·infI,
a + u·supI] for a, u ∈ R and I ∈ [infI, supI] (possible changeable range of indeterminacy). In special
cases, z can be expressed as the indeterminate part z = uI if a = 0 for the worst scenario; while z can
also be expressed as the determinate part z = a if uI = 0 for the best scenario.

For two NNs z1 = a1 + u1I and z2 = a2 + u2I for a1, u1, a2, u2 ∈ R, their basic operational laws for
I ∈ [infI, supI] are defined as follows [17]:

(1) z1 + z2 = a1 + a2 + (u1 + u2)I = [a1 + a2 + u1infI + u2infI, a1 + a2 + u1supI + u2supI];
(2) z1 − z2 = a1 − a2 + (u1 − u2)I = [a1 − a2 + u1infI − u2infI, a1 − a2 + u1supI − u2supI];

(3)

z1 × z2 = a1a2 + (a1u2 + a2u1)I + u1u2 I2

=


min

(
(a1 + u1infI)(a2 + u2infI), (a1 + u1infI)(a2 + u2supI),
(a1 + u1supI)(a2 + u2infI), (a1 + u1supI)(a2 + u2supI)

)
,

max

(
(a1 + u1infI)(a2 + u2infI), (a1 + u1infI)(a2 + u2supI),
(a1 + u1supI)(a2 + u2infI), (a1 + u1supI)(a2 + u2supI)

)
 ;

(4)

z1
z2

= a1+u1 I
a2+u2 I =

[a1+u1infI,a1+u1supI]
[a2+u2infI,a2+u2supI]

=

 min
(

a1+u1infI
a2+u2supI , a1+u1infI

a2+u2infI , a1+u1supI
a2+u2supI , a1+u1supI

a2+u2infI

)
,

max
(

a1+u1infI
a2+u2supI , a1+u1infI

a2+u2infI , a1+u1supI
a2+u2supI , a1+u1supI

a2+u2infI

) 
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3. Neutrosophic Linear Equations and Neutrosophic Matrices

3.1. Neutrosophic Linear Equations

Definition 1. A neutrosophic linear equation in n variables (unknowns) x1, x2, . . . , xn is defined as the
following form:

z1x1 + z2x2 + . . . + znxn = z (1)

where z, zj ∈ Z (j = 1, 2, . . . , n) are the given real NNs and Z are all NNs.

For example, if the neutrosophic linear equation is 2Ix1 + 3x2 = 6 for I ∈ [1, 2], then it indicates
the indeterminate area between two lines 2x1 + 3x2 = 6 and 4x1 + 3x2 = 6, which can be represented as
one neutrosophic function [2, 4] x1 + 3x2 = 6, and then if the indeterminacy I ∈ [2, 4] is considered as a
possible interval range, then the neutrosophic linear equation can be also described as the indeterminate
area between two lines 4x1 + 3x2 = 6 and 8x1 + 3x2 = 6 and be represented as another neutrosophic
function [4, 8] x1 + 3x2 = 6.

Definition 2. A system of m neutrosophic linear equations in n variables (unknowns) x1, x2, . . . , xn is defined
as a family of neutrosophic linear equations:

z11x1 + z12x2 + . . . + z1nxn = z1

z21x1 + z22x2 + . . . + z2nxn = z2
...

zm1x1 + zm2x2 + . . . + zmnxn = zm

(2)

For convenient expression, the above system can be written concisely as

n

∑
j=1

zijxj = zi for i = 1, 2, . . . , m.

Definition 3. Let 
z11 z12 · · · z1n
z21 z22 · · · z2n

...
...

zm1 zm2 · · · zmn

,

which is called the neutrosophic coefficient matrix of the system, while
z11 z12 · · · z1n z1

z21 z22 · · · z2n z2
...

...
zmn zmn · · · zmn zm


is called the neutrosophic augmented matrix of the system.
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Let us write

A =


z11 z12 · · · z1n
z21 z22 · · · z2n

...
...

zm1 zm2 · · · zmn

, X =


x1

x2
...

xn

, and B =


z1

z2
...

zm

.

Then, the system of neutrosophic linear equations for Equation (2) can be expressed by the
following form of the neutrosophic matrix equation:

AX = B. (3)

3.2. Operations of Neutrosophic Matrices

For neutrosophic matrices, all the classical matrix operations (e.g., matrix addition, matrix
subtraction, and scalar multiplication, matrix transpose, matrix inverse, and so on) can be used
to perform the neutrosophic matrix operations.

Example 1. Assume there are two neutrosophic matrices A and B:

A =

[
I 3

5I 9

]
and B =

[
I 2I

3I 5

]
.

Thus, we can introduce the following matrix operations:

(1) A + B: A + B =

[
2I 3 + 2I
8I 14

]
;

(2) A − B: A− B =

[
0 3− 2I
2I 4

]
;

(3) 3A: 3A =

[
3I 9

15I 27

]
;

(4) AT: AT =

[
I 5I
3 9

]
;

(5) A× B: A× B =

[
(9 + I)I 15 + 2I2

(27 + 5I)I 45 + 10I2

]
;

(6) A−1: A−1 =

[
−3/(2I) 1/(2I)

5/6 −1/6

]
.

4. Solving a System of Neutrosophic Linear Equations

To determine if such a system of neutrosophic linear equations has a solution, one needs to find
out if there exists a group of numbers for x1, x2, . . . , xn which can satisfy each of the equations in
Equation (2) simultaneously. The system is consistent if it has a solution. Otherwise, the system
is inconsistent.

Generally, a system of neutrosophic linear equations can be solved by solving methods of systems
of classical linear equations, such as the substitution method, the addition method, and the inversion
matrix method. In this section, two examples of the system of neutrosophic linear equations show
solving processes by using the substitution method, the addition method, and the inverse of a
square matrix.
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Example 2. Let us consider the following system of neutrosophic linear equations in two variables:

3Ix1 + 2x2 = 2 (the first equation),

5Ix1 + 7x2 = 3 (the second equation).

Then, we use the substitution method, the addition method, and the inverse matrix method,
respectively, to solve the system of neutrosophic linear equations.

(1) Using the substitution method

Solve the first equation for x1:

x1 = (2 − 2Ix2)/(3I).

Substitute x1 = (2 − 2Ix2)/(3I) into the second equation:

5I(2 − 2Ix2)/(3I) + 7x2 = 3.

Then, 5(2 − 2Ix2)/3 + 7x2 = 3.

Thus, the solution for x2 is x2 = −1/11, and then we obtain 3Ix1 − 2/11 = 2 from the first equation.

Hence, the solution of the system is x1 = 8/(11I) and x2 = −1/11.
(2) Using the addition method

Multiply the first equation by –5 and the second equation by 3:

−15Ix1 − 10x2 = −10,

15Ix1 + 21x2 = 9.

Add the two equations:

11x2 = −1.

Thus, x2 = −1/11, and then 3Ix1 − 2/11 = 2 for the first equation.

Therefore, the solution of the system is x1 = 8/(11I) and x2 = −1/11.
(3) Using the inverse matrix method

If AX = B is a neutrosophic matrix equation composed of m neutrosophic linear equations in
n unknowns and if the inverse A−1 exists (i.e., A is nonsingular), by multiplying both sides of the
equation AX = B by A−1 (on the left), we obtain the desired solution to the neutrosophic matrix
equation as X = A−1B.

Let us write the system in Example 2 by the neutrosophic matrices:

A =

[
3I 2
5I 7

]
, X =

[
x1

x2

]
, and B =

[
2
3

]
.

Then, the system of neutrosophic linear equations can be written in the form of the neutrosophic
matrix equation:

AX = B. (4)

Since the determinant of the neutrosophic matrix A can be evaluated by |A| = 21I − 10I = 11I,
the inverse of the neutrosophic matrix A is as follows:

A−1 =

[
7/(11I) −2/(11I)
−5/11 3/11

]
.
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Using this result, by multiplying both sides of Equation (4) by A−1 (on the left), we find that the
solution of the system is

X = A−1B =

[
7/(11I) −2/(11I)
−5/11 3/11

][
2
3

]
=

[
8/(11I)
−1/(11)

]
.

Hence, the solution of the system is x1 = 8/(11I) and x2 = −1/11.
Especially, if I ∈ [2, 3] is considered as a possible interval of the indeterminacy I, then the solution

of the system is x1 = [0.2424, 0.3636] and x2 = −0.0909. If I = 2, the system is degenerated to the system
of classical linear equations, and its solution is given by x1 = 0.3636 and x2 = −0.0909.

It is obvious that the system of neutrosophic linear equations may be written in a compact form
with the help of matrices. Hence, one will use this matrix equation representation and apply the
inverse matrix method for solving this neutrosophic matrix equation easily by the MATLAB software.

To illustrate the solving process of the neutrosophic matrix equation by the MATLAB software,
we use the inverse matrix method to solve the neutrosophic matrix equation by the following example.

Example 3. Assume that there is the following neutrosophic matrix equation: 2 −4 1
−3 6 −5
4 −3 7


 x1

x2

x3

 =

 4I
−2I
3I

,

where A =

 2 −4 1
−3 6 −5
4 −3 7

, X =

 x1

x2

x3

, and B =

 4I
−2I
3I

. Then, we need to find the solution of

X = [x1, x2, x3]T.

Thus, we apply the inverse matrix method for solving this neutrosophic matrix equation by the
MATLAB software, which is shown in the following program:

% The MATLAB solution program of the neutrosophic matrix equation

clc
syms I;
A = [2, −4, 1; −3, 6, −5; 4, −3, 7];
B = [4*I, −2*I, 3*I];
C = inv(A)
X = C × B′

Running results of the program are as follows:

C =
0.7714 0.7143 0.4000
0.0286 0.2857 0.2000
−0.4286 −0.2857 0

X =
(20* I)/7

I/7
−(8* I)/7

If I ∈ [1, 2] is considered as a possible interval of the indeterminacy I, then the solution of the
system is x1 = [2.8571, 5.7143], x2 = [0.1429, 0.2857], and x3 = [−1.1429, −2.2857]. Especially, when I = 1,
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the system is degenerated to the system of classical linear equations and its solution is given by
x1 = 2.8571, x2 = 0.1429, and x3 = −1.1429.

Obviously, the classical linear equations and solution are special cases of the neutrosophic linear
equations and solution. However, the classical linear equations cannot deal with real problems with
indeterminate information, while the neutrosophic linear equations can do them with determinate
and/or indeterminate information.

5. Application of a Traffic Flow Problem

In some city, the downtown traffic flows of four roads are shown in Figure 1 during the rush
hours on a typical weekday. In Figure 1, the arrows indicate the direction of traffic flow on each
one-way road, and the average number of vehicles per hour entering and leaving each intersection is
shown beside each road. Road 3 and Road 4 can handle up to 2000 vehicles per hour without causing
congestion, while the maximum capacity of both Road 1 and Road 2 is 1000 vehicles per hour. The flow
of traffic is controlled by the traffic lights, which are installed at each of the four intersections. Then,
there exists some indeterminate traffic flow on each one-way road in Figure 1. If the neutrosophic
number z = 400 + I is expressed as the determinate and indeterminate information of Road 1, where the
indeterminacy I will ensure no traffic congestion, then we need to find the ranges of traffic flows for
the unknowns x1, x2, x3.

 
 

x2z 

x3

x1

Road 2  Road 1  

Road 3  

Road 4  

300  
 
1200 

500  
 

800 

1400  
 
400 

1300  
 

700 

Figure 1. The downtown traffic flows of four roads.

To avoid traffic congestion, all traffic entering an intersection must also leave that intersection;
i.e., the number of entering vehicles is equal to the number of leaving vehicles in each intersection
in Figure 1. According to this condition to each of the four intersections in a clockwise direction
beginning from the intersection between Road 1 and Road 3, the four linear equations based on the
four intersections in Figure 1 can be obtained as follows:

1500 = x1 + z

1300 = x1 + x2

1800 = x2 + x3
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2000 = x3 + z

Thus, the system of the four linear equations in the three variables (x1, x2, x3) can be simplified
into the following form:

x1 = 1500 − z

x1 + x2 = 1300

x2 + 2x3 = 3800 − z

According to the NN z = 400 + I, the system can also be represented by the following three
neutrosophic linear equations:

x1 = 1500 − (400 + I)

x1 + x2 = 1300

x2 + 2x3 =3800 − (400 + I)

Then, there are the three neutrosophic linear equations:

x1 = 1100 − I

x1 + x2 = 1300

x2 + 2x3 =3400 − I

Thus, let us write the following neutrosophic matrices:

A =

 1 0 0
1 1 0
0 1 2

, X =

 x1

x2

x3

, and B =

 1100− I
1300

3400− I

.

Hence, the system of neutrosophic linear equations can be written as the form of the neutrosophic
matrix equation:

AX = B. (5)

For the system of neutrosophic linear equations, we can therefore use the inverse matrix method
to solve the neutrosophic matrix Equation (5).

Firstly, we obtain the inverse matrix of the neutrosophic matrix A below:

A−1 =

 1 0 0
−1 1 0
0.5 −0.5 0.5

.

Then, by multiplying both sides of Equation (5) by A−1 (on the left), we can find the solution of
the system:

X = A−1B =

 1 0 0
−1 1 0
0.5 −0.5 0.5


 1100− I

1300
3400− I

 =

 1100− I
I + 200

1600− I

.

Clearly, the values of X are NNs. In some real situation and/or requirement, when the
indeterminacy I ∈ [0, 100] is considered as a possible range, the solution of the system is as follows: x1

x2

x3

 =

 [1000, 1100]
[200, 300]
[1500, 1600]

.
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Obviously, corresponding to the possible traffic flow z = [400, 500], we can obtain the ranges of
the three traffic flows: x1 = [1000, 1100], x2 = [200, 300], and x3 = [1500, 1600].

If the indeterminacy I ∈ [200, 400] is considered as a possible range, then the solution of the
system is given as follows:  x1

x2

x3

 =

 [700, 900]
[400, 600]
[1200, 1400]

.

Thus, corresponding to the possible traffic flow z = [600, 800], we can obtain the ranges of the
three traffic flows: x1 = [700, 900], x2 = [400, 600], and x3 = [1200, 1400]. Hence, we usually obtain the
possible ranges of the solution for X in indeterminate problems, and then in actual applications we
can choose some possible interval range [infI, supI] of the indeterminacy I corresponding to actual
situations and/or requirements.

To show the effect of different values of indeterminacy, Table 1 demonstrates the traffic flows with
respect to different ranges of indeterminacy I ∈ [infI, supI].

Table 1. Traffic flows with respect to different ranges of indeterminacy I.

I z x1 x2 x3

I = 0 400 1100 200 1600
I ∈ [100, 200] [500, 600] [900, 1000] [300, 400] [1400, 1500]
I ∈ [200, 300] [600, 700] [800, 900] [400, 500] [1300, 1400]
I ∈ [300, 400] [700, 800] [700, 800] [500, 600] [1200, 1300]
I ∈ [400, 500] [800, 900] [600, 700] [600, 700] [1100, 1200]

6. Conclusions

Based on indeterminate problems in the real world, this paper presented for the first time the
concepts of neutrosophic linear equations and neutrosophic matrix, and introduced the neutrosophic
matrix operations. Then, we proposed solving methods for neutrosophic linear equations, such as
the substitution method, the addition method, and the inverse matrix method, for the system of
neutrosophic linear equations (or neutrosophic matrix equation). Finally, an applied example about
a traffic flow problem in a real scenario was provided to show the application and effectiveness of
handling the indeterminate traffic flow problem by using the system of neutrosophic linear equations.
A new effective way is provided for avoiding traffic congestion under indeterminate environments.

It is obvious that the neutrosophic linear equations proposed in this paper is not only the
generalization of classical linear equations, but can also deal with real problems with determinate
and/or indeterminate information. In the future, we shall extend these techniques to the modeling and
analyses of engineering areas such as rock mechanics, engineering design, and engineering magament.

Acknowledgments: This paper was supported by the National Natural Science Foundation of China
(Nos. 71471172, 61703280).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Koukol, M.; ZajíIková, L.; Marek, L.; TuIek, P. Fuzzy logic in traffic engineering: A review on signal control.
Math. Probl. Eng. 2015, 2015. [CrossRef]

2. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
3. Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic; Van Nostrand Reinhold Company: New York,

NY, USA, 1985.
4. Hanss, M. Applied Fuzzy Arithmetic: An Introduction with Engineering Applications; Springer: Berlin,

Germany, 2005.

http://dx.doi.org/10.1155/2015/979160
http://dx.doi.org/10.1016/S0019-9958(65)90241-X


Algorithms 2017, 10, 133 10 of 10

5. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth,
DE, USA, 1998.

6. Smarandache, F. Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability; Sitech:
Craiova, Romania; Education Publishing: Columbus, OH, USA, 2013.

7. Smarandache, F. Introduction to Neutrosophic Statistics; Sitech: Craiova, Romania; Education Publishing:
Columbus, OH, USA, 2014.

8. Ye, J. Multiple-attribute group decision-making method under a neutrosophic number environment.
J. Intell. Syst. 2016, 25, 377–386. [CrossRef]

9. Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic
numbers. Neural Comput. Appl. 2017, 28, 1021–1029. [CrossRef]

10. Kong, L.W.; Wu, Y.F.; Ye, J. Misfire fault diagnosis method of gasoline engines using the cosine similarity
measure of neutrosophic numbers. Neutrosophic Sets Syst. 2015, 8, 43–46.

11. Ye, J. Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic numbers.
J. Intell. Fuzzy Syst. 2016, 30, 1927–1934. [CrossRef]

12. Smarandache, F. Neutrosophic Precalculus and Neutrosophic Calculus; Europa-Nova: Brussels, Belgium, 2015.
13. Ye, J.; Yong, R.; Liang, Q.F.; Huang, M.; Du, S.G. Neutrosophic Functions of the Joint Roughness Coefficient

(JRC) and the Shear Strength: A Case Study from the Pyroclastic Rock Mass in Shaoxing City, China.
Math. Probl. Eng. 2016, 2016. [CrossRef]

14. Chen, J.Q.; Ye, J.; Du, S.G.; Yong, R. Expressions of rock joint roughness coefficient using neutrosophic
interval statistical numbers. Symmetry 2017, 9, 123. [CrossRef]

15. Chen, J.Q.; Ye, J.; Du, S.G. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint
roughness coefficient based on neutrosophic statistics. Symmetry 2017, 9, 208. [CrossRef]

16. Ye, J.; Chen, J.Q.; Yong, R.; Du, S.G. Expression and analysis of joint roughness coefficient using neutrosophic
number functions. Information 2017, 8, 69. [CrossRef]

17. Ye, J. Neutrosophic number linear programming method and its application under neutrosophic number
environments. Soft Comput. 2017. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/jisys-2014-0149
http://dx.doi.org/10.1007/s00521-015-2123-5
http://dx.doi.org/10.3233/IFS-151903
http://dx.doi.org/10.1155/2016/4825709
http://dx.doi.org/10.3390/sym9070123
http://dx.doi.org/10.3390/sym9100208
http://dx.doi.org/10.3390/info8020069
http://dx.doi.org/10.1007/s00500-017-2646-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Neutrosophic Numbers and Their Operational Laws 
	Neutrosophic Linear Equations and Neutrosophic Matrices 
	Neutrosophic Linear Equations 
	Operations of Neutrosophic Matrices 

	Solving a System of Neutrosophic Linear Equations 
	Application of a Traffic Flow Problem 
	Conclusions 

