
Causal Inference for Survival Analysis 
       Vikas Ramachandra 

      Stanford University Graduate School of Business 
            655 Knight Way, Stanford, CA 94305 

 
Abstract 

In this paper, we propose the use of causal inference techniques for survival function estimation and                
prediction for subgroups of the data, upto individual units. Tree ensemble methods, specifically random              
forests were modified for this purpose. A real world healthcare dataset was used with about 1800 patients                 
with breast cancer, which has multiple patient covariates as well as disease free survival days (DFS) and a                  
death event binary indicator (y). We use the type of cancer curative intervention as the treatment variable                 
(T=0 or 1, binary treatment case in our example). 
The algorithm is a 2 step approach. In step 1, we estimate heterogeneous treatment effects using a                 
causalTree with the DFS as the dependent variable. Next, in step 2, for each selected leaf of the                  
causalTree with distinctly different average treatment effect (with respect to survival), we fit a survival               
forest to all the patients in that leaf, one forest each for treatment T=0 as well as T=1 to get estimated                     
patient level survival curves for each treatment (more generally, any model can be used at this step). 
Then, we subtract the patient level survival curves to get the differential survival curve for a given patient,                  
to compare the survival function as a result of the 2 treatments. 
The path to a selected leaf also gives us the combination of patient features and their values which are                   
causally important for the treatment effect difference at the leaf. 
 
1.The problem of causal inference 
 
We consider a setup where there are n units or data points, indexed by i = (1, . . . , n). We                       
postulate the existence of a pair of potential outcomes for each unit, (following            Y (0), Y (1))( i  i   
the potential outcome or Rubin Causal Model [4]), with the unit-level causal effect defined as the                
difference in potential outcomes, . Let be the binary indicator     Y (1) − Y (0)T i =  i i    ∈ {0, 1}W i       
for the treatment, with indicating that unit i received the control treatment, and     0W i =            

indicating that unit i received the active treatment. The realized outcome for unit i is 1W i =                  
the potential outcome corresponding to the treatment received:        

(obs)  Y (W ) Y (0) if  W  0, Y (1) if  W  1.Y i =  i i =  i i =   i i =   
Let be a N-component vector of features, covariates or pretreatment variables, known not to  X i               

be affected by the treatment. Our data consist of the triple , for i = (1, . . . ,           Y (obs)  , W  , X )( i  i  i          
n), which are regarded as an i.i.d sample drawn from a large population. We assume that                
observations are exchangeable, and that there is no interference (the stable unit treatment value              
assumption, or sutva).  



Since we cannot observe the counterfactual for any particular unit, one way to estimate the         xi        
treatment effect for each unit will be by using values from its neighbors which received the                
opposite treatment, and by taking the difference between the two outcomes. This individual             
treatment effect ITE can be written as: 
TE I =  

 Y (1) − Y (0), if  W , and − Y (0) − Y (1)), if  WT (estimated)i =  i neighbor  i = 1  ( i neighbor  i = 0  
 
There are different techniques to determine the ‘neighbors’ in the above construct, and in this               
paper, we use the causalTree approach form clusters of ‘neighbors’ in the form of leaves, and                
estimate the treatment effect at each leaf [5]. In the next section, we look at survival models. 
 
2. Survival analysis and data heterogeneity 
 
Survival analysis is a set of statistical methods designed for analyzing the expected duration of               
time until one or more events happen, such as death in humans. 
The following terms are commonly used for survival analysis. 
Event: Death, disease occurrence, disease recurrence, recovery, or other experience of interest 
Time: The time from the beginning of an observation period (such as surgery or beginning               
treatment) to (i) an event, or (ii) end of the study, or (iii) loss of contact or withdrawal from the                    
study. 
Censoring / Censored observation: If a subject does not have an event during the observation               
time, they are described as censored. The subject is censored in the sense that nothing is                
observed or known about that subject after the time of censoring. A censored subject may or may                 
not have an event after the end of observation time. 
Survival function S(t): The probability that a subject survives longer than time t. 
The survival function can be estimated using either parametric (such as an exponential function)              
or non parametric techniques. 
The Kaplan–Meier estimator of the survival function, also known as the product limit estimator,              
is a non-parametric statistic used to estimate the survival function from lifetime data. In medical               
research, it is often used to measure the fraction of patients living for a certain amount of time                  
after treatment. More general alternatives to this are the Cox proportional hazards (PH) model              
and tree based models, which can also help identify important covariates for estimating the              
survival function. 
The Cox PH regression model is a linear model. It is similar to linear regression and logistic                 
regression. Specifically, these methods assume that a single line, curve, plane, or surface is              
sufficient to separate groups (alive, dead) or to estimate a quantitative response (survival time). 
In some cases alternative partitions give more accurate classification or quantitative estimates.  



One set of alternative methods are tree-structured survival models, including survival random            
forests. Tree-structured survival models may give more accurate predictions than Cox models.  
An alternative to building a single survival tree is to build many survival trees, where each tree is                  
constructed using a sample of the data, and average the trees to predict survival. This is the                 
method underlying the survival random forest models. The prediction errors are estimated by             
bootstrap re-sampling [9]. Random Survival Forest (RSF) are an extension of Random Forest to              
analyze right censored, time to event data. A forest of survival trees is grown using a log-rank                 
splitting rule to select the optimal candidate variables. Survival estimate for each observation are              
constructed with a Kaplan–Meier (KM) estimator within each terminal node, at each event time. 
Random Survival Forests adaptively discover nonlinear effects and interactions and are fully            
nonparametric. Averaging over many trees enables RSF to approximate complex survival           
functions, including non-proportional hazards, while maintaining low prediction error. It has           
been shown [9] that RSF is uniformly consistent and that survival forests have a uniform               
approximating property in finite-sample settings, a property not possessed by individual survival            
trees. 
 
Previous work to identify heterogeneity in survival and form sub-groups includes building            
generative models (such as Gaussian mixtures) and clustering to form homogenous groups with             
units which have similar survival curves [7]. Stratified Cox models and frailty functions have              
also been proposed [8]. Also, the above mentioned tree/random forest based models have been              
used earlier with good results and favorable theoretical properties [9]. However, these methods             
do not help identify covariates which are causally important in determining the survival             
difference between two or more treatments, neither at the population not at a sub-group or               
individual unit level (heterogeneous treatment effects), i.e. they do not build upon a causal              
inference framework to estimate survival. In contrast, our proposed algorithm is at the             
intersection of causal inference and survival estimation using machine learning methods,           
specifically random forest ensembles, and is described in section 4. 
 
 
3. Details of the dataset 
 
The dataset used for this analysis was collected from multiple cancer treatment centers across              
different cities in India, and was focused on breast cancer patients (1806 total). We look at two                 
treatments: treatment T0: Surgery plus chemotherapy plus radiation (1286 patients), versus           
treatment T1: Surgery plus chemo only (520 patients). Another group of patients (262) tagged as               
terminally ill underwent treatment T2: palliative chemo. only, and is only included for             
preliminary survival pots, and excluded from further analyses. 



There are 110 patient covariates/features, including features related to demographics (age,           
gender, etc.), cancer location, tumor grade, cancer stage, biomarker (ER,PR,HER2) status,           
metastasis status, menopausal status, type of surgery/chemo/radiation, various drugs         
administered and dosages, hormonal therapy status, and so on. For each patient, the disease free               
survival days (DFS) and death event binary indicator was recorded. Our aim is to identify               
covariates which pick treatment effect heterogeneity, and form groups based on that criterion.             
Then, for each leaf/split group, we identify the combination of covariates leading to that. Then,               
we proceed to predict survival under both treatments for each patient, and compute the              
difference. Details are outlined below. 
 
4. Treatment effects for survival: Proposed algorithm details & results 
 
Preliminary analysis: Patient segmentation based on survival curve estimation and 
prediction 
We analyze patient sub-populations who underwent different treatments, and also estimate the            
survival at an individual patient level using all the patient features. This can be very useful for                 
new patients, for whom we can predict their survival curves (for each treatment plan) using this                
model before they are assigned a particular treatment. 
We can also segment patient sub-groups in each treatment, based on their estimated survival, and               
look at features which are important in forming these clusters with different treatment effect              
(T1-T0). 
 
 



 
This plot shows the average patient survival for different treatment plans. 
Blue: Treatment 1 (best survival) 
Red:Treatment 0 (medium survival) 
Black:Treatment 2 (lowest survival): not used in further analysis. 
There is a clear difference the average survival curves across treatments. 
 



 
The above survival plot is for Treatment T1 only, per patient. 
As can be seen above, even for a single treatment plan, there is reasonable heterogeneity in                
survival, determined by various patient features and other factors. Each red plot is for an               
individual patient (predicted survival), black is the average.  
For T1, in the above plot, we can see 4 patient subgroups based on survival, shown by differently                  
colored circles manually overlaid for visualization (the clusters of red survival curves which are              
close together). 
As preliminary analysis, we fit a survival random forest to each treatment type. 
The model has 92% accuracy on average in predicting survival curves, using the survival forests               
model. 
 



For treatment T1, one set of patient features found which help differentiate between these              
sub-groups are metastasis status, metastasis sites, pathology stage, menopausal status, PR           
status, chemo. Type and radiation dose. Thus, survival forests can predict survival curves well              
for individual patients given a treatment type. However, this analysis does not tell us anything               
about the features which are important for differential survival between two treatments for the              
same patient as well as patient sub-groups. We propose an algorithm to do exactly that: In step                 
1: we will perform a causalTree analysis to identify features for subgroups which result in a                
difference in disease free days (DFS outcome) for one treatment versus another (causal inference              
modeling), and then, in step 2, fit survival forests per sub-group (leaf), per each treatment to                
estimate the per patient and patient subgroup gain or loss difference in survival between the two                
treatments, conditioned on the features identified in the first step, causal inference. 
 
Proposed algorithm Step 1: Causal inference using random forests: Application to survival 
curves 
 
Computing the median survival values for Treatment 0: S+CT (34 days) versus Treatment 1:              
S+CT+RT (43 days), with the median difference = (43-34) = 9 days, across the patient               
sub-population is not very useful to determine sub-groups and heterogeneity. In this section, we              
ask the following question: 
Can we get a better fine grained difference of survival values between treatments T0 and T1, and                 
identify the patient sub-groups as well as their important features which lead to this difference. 
Using the causal inference framework (Rubin causal model), we have a missing data problem              
here, i.e. we know the outcome (=survival value) for only one treatment for each patient. This is                 
well suited for a causalTree/causalForest model to estimate individual treatment effects           
(Survival_Treatment1- Survival_Treatment0) for individual patients. 
 
Thus, in step 1 we fit a causalTree [5] to our dataset described above. Below one such tree is                   
plotted, and the top splitting patient variables are important, with the values in the boxes giving                
the survival days difference between treatments for each patient subgroup (leaf). 



 
Figure: CausalTree for 2 treatments 
Note that some of the survival difference values in the boxes for some sub-groups are quite 
different from the median difference value between T1 and T0. 
Some causally important variables (in the above tree) are: Chemo. chemical type used, 
radiation type, surgery type, and ER biomarker status. 
 
Proposed algorithm step 2: Survival forests per sub-group/leaf 
For each selected leaf, we fit 2 survival random forests: one for each treatment, for all patients in                  
that leaf. To illustrate this, for one such sub-group (tree leaf segment sub-population),             
specifically, for the leftmost bottom split in the causalTree figure (The path being Top_split→              
x_75<1.5 → x101>=70). 
For all the patients in this subgroup/leaf, we fit 2 survival random forests: One forest for                
treatment T1 and one forest for treatment T0, both using the subset of features identified by the                 
causalTree, and predict the survival curves for a test subset in that leaf. The 2 sub-plots below                 
show the patient level survival curves for the two treatments, and the third sub-plot shows the                
overlay, and the fourth/last sub-plot shows the estimated/predicted difference in the survival            
curve for one of the chosen patients (the arrows show the difference between the red-blue dotted                



curves). Thus, after step 2, we can identify the survival difference curve between treatments T0               
and T1 for the leaf, as well as patient features/variables causing this difference. 
 

 
Treatment 0: survival for sub-group (left)      Treatment 1: survival for sub-group (right) 
 

 
Survival curves overlaid for both treatments      Differential survival curve at patient level 
 
Figure: Top left: Survival curve for T0 in chosen leaf, Top right: survival curve for T1 in chosen 
leaf (note that both are more homogenous than the survival curve for full dataset),  
Bottom left: Overlay of two treatments for a patient sub-group (left) 
Bottom right: Predicted difference in survival for a given patient in the leaf, for the two different 
treatments (right): arrows show the area under the difference curve. 



5. Discussion and conclusion 
Recently, there have been several efforts to leverage machine learning techniques for causal             
inference problems, including estimating heterogeneous treatment effects [5], propensity score          
modeling as well as neighbor matching [1] for individual treatment effects. Our aim is to               
contribute to this by extending causal inference and heterogeneous treatment effect estimation (at             
individual and sub-group level) where the outcome is survival. We have outlined the 2 step               
algorithm. In step 1, we use a causalTree/causalForest to partition the data into different              
sub-groups/leaves based on the treatment effect differences for survival days. Then, in step 2, we               
build two survival random forests at individual leaves (one for each treatment), and predict              
survival under both treatments for each patient, as well as the differential survival curve. Code               
for the algorithm will be made available shortly on Github at this location:             
https://github.com/vikas84bf 
 

 
 

Figure: A flowchart illustrating the proposed algorithm 
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