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Abstract

The precise measurement of uncertainty exists in the complex fuzzy at-
tributes and their graphical analytics is a mathematically expensive tasks for
knowledge processing researchers. To deal with this problem recently, the
calculus of complex neutrosophic sets are introduced to characterize the un-
certainty in data based on its truth, indeterminacy, and falsity membership–
value, independently. In this process, a major problem is addressed while
finding some of the interesting patterns in the given complex neutrosophic
data set. To solve this problem, the current paper proposes a method for
discovery of complex neutrosophic concepts and their graphical structure vi-
sualization using the properties of Lower Neighbors algorithm. One of the
suitable examples of the proposed method is illustrated for precise measure-
ment of uncertainty exists in Air Quality Index (AQI) and its pattern at
given phase of time.

Keywords: Air Quality Index (AQI); Complex fuzzy sets; Complex
neutrosophic set; Concept lattice; Formal Concept Analysis(FCA);
Three–way fuzzy concept lattice

∗Corresponding author
Email address: premsingh.csjm@gmail.com;premsingh.csjm@yahoo.com (Prem

Kumar Singh)

November 8, 2017

http://ees.elsevier.com/chaos/viewRCResults.aspx?pdf=1&docID=12653&rev=2&fileID=162042&msid={6D73B3C7-F57B-43B5-92F8-64EC24064624}


1. Introduction

Recently, the calculus of complex vague set concept lattice [20] and its
properties [21–23] is introduced which has been given a new orientation to
characteristic the complex data sets in more understandable manner when
compared to approaches available in unipolar fuzzy space [7, 12, 19]. The
reason is that the calculus of complex set [8–10] and concept lattice theory
[11] provides a well established mathematical framework to measure the hu-
man cognitive thought [7, 12]. To measure the fluctuation in uncertainty the
calculus of complex fuzzy sets [8–9] helps in its precise representation using
amplitude and phase term in unipolar or bipolar space as discussed by Prem
Kumar Singh [18–20]. In this process, an important problem was addressed
while handling the three–way fuzzy attributes [21–23]. To achieve this goal,
properties of complex neutrosophic sets [2] are introduced for handling multi–
decision attributes [6, 28]. This extensive version of complex fuzzy set [23–24]
and its properties in the neutrosophic or three–way polar space [26–28] given
a new orientation to analyze the data sets based on applied abstract alge-
bra [1, 11, 17, 32–34]. Towards this extension recently, Prem Kumar Singh
[21–23] introduces neutrosophic and complex vague concept lattice [20] for
precise approximation of computational linguistics [37–40]. In case the data
set contains complex neutrosophy attributes [2] then charactering them based
on their acceptation, rejection and uncertain regions is major concern. One
of the examples for complex neutrosophic attributes exists which creates an
issue for precise analysis of knowledge processing task. One of the suitable
examples is 22◦ temperature used to consider as cool in summer season,
warm in winter season whereas fair (or uncertain) in spring season. This in-
terpretation of cognitive thought changes at each phase of time. In this case
adequate measurement of human cognitive thought is major issue with its
numerical representation and graphical analytics. This problem is dovetail
in many cases of multi–dimensional criteria which affect the human life as
Fire Danger Index (FDI) which turns into Bushfire 1. Similarly, measuring
the Air Quality Index (AQI) is another concern for researchers at the given
phase of time to characterize its changes by acceptation, rejection and un-
certain regions. The motivation is to provide the information contained in
the data sets in an understandable manner based on its maximal acceptation
regions, minimal rejection or uncertain regions. To solve this problem, the

1https : //en.wikipedia.org/wiki/Bushfires in Australia

2



Figure 1: The motivation to introduce complex neutrosophic concept lattice

current paper focuses on depth analysis of complex neutrosophic context and
its graphical structure visualization based on applied abstract algebra.

Recenlty, some of the researchers started analysis on neutrosophic at-
tributes and its data sets based on lattice theory [13, 15–16] and graphical
analytics [21–23] to approximate them in three–way decision space [35–37].
All of these approaches fails in precise measurement of periodic changes in
three–way or neutrosophic fuzzy attributes. One of the suitable examples is
Air Quality Index (AQI) 2 of any country changes at each interval of time. In
this case, measuring the AQI based on its acceptation, rejection or uncertain
regions is a computationally expensive tasks for the researchers. The reason
is that the AQI values used to fluctuate several times in a day. The level
of ozone used to become high from morning to afternoon to early evening.
Similarly, the particle pollution is high at the day time which may increase
subsequently in the busy or office time i.e. morning and evening. In all
of these cases precise representation of uncertainty measuring its changes at
given phase of time is mathematically expensive tasks. To conquer this prob-
lem recently, some of the approaches based on complex neutrosophic sets [2]
and its lattice theory [9] is introduced for knowledge processing tasks [14,
20, 29–30] of multi–decision attributes [1, 23, 42–43] at δ–granulation [38–
41]. Table 1 shows that, the calculus of complex neutrosophic set provides

2https : //en.wikipedia.org/wiki/Air quality index
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Table 1: Some necessary conditions for the uses of complex neutrosophic set

Complex Complex Complex
fuzzy vague neutrosophic
set set set

Domain Universe of Universe of Universe of
Discourse Discourse Discourse

Co–domain Unipolar–value Bipolar–valued Three–valued
in unit in unit in unit
circle [0, 1] in circle [0, 1] circle [0, 1]3

Truth Yes in Yes in Yes
membership [0, 1] [0, 1]2 in [0, 1]3

False No Yes in Yes
membership [0, 1] in [0, 1]3

Indeterminacy No 1–True Yes
membership –false in [0, 1]3

Amplitude Yes in Yes in Yes in
term [0, 1] [0, 1]2 [0, 1]3

Phase term Yes Yes Yes
measurement [0, 2π] [0, 2π] in [0, 2π]

Uncertainty Yes in Yes in Yes
measurement [0, 1] [0, 1]2 in [0, 1]3

Fluctuation Yes Yes Yes
measurement

Graph Yes Yes Yes
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more adequate measurement of uncertainty and its changes in the complex
fuzzy attributes based on its truth, indeterminacy and uncertain regions, in-
dependently. This is one of the major advantages of complex neutrosophic
set which motivated the current study to utilize its properties in knowledge
processing tasks. The motivation is to provide a compressed graphical struc-
ture visualization of the complex neutrosophic data sets in the concept lattice
based on their super and sub concept hierarchy. The objective is to find some
of the useful pattern in the given complex neutrosophic context for multi–
decision process as shown in Figure 1. To fulfil this need, calculus of applied
lattice theory [11, 33] and its extensive properties [18–22] is utilized in this
paper for generating the complex neutrosophic concepts and its hierarchical
order visualization based on their Lower Neighbor. The reason is concept of
Lower Neighbor provides a easier way to discover the concepts within limited
time complexity [3–5]. In this way, the proposed method provides a basis of
an algorithm for compressed graphical visualization of complex neutrosophic
context in the concept lattice. To provide a more readable and easier way to
understand the pattern in the given complex fuzzy context while extracting
the information. It can be considered as one of the significant output of the
proposed method in field of complex data set analysis.

Remaining part of the paper is organized as follows: Section 2 provides
some basic preliminaries about complex neutrosophic sets. Section 3 provides
a method for generating the complex neutrosophic concepts using their Lower
Neighbor. Section 4 provides illustration of the proposed method with an ex-
ample. Section 5 contains discussions followed by conclusions, and references.

2. Complex neutrosophic context and its graphical visualization

Recently, it seems that. handling complex neutrosophic data set like
measuring the quality of AQI is mathematically rigorous tasks. To deal with
these types of complex or seasonal data sets one solution is to represent them
matrix format and try to visualize them in the graph. The current section
shows some useful definitions in this section to acheive this goal adequately:

Definition 1. (Complex fuzzy set) [24–26] : A complex fuzzy set Z can
be defined over a universe of discourse U having a single fuzzy membership–
value at given phase of time. The complex–valued grade of membership of an
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element z ∈ U can be characterized by µZ(z). The membership–values that
µZ(z) may receive all values within the unit circle of a defined complex plane
in the form µZ(z) =rz(x)eiwz(x), where i=

√
−1, both rZ(z) and wZ(z) are

real–valued and rZ(z) ∈ [0, 1]. The complex fuzzy set Z may be represented
as the set of ordered pairs :

Z={(z, µZ(z)) : z ∈ U}=
{

(z, rZ(z)eiwZ(z)) : z ∈ U
}

Example 1: Let us suppose, an expert wants to measure the level of
AQI index of the given geographical regions (i.e. object–x1) based on its
saturation value of PM10 (i.e. attribute y1). The user collected the data and
saw that the saturation value of PM10 changes 50 percent in six to seven
months. This complex fuzzy attributes can be written using the properties
of complex fuzzy set as follows: 0.5ei1.2π. In case the user want to represent
the indeterminacy and falsity regions then properties of neutrosophic set can
be useul.

Definition 2. (Neutrosophic set) [27]: It provides a way to charac-
terize the uncertainty and vagueness in attributes y ∈ Y based on truth–
membership function TN(y), a indeterminacy–membership function IN(y)
and a falsity–membership function FN(y). The TN(y), IN(y) and FN(y) are
real standard or non–standard subsets of ]0−, 1+[as given below:

TN : Y →]0−, 1+[,

IN : Y →]0−, 1+[,

FN : Y →]0−, 1+[.

The neutrosophic set can be represented as follows:

N = {(x, TN(y), IN(x), FN(y)) : y ∈ Y } where 0− ≤ TN(y) + IN(y) +
FN(y) ≤ 3+.

It is noted that 0− = 0 − ǫ where 0 is its standard part and ǫ is its non–
standard part. Similarly, 1+ = 1 + ǫ (3+ = 3 + ǫ) where 1 (or 3) is standard
part and ǫ is its non–standard part. The real standard (0, 1) or [0, 1] can
be also used to represent the neutrosophic set. The union and intersection
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among neutrosophic sets N1 and N2 can be computed as follows:

•N1
⋃

N2 = {(x, TN1
(x) ∨ TN2

(x), IN1
(x) ∧ IN2

(x), FN1
(x) ∧ FN2

(x)) : x ∈ X}
The intersection of N1 and N2 can be defined as follows:

•N1
⋂

N2 = {(x, TN1
(x) ∧ TN2

(x), IN1
(x) ∨ IN2

(x), FN1
(x) ∨ FN2

(x)) : x ∈ X}.

Example 2: Example 1 represents the acceptation part of PM10 in the
given year. In case, the expert wants to measure the acceptation, rejection or
indeterminacy part exists in AQI then the properties of neutrosophic set can
be useful. To illustrate the problem, let us consider an expert founds that the
level of PM10 in the given area is 60 percent accepted, 20 rejected and 10 per-
cent uncertain for the health of citizens. This neutrosophic value can be writ-
ten as (0.6, 0.2, 0.1) where 0.6 represents the truth–membership value, 0.2
indeterminacy–membership value, and 0.1 falsity–membership value. Now
suppose the user want to measure the changes on the acceptation, rejection
and uncertain regions of neutrosophic value at the given year. In this case,
the properties of complex neutrosophic set can be useful.

Definition 3. (Complex neutrosophic set) [2] : A complex neutrosophic
set Z can be defined over a universe of discourse U . The uncertainty in
the attributes z ∈ U can be characterized by true −0 < rTz

< 1+ , inde-
terminacy −0 ≤ rIz

< 1+ and falsity membership–value −0 ≤ rFz
< 1+,

independently with a given phase of time (0, 2π). It can be observed that,
the “amplitude” term in complex neutrosophic set satisfies the property
−0 ≤ rTz

+ rIz
+ rFz

≤ 3+ whereas the “phase” term can be character-
ized by wr

Tz
, wr

Iz
and wr

Fz
in real–valued interval [0, 2π]. It can be represented

as Z=
{

(z, (rTz
ewr

Tz , rIz
ewr

Iz , rFz
ewr

Fz )) : z ∈ U
}

.

Example 3: Let us extend the Example 2, that the expert agreed that
quality of PM10 (i.e. y1) is accepted 60 percent at the end of six to seven
months, 20 percent rejected at the end of four to five months whereas the user
is uncertain 10 percent at the end of nine to tenth month of a year. This com-
plex query can be written using the complex neutrosophic set as given below:

x1= (0.6e1.2π, 0.2e0.7π, 0.1e1.6π)/y1 where 2π is considered as phase term
to represent the year.
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Definition 4. (Complex neutrosophic graph) [20] : A complex neutro-
sophic fuzzy graph G=(V, µc, ρc) is a non–empty set in which the value of
vartices µc: V → (rT

c (v).eiargT
c (v), rI

c (v).eiargI
c (v), rF

c (v).eiargF
c (v)) and edges ρc:

V × V → (rT
c (v × v).eiargT

c (v×v), rI
c (v × v).eiargI

c (v×v), rF
c (v × v).eiargF

c (v×v)). It
means the membership–values can be characterized by the truth, indeter-
minate and falsity membership–values within the unit circle of a complex
argand plane in the given period of time. It can be represented through
amplitude and phase term of defined complex neutrosophic set as follows:

rT
c (vi × vj).e

iargT
c (vi×vj) ≤ min

(

rT
c (vi), r

T
c (vi)

)

.eimin(argT
c (vi),argT

c (vj)).

rI
c (vi × vj).e

iargI
c (vi×vj) ≥ max

(

rI
c (vi), r

I
c (vi)

)

.eimax(argI
c (vi),argI

c (vj)).

rF
c (vi × vj).e

iargF
c (vi×vj) ≥ max

(

rF
c (vi), r

F
c (vi)

)

.eimax(argF
c (vi),argF

c (vj)).

The given complex fuzzy graph is complete iff:

rc(vi × vj).e
iargc(vi×vj) = min (rc(vi), rc(vi)) .eimin(argc(vi),argc(vj)) for the

truth, indeterminacy and falsity membership function, independently.

Example 4: Let us suppose, the expert wants to analyze the four given
areas x1, x2, x3, x4 based on the level of PM10 and its changes as shown in
in Table 2. The corresponding relationship among them is shown in Table
3. The obtained complex neutrosophic contexts shown in Table 3 and 4
can be visualized in using the vertices V and edges E of a defined complex
neutrosophic graph as shown in Figure 2.

Definition 5. (Lattice structure of neutrosophic set) [38–39] : Let N1

and N2 are neutrosophic sets in the universe of discourse X. Then N1 ⊆ N2

iff TN1
(x) ≤ TN2

(x), IN1
(x) ≥ IN2

(x), FN1
(x) ≥ FN2

(x) for any x ∈ X.
(N,∧,∨) is bounded lattice. Also the structure (N,∧,∨, (1, 0, 0), (0, 1, 1),¬)
follow the D–Morgan algebra. Similarly, this lattice structure can be used to
represent the three–way fuzzy concept lattice and their concept using Gödel
logic .

Definition 6. (Neutrosophic fuzzy concepts) [21] [32–33]: Let us sup-
pose, a set of attribute i.e. (B) = {yj, (TB(yj), IB(yj), FN(yj)) ∈ [0, 1]3 : ∀yj ∈ Y }
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Table 2: A representation of PM10 and its fluctuation at the given areas using complex
neutrosophic set

Vertex y1

x1 (0.5ei0.7π, 0.3ei1.2π, 0.2ei1.8π)
x2 ( 0.7ei0.2π, 0.6ei1.6π, 0.1ei0.4π)
x3 (0.4ei0.4π, 0.5ei0.8π, 0.6ei2π)
x4 (0.8ei0.3π, 0.7ei1.7π, 0.3ei0.7π)

Table 3: A complex neutrosophic relation among the given areas using their PM10

Edges y1

(x1, x2) (0.5ei0.2π, 0.3ei1.2π, 0.1ei0.4π)
(x1, x3) (0.4ei0.4π, 0.3ei0.8π, 0.2ei1.8π)
(x2, x4) (0.7ei0.2π, 0.6ei1.6π, 0.1ei0.4π)
(x3, x4) (0.4ei0.3π, 0.5ei0.8π, 0.3ei0.7π)

Figure 2: A three–way complex neutrosophic graph visualization of Table 2 and 3

where j ≤ m. For the selected three–polar attribute set find their covering
objects set in the given fuzzy context i.e.
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(A)= {xi, (TA(xi), IA(xi), FA(xi)) ∈ [0, 1]3 : ∀xi ∈ X} where i ≤ n.

The obtain pair (A, B) is called as a neutrosophic fuzzy concept iff: A↑=
B and B↓= A. It can be interpreted as neutrosophic set of objects having
maximal truth membership value, minimum indeterminacy and minimum
falsity membership value with respect to integrating the information from the
common set of fuzzy attributes in a defined space [0, 1]3 using component–
wise G̈odel residuated lattice. After that, none of the fuzzy set of objects
(or attributes) can be found which can make the membership value of the
obtained fuzzy set of attributes (or objects) bigger. Then pair of neutrosophic
set (A, B) is called as a formal concepts, where A is called as extent, and
B is called as intent. In this process, a problem arises when the truth,
falsity and indeterminacy value of a neutrosophic attributes changes at each
given phase of time. To overcome from this issue, a method is proposed
in the next section for generating the complex neutrosophic concepts based
on their Lower Neighbors as it is considered as one of the easier and cost
effective method [3].

3. A proposed method for generating the complex neutrosophic
concept

Generating the complex neutrosophic concepts is addressed as one of the
major issues for precise analysis of complex data sets based on its accepta-
tion, rejection, and uncertain regions. To deal with this problem recently
subset based algorithms are introduced to handle the neutrosophic context
[20–23]. This paper focuses on generating the complex neutrosophic con-
cepts based on their Lower neighbor algorithm. One of the most suitable
reason behind this method is that it provides an easier way to understand
the concept generation when compared to other algorithms. The steps of the
proposed method is as follows:

Step (1) The first complex neutrosophic concepts can be investigated by
exploring all the objects set ↑ i.e.

(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

Ixi , rFxi
e

wr
Fxi )

)↑

=
(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)

.

The membership–value for the complex neutrosophic set of attributes can
be computed as follows:
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Amplitude:

min (yj, rTyj
) for true membership,

max (yj, rIyj
) for indeterminacy membership,

max (yj, rFyj
) for false membership,

Phase term:

min (yj, e
wr

Txj ) for true phase term,

max (yj, e
wr

Iyj ) for indeterminacy phase term.

max (yj, e
wr

Fyj ) for false phase term.

Step (2) The Lower Neighbor of the complex fuzzy concepts generated at
Step 1 can be investigated using uncovered attributes i.e. :yk=Y − yj where
j ≤ m and k ≤ m|.

Step (3) The obtained complex neutrosophic set of attributes set can be
explored using the Galois connection (↓) on Amplitude = (1.0, 0.0, 0.0) and
Phase=(0, 2π) term. The covering objects set can be found by (↓) as follows:

(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)↓

=
(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

xxi , rFxi
e

wr
Fxi )

)

˙

Compute the membership–values for the obtained objects:

Amplitude:

min (xi, rTxi
) for true membership,

max(xi, rIxi
) for Indeterminacy membership,

max(xi, rFxi
) for false membership,
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Phase term:

min (xi, e
wr

Txi ) for true phase term,

max (xi, e
wr

Ixi ) for indeterminacy phase term.

max (xi, e
wr

Fxi ) for false phase term.

Step (4). Apply the up operator ↑ on the constituted objects set:

(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

xxi , rFxi
e

wr
Fxi )

)↑

=
(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)

.

Compute the neutrosophic membership–value for the obtained attributes:

Amplitude:

min (yj, rTyj
) for true membership,

max (yj, rIyj
) for indeterminacy membership,

max (yj, rFyj
) for false membership,

Phase term:

min (yj, e
wr

Txj ) for true phase term,

max (yj, e
wr

Iyj ) for indeterminacy phase term,

max (yj, e
wr

Fyj ) for false phase term.

Step (5) The obtained pair of complex neutrosophic set of objects and
attributes (A,B) represents the Lower Neighbor of given concept. The dis-
tinct Lower Neighbors having maximal acceptance of complex neutrosophic
membership value while integrating the information among objects and at-
tributes set can be considered as Next Neighbor.

Step (6) Similarly, all the complex neutrosophic concepts can be discov-
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ered using the uncovered attributes.

Step (7) The complex neutrosophic concepts lattice can be build using
their Next Neighbor.

Step (8) Extract some of the meaningful information from the obtained
lattice. The pseudo code for the proposed algorithm is shown in Table 4.

Complexity: Let us suppose, the number of objects and the number of
attributes in the given three–way complex fuzzy context is n and m, respec-
tively. To discover the Lower Neighbor of three–way complex fuzzy attributes
takes O(n3.m) time complexity for the amplitude and phase term, respec-
tively. The removal of similar Lower Neighbor takes at most O(n3 ∗m3) time
complexity for the amplitude and phase term, independently. This com-
putation gives the proposed method takes O(|C|.n6.m6) where, C is Lower
Neighbor. In this way the proposed method shown in Table 4 takes less com-
putation when compared to any of the available approaches for processing
the three–way complex fuzzy data set.

4. Air quality measurement using complex neutrosophic concept
lattice

Recently, Prem Kumar Singh [20–23] has paid attention towards analysis
of uncertainty in data beyond the unipolar or bipolar fuzzy space. In this
process, a major problem was addressed while handling the complex fuzzy
attributes in which the uncertainty and its fluctuation changes at each given
phase of time. One of the most suitable example of these type of data sets is
Air Quality Index as it is considered one of the major issues in country like
India 3. To deal with this type of data several approaches [1, 14, 17, 27–32]
based on properties of complex fuzzy sets are introduced, recently. The most
interesting is one of the researcher tried to measure the uncertainty based
on acceptation, rejection and uncertain part of the given attribute [2]. This
method gives a way to characterize the complex data set based on its truth,
falsity and indeterminacy–membership–values, independently with their pe-
riodic phase of time. Recently, some of the researchers paid the attention

3http://indianexpress.com/article/india/india-news-india/delhi-air-pollution-smog-
health-effects-3739848/
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Table 4: A proposed algorithm for building the complex neutrosophic concept lattice

Input: A three–way complex fuzzy context K=(X, Y, R̃)
where |X|=n, |Y |=m.

Output: The set of three–way complex fuzzy concepts
1. Find the maximal covering attributes for the objects set (X) using (↑) :

(i)
(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

Ixi , rFxi
e

wr
Fxi )

)↑

=
(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)

.

(ii) Compute the neutrosophic membership–value for the obtained attributes:

min (yj, rTyj
e

wr
Txj ) for true membership,

max (yj, rIyj
e

wr
Iyj ) for indeterminacy membership,

max (yj, rFyj
e

wr
Fyj ) for false membership,

(iii) Apply the operator (↓) on the obtained attribute set:
(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)↓

=
(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

xxi , rFxi
e

wr
Fxi )

)

(iv) This gives first complex neutrosophic concept (A,B).
2. Find its Lower Neighbor:
3. for (k=0 to m)

Yk=Y − yj where j, k ≤ m
(i). New attribute set: yk= {yj, yk}
(ii). Set maximal acceptance for the complex neutrosophic attributes
i.e. Amplitude = (1.0, 0.0, 0.0) and Phase=(0, 2π)
(iii). Apply the operator (↓) on the attributes

(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)↓

=
(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

xxi , rFxi
e

wr
Fxi )

)

(iv). Compute the membership of the obtained objects using Step 1 (ii):
(v). Apply the operator (↑) on the constituted set of objects:

(

xi, (rRxi
e

wr
Txi , rIxi

e
wr

xxi , rFxi
e

wr
Fxi )

)↑

=
(

yj, (rRyj
e

wr
Tyj , rIyj

e
wr

Iyj , rFyj
e

wr
Fyj )

)

.

(vi). Compute the membership of obtained attributes as per Step 1 (ii).
End for.

4. Distinct Lower Neighbor is considered as Next Neighbor.
5. Similarly, generate all the Next Neighbor using uncovered attributes.
6. Build the complex neutrosophic concept lattice for knowledge extraction.
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towards three–way fuzzy concept lattice and its concept learning [15–16, 21–
23] without measuring the periodic changes in the uncertainty. To fill this
backdrop, current paper introduces a method based on three–way complex
neutrosophic sets and its graph for precise measurement of uncertainty and
its changes at given phase of time in section 3. The proposed algorithm
shown in Table 4 is based on Next Neighbor algorithm to generate the com-
plex neutrosophic concepts. To illustrate the proposed method one of the
real–life examples for measuring the changes in AQI and its pattern is illus-
trated below:

Example 5: Let us suppose, an expert wants to analyze the Air Quality
Index (AQI) of four geographical regions (x1, x2, x3, x4) based on periodic
changes in several parameters like PM10, PM2.5, NO2, Carbon monoxide
(Co), Lead (Pb), Ozone (O3), Sulpher dioxide(So2), Ammonia (NH3) etc 4.
To illustrate the proposed method first three parameters PM10 (y1), PM2.5

(y2), NO2 (y3) is considered in this paper. The expert can write the changes in
the level of these parameters at the given year based on acceptation, rejection
and indeterminacy regions as shown in Table 5, 6 and 7, respectively. Table 8
represents the compact form of these contexts using the properties of complex
neutrosophic sets. It can be called as three–way complex fuzzy context which
is central notion of this paper. To understand the entries in Table 8 let us
suppose : R̃(x1,y1) =(0.5ei0.7π, 0.3ei1.6π, 0.3ei1.4π). This entry shows that the
saturation values of PM10 is 50 percent acceptable in third to fourth months,
30 percent unacceptable in ninth to tenth months whereas it is 30 percent
unpredictable in sixth to the seventh month of the given year. Similarly,
other entries of three–way complex fuzzy matrix can be interpreted.

Step 1. The proposed algorithm shown in Section 3.1 starts the inves-
tigation for three–way complex fuzzy concepts using those attributes which
covers the objects set maximally. The attribute which cover objects set max-
imally i.e. {(1.0, 1.0)/x1 +(1.0, 1.0)/x2 +(1.0, 1.0)/x3 +(1.0, 1.0)/x4} can be
found using the operator (↑) as shown below:
{(1.0ei2π, 0.0ei2π, 0.0ei2π)/x1+(1.0ei2π, 0.0ei2π, 0.0ei2π)/x2+(1.0ei2π, 0.0ei2π, 0.0ei2π)/x3+
(1.0ei2π, 0.0ei2π, 0.0ei2π)/x4}↑=
{(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +

4https://www.dpcc.delhigovt.nic.in/indexdup.php
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Table 5: A truth complex membership value for the PM10, PM2.5 and NO2

y1 y2 y3

x1 0.5ei0.7π 0.8ei1.7π 0.4ei0.4π

x2 0.3ei0.5π 0.4ei0.3π 0.5ei0.4π

x3 0.4ei1.5π 0.6ei1.6π 0.3ei0.5π

x4 0.4ei0.2π 0.2ei0.9π 0.7ei1.2π

Table 6: A indeterminacy complex membership value for the PM10, PM2.5 and NO2

y1 y2 y3

x1 0.3ei1.6π 0.7ei1.1π 0.5ei0.2π

x2 0.5ei1.3π 0.1ei0.8π 0.4ei1.4π

x3 0.6ei1.9π 0.6ei1.2π 0.3ei1.4π

x4 0.7ei0.2π 0.1ei0.5π 0.2ei0.7π

Table 7: A falsity complex membership value for the PM10, PM2.5 and NO2

y1 y2 y3

x1 0.3ei1.4π 0.2ei0.5π 0.4ei0.7π

x2 0.4ei1.3π 0.4ei1.7π 0.3ei0.5π

x3 0.5ei0.2π 0.8ei0.9π 0.4ei1.5π

x4 0.2ei0.5π 0.9ei1.9π 0.4ei0.2π

Table 8: A three–way complex neutrosophic context representation of Table 5 to 7

y1 y2 y3

x1 (0.5ei0.7π, 0.3ei1.6π, 0.3ei1.4π) (0.8ei1.7π, 0.7ei1.1π, 0.2ei0.5π) (0.4ei0.4π, 0.5i0.2π, 0.4ei0.7π)
x2 (0.3ei0.5π, 0.5ei0.4π, 0.4ei1.3π) (0.4ei0.3π, 0.1ei0.8π, 0.4ei1.7π) (0.5ei0.4π, 0.4i1.4π, 0.3ei0.5π)
x3 (0.4ei1.5π, 0.6ei1.9π, 0.5ei0.2π) (0.6ei1.6π, 0.6ei1.2π, 0.8ei0.9π) (0.3ei0.5π, 0.3i1.4π, 0.4ei1.5π)
x4 (0.4ei0.2π, 0.7ei0.2π, 0.2ei0.5π) (0.2ei0.9π, 0.1ei0.5π, 0.9ei1.9π) (0.7ei1.2π, 0.2i0.7π, 0.4ei0.2π)
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(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}.

Now, apply the operator ↓ to find maximal vague set of objects while
integrating the information from these constitutes attributes as given below:

{(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}↓={(1.0ei2π, 0.0ei2π, 0.0ei2π)/x1 +
(1.0ei2π, 0.0ei2π, 0.0ei2π)/x2+(1.0ei2π, 0.0ei2π, 0.0ei2π)/x3+(1.0ei2π, 0.0ei2π, 0.0ei2π)/x4}.

It provides following three–way complex neutrosophic concepts:
1. Extent :

{(1.0ei2π, 0.0ei2π, 0.0ei2π)/x1 + (1.0ei2π, 0.0ei2π, 0.0ei2π)/x2 +
(1.0ei2π, 0.0ei2π, 0.0ei2π)/x3 + (1.0ei2π, 0.0ei2π, 0.0ei2π)/x4}

Intent:

{(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}

Step 2. The Lower Neighbors of concepts shown in Step 1 can be found
as follows:

(i) {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2

+ (0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3} ∪ {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1}.

It provides {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1+(0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2+
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}.

(ii) {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3} ∪ {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y2}.

It provides: {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1+(1.0ei2π, 0.0ei2π, 0.0ei2π)/y2+
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}.

(iii) {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3} ∪ {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}.
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It provides : {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1+(0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2+
(1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}

Now following Lower Neighbor can be generated from above obtained
complex neutrosophic attribute using the Galois connection (as illustrated in
Step 1):

2. Extent :

{(0.5ei0.7π, 0.3ei1.6π, 0.3ei1.4π)/x1 + (0.3ei0.5π, 0.5ei0.4π, 0.4ei1.3π)/x2

+ (0.4ei1.5π, 0.6ei1.9π, 0.5ei0.2π)/x3 + (0.4ei0.2π, 0.7ei0.2π, 0.2ei0.5π)/x4}

Intent:

{(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.9ei1.4π)/y2

+ (0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}

3. Extent : {(0.8ei1.7π, 0.7ei1.1π, 0.2ei0.5π)/x1+(0.4ei0.3π, 0.1ei0.8π, 0.4ei1.7π)/x2+
(0.6ei1.6π, 0.6ei1.2π, 0.8ei0.9π)/x3 + (0.2ei0.9π, 0.1ei0.5π, 0.9ei1.9π)/x4}
Intent: {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (1.0ei2π, 0.0ei2π, 0.0ei1.9π)/y2

+ (0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}

4. Extent : {(0.4ei0.4π, 0.5ei0.2π, 0.4ei0.7π)/x1+(0.5ei0.4π, 0.4ei1.4π, 0.3ei0.5π)/x2+
(0.3ei0.5π, 0.3ei1.4π, 0.4ei1.5π)/x3 + (0.7ei1.2π, 0.2ei0.7π, 0.4ei0.2π)/x4}
Intent: {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2

+ (1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}

It can be observed that each of the obtained Lower Neighbors are distinct.
In this case, each of them can be considered as Next Neighbor as shown in
Figure 4.

Step 3 Similarly, following concepts can be generated using the Next
Neighbor of concept generated at Step 2:

5. Extent : {(0.5ei0.7π, 0.7ei1.6π, 0.3ei1.4π)/x1+(0.3ei0.3π, 0.5ei0.8π, 0.4ei1.7π)/x2+
(0.4ei1.5π, 0.6ei1.9π, 0.8ei0.9π)/x3 + (0.2ei0.2π, 0.7ei0.5π, 0.9ei1.4π)/x4}
Intent: {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1 + (1.0ei2π, 0.0ei2π, 0.0ei2π)/y2 +
(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.5π)/y3}
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Figure 3: The three–way complex neutrosophic line diagram build at Step 2 using the
proposed algorithm

6. Extent : {(0.4ei0.4π, 0.5ei1.6π, 0.4ei1.4π)/x1+(0.3ei0.4π, 0.5ei1.4π, 0.4ei1.3π)/x2+
(0.3ei0.5π, 0.6ei1.9π, 0.8ei1.5π)/x3 + (0.4ei0.2π, 0.7ei0.7π, 0.9ei1.9π)/x4}
Intent: {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1 + (0.2ei0.3π, 0.7ei1.2π, 0.7ei1.9π)/y2 +
(1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}

7. Extent : {(0.3ei0.4π, 0.7ei1.1π, 0.5ei0.7π)/x1+(0.4ei0.3π, 0.5ei1.4π, 0.4ei1.7π)/x2+
(0.3ei0.5π, 0.6ei1.2π, 0.8ei1.5π)/x3 + (0.2ei0.9π, 0.2ei0.7π, 0.9ei1.4π)/x4}
Intent: {(0.3ei0.4π, 0.7ei1.9π, 0.5ei1.3π)/y1 + (1.0ei2π, 0.0ei2π, 0.0ei2π)/y2 +
(1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}

8. Extent : {(0.4ei0.4π, 0.7ei1.6π, 0.4ei1.4π)/x1+(0.3ei0.3π, 0.5ei1.4π, 0.4ei1.7π)/x2+
(0.3ei0.5π, 0.6ei1.9π, 0.8ei1.5π)/x3 + (0.2ei0.2π, 0.7ei0.7π, 0.9ei1.9π)/x4}
Intent: {(1.0ei2π, 0.0ei2π, 0.0ei2π)/y1 + (1.0ei2π, 0.0ei2π, 0.0ei2π)/y2 +
(1.0ei2π, 0.0ei2π, 0.0ei2π)/y3}

It can be observed that the above generated three–way complex fuzzy
concepts and their compact visualization is shown in Figure 4 using the
properties of complex neutrosophic graph. This graph shows that concept
1 is most generalized concept whereas concept number 8 is most specialized
concepts. The concept number 1 represents that each of the chosen regions
has 20 to 30 percent acceptable saturation value for the PM10 in month of
second to four months, 50 to 70 percent un–acceptable level in month of
seventh to eighth whereas 40 to 70 percent uncertain from ninth to eleven
months. In this case, the expert can refer to authorized government body
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Figure 4: A three–way complex neutrosophic concept lattice generated from Table 8

for extra preparation in those months to reduce their health effects on the
citizen. In a more precise way the expert may interpret the concept num-
bers 8. It represents that, the region x1 has 40 percent acceptance level of
each parameter in the month of second, 70 percent un–acceptable level in
the month of ninth whereas 40 percent unpredictable in the month of sev-
enth. The region x2 has 30 percent acceptance level of each parameter in
the month of first to second, 50 percent un–acceptable level in the month of
eighth to ninth whereas 40 percent un–predictable in the month of ninth to
tenth. The region x3 has 30 percent acceptance level of each parameter in
the month of second to third, 60 percent un–acceptable level in the month
of tenth to eleven, whereas 80 percent un–predictable in the month of ninth
to tenth. The region x4 has 20 percent acceptance level of each parameter in
the month of first, 70 percent un–acceptable level in the month of third to
fourth whereas 90 percent un–predictable in the month of tenth to eleven. It
can be observed that, these extracted patterns are more helpful in controlling
or measuring the effect of AQI on the health of citizens in those areas. This
will help in reducing the level of AQI and its fluctuation in those particular
months to the certain levels using following methods:
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1. Controlling emission from coal based power station,

2. Controlling hospitals waste,

3. Controlling diesel vehicles,

4. Controlling road or building construction dust,

5. Controlling the old and private vehicles etc.

It is one of the major and significant advantages of the proposed method
towards measuring the pattern of AQI and its reduction which will help to
the society.

Table 9 shows that, the proposed method has several advanatges to deal
with complex neutrosophic context when compared to recently introduced
methods. One of the most significant output of the proposed method pro-
vides a compressed line diagram and graphical analytics of the given complex
neutrosophic context O(|C|.n6.m6) time complexity. However, the proposed
method unable to provide some of the complex neutrosophic concepts based
on user required information granules. To overcome from this problem the
author will focus on introducing connection of granular computing [41–42]
to refine the neutrosophic [28] context for multi–polar attributes [23, 42].

5. Conclusions and Future research

This paper aimed at measuring changes in complex fuzzy attributes and
its pattern based on truth, false and indeterminacy membership–values at
given phase of time using the properties of complex neutrosophic concept
lattice. To achieve this goal, a method is proposed in this paper for graph-
ical analytics of complex neutrosophic data set using the calculus of Lower
Neighbors algorithm which takes O(|C|.n6.m6) time complexity. One of the
suitable applications of the proposed method is also demonstrated for pre-
cise analysis of AQI and its interested pattern in the given yearm. However,
the proposed method unable to provide an adequate analysis based on user
required complex granules exists beyond the bipolar space. To deal with
this problem author will focus on refined neutrosophic set [28] or complex
multi–fuzzy sets [23, 42].
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Table 9: Significant distinction of the proposed method when compared to other ap-
proaches

Complex Complex vague Complex Proposed
fuzzy set set [20] neutrosophic set method
[24–25] [29–30] [2, 6]

Domain Universe of Universe of Universe of Universe of
Discourse Discourse Discourse Discourse

Co–domain Three–polar Three–polar Unit Three–polar
Single–valued Interval–valued circle circle

True–region [0, 1] [0, 1] [0, 1] [0, 1]

False–region [0, 1] [0, 1] [-1, 0) [0, 1]

Uncertain [0, 1] [0, 1] 1-true [0, 1]
regions -false

Amplitude Yes Yes Yes Yes
term

Phase No No Yes Yes
term

Pattern Yes Yes Yes Yes

Graph Yes Yes No Yes

Lattice Yes Yes No Yes

Methodology Subset Subset δ–equal Lower
Neighbor

Time complexity O(2m.n) O(2m.n) O(2m.n2) O(n.m3)
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