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Abstract: Recently suggested scheme [1] of quantum computing uses g-qubit states as circular polarizations from 
the solution of Maxwell equations in terms of geometric algebra, along with clear definition of a complex plane as 
bivector in three dimensions. Here all the details of receiving the solution, and its polarization transformations are 
analyzed. The results can particularly be applied to the problems of quantum computing and quantum cryptography. 
The suggested formalism replaces conventional quantum mechanics states as objects constructed in complex vector 
Hilbert space framework by geometrically feasible framework of multivectors.  
 
 

      
  

1. Introduction 

The circular polarized electromagnetic waves are the only type of waves following from the 
solution of Maxwell equations in free space done in geometric algebra terms. 

Let’s take the electromagnetic field in the form:  

                                         𝐹 = 𝐹0𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 )] (1.1) 

requiring that it satisfies the Maxwell system of equations in free space, which in 
geometrical algebra terms is one equation: 

(𝜕𝑡 + ∇)𝐹 = 0           (1.2) 

where ∇=
𝜕

𝜕𝑥
𝑥̂ +

𝜕

𝜕𝑦
𝑦̂ +

𝜕

𝜕𝑧
𝑧̂  and multiplication is the geometrical algebra one. 

Element 𝐹0 in (1.1) is a constant element of geometric algebra 𝐺3 and 𝐼𝑆 is unit value 
bivector of a plane 𝑆 in three dimensions, that is a generalization of the imaginary unit [2], 

[3]. The exponent in (1.1) is unit value element of 𝐺3
+ [3]: 

𝑒𝐼𝑆𝜑 = cos𝜑 + 𝐼𝑆 sin 𝜑,          𝜑 = 𝜔𝑡 − 𝑘⃗ ∙ 𝑟  

Solution of (1.2) should be sum of a vector (electric field 𝐸⃗ ) and bivector (magnetic field 

𝐼3𝐻⃗⃗ ): 

𝐹 = 𝐸⃗ + 𝐼3𝐻⃗⃗  

with some initial conditions: 

𝐸⃗ + 𝐼3𝐻⃗⃗ |𝑡=0,𝑟 =0 = 𝐹0 = 𝐸⃗
 |
𝑡=0,𝑟 =0

+ 𝐼3𝐻⃗⃗ |𝑡=0,𝑟 =0 = 𝐸⃗
 
0 + 𝐼3𝐻⃗⃗ 0 
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In the magnetic field 𝐼3𝐻⃗⃗  the item 𝐼3 is unit pseudoscalar in three dimensions assumed to be 
the right-hand screw oriented volume, relative to an ordered triple of orthonormal vectors. 

Substitution of (1.1) into the Maxwell’s (1.2) will exactly show us what the solution looks like. 

 

2. Solution in the geometric algebra terms 

The derivative by time gives  

𝜕

𝜕𝑡
𝐹 = 𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆
𝜕

𝜕𝑡
(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 ) = 𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆𝜔 = 𝐹𝐼𝑆𝜔 

The geometric algebra product F  is: 

∇𝐹 = 𝐹0𝐼𝑆𝑒
𝐼𝑆𝜑∇(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 ) = −𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆𝑘⃗ = −𝐹𝐼𝑆𝑘⃗  

or 

∇𝐹 = 𝐹0𝑒
𝐼𝑆𝜑∇(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 )𝐼𝑆 = −𝐹0𝑒

𝐼𝑆𝜑𝑘⃗ 𝐼𝑆 = −𝐹𝑘⃗ 𝐼𝑆, 

depending on do we write 𝐼𝑆(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 ) or (𝜔𝑡 − 𝑘⃗ ∙ 𝑟 )𝐼𝑆. The result should be the same 

since 𝜔𝑡 − 𝑘⃗ ∙ 𝑟  is a scalar.  

Commutativity 𝐼𝑆𝑘⃗ = 𝑘⃗ 𝐼𝑆 is true only if 𝑘⃗ × 𝐼3𝐼𝑆 = 0. The following agreement takes place 

between orientation of 𝐼3, orientation of  𝐼𝑆 and direction of vector  𝑘⃗  [3]. The vector 𝐼3𝐼𝑆 =
𝐼𝑆𝐼3 is orthogonal to the plane of  𝐼𝑆 and its direction is defined by orientations of 𝐼3 and 𝐼𝑆. 
Rotation of right/left hand screw defined by orientation of  𝐼𝑆 gives movement of right/left 

hand screw. This is the direction of the vector  𝐼3𝐼𝑆 = 𝐼𝑆𝐼3. That means that the matching 

between 𝑘̂ and 𝐼𝑆  should be 𝑘̂ = ±𝐼3𝐼𝑆 or   𝑘̂𝐼𝑆 = ∓𝐼3
1. 

Assuming that orientation is   𝐼3 = 𝑘̂𝐼𝑆, the Maxwell equation becomes: 

𝐹(𝐼𝑆𝜔 − 𝐼3|𝑘⃗ |) = 𝐹(𝜔𝐼𝑆 − |𝑘⃗ |𝑘̂𝐼𝑆) = 0 

or                           (𝐸⃗ + 𝐼3𝐻⃗⃗ )𝜔 = (𝐸⃗ + 𝐼3𝐻⃗⃗ )𝑘⃗  

Left hand side is sum of vector and bivector, while right hand side is scalar 𝐸⃗ ∙ 𝑘⃗  plus 

bivector 𝐸⃗ ∧ 𝑘⃗  , plus pseudoscalar 𝐼3(𝐻⃗⃗ ∙ 𝑘⃗ ), plus vector 𝐼3(𝐻⃗⃗ ∧ 𝑘⃗ ). It follows that both 𝐸⃗  and 

𝐻⃗⃗  lie on the plane of 𝐼𝑆 and then: 

𝜔𝐸⃗ = 𝐼3𝐻⃗⃗ 𝑘⃗ , 𝜔𝐼3𝐻⃗⃗ = 𝐸⃗ 𝑘⃗   →
𝜔2

|𝑘⃗ |
2 𝐼3𝐻⃗⃗ 𝑘⃗ = 𝜔𝐸⃗  

Thus, 𝜔 = |𝑘⃗ | and we get equation 𝐼3𝐻⃗⃗ 𝑘̂ = 𝐸⃗  from which particularly follows |𝐸⃗ |
2
=|𝐻⃗⃗ |

2
 and 

𝐸̂𝑘̂𝐻̂ = 𝐼3. 

The result for the case 𝐼3 = 𝑘̂𝐼𝑆 is that the solution of (1.2) is  

𝐹 = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 )] 

                                              
1 For any vector we write   𝑎̂ = 𝑎 |𝑎 |⁄  
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where 𝐸⃗ 0 and 𝐻⃗⃗ 0 are arbitrary mutually orthogonal vectors of equal length, lying on the 

plane 𝑆. Vector 𝑘⃗  should be normal to that plane, 𝑘̂ = −𝐼3𝐼𝑆 and  |𝑘⃗ | = 𝜔. 

In the above result the sense of the 𝐼𝑆  orientation and the direction of 𝑘⃗  were assumed to 

agree with 𝐼3 = 𝑘̂𝐼𝑆. Opposite orientation, −𝐼3 = 𝑘̂𝐼𝑆, that’s 𝑘⃗  and 𝐼𝑆 compose left hand screw 

and 𝑘̂ = 𝐼3𝐼𝑆, will give solution 𝐹 = 𝐹0𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 )] with 𝐸̂𝐻̂𝑘̂ = 𝐼3. 

Summary: 

For a plane 𝑆 in three dimensions Maxwell equation (1.2) has two solutions 

• 𝐹+ = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘⃗ + ∙ 𝑟 )] , with 𝑘̂+ = 𝐼3𝐼𝑆, 𝐸̂𝐻̂𝑘̂+ = 𝐼3, and the triple {𝐸̂, 𝐻̂, 𝑘̂+} 

is right hand screw oriented, that’s rotation of 𝐸̂ to 𝐻̂ by 𝜋 2⁄  gives movement of right 

hand screw in the direction of  𝑘⃗ + = |𝑘⃗ |𝐼3𝐼𝑆. 

• 𝐹− = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘⃗ − ∙ 𝑟 )], with 𝑘̂− = −𝐼3𝐼𝑆, 𝐸̂𝐻̂𝑘̂− = −𝐼3, and the triple 

{𝐸̂, 𝐻̂, 𝑘̂−} is left hand screw oriented, that’s rotation of 𝐸̂ to 𝐻̂ by 𝜋 2⁄  gives movement of 

left hand screw in the direction of  𝑘⃗ − = −|𝑘⃗ |𝐼3𝐼𝑆 or, equivalently, movement of right hand 

screw in the opposite direction, −𝑘⃗ −. 

• 𝐸⃗ 0 and 𝐻⃗⃗ 0, initial values of 𝐸⃗  and 𝐻⃗⃗ , are arbitrary mutually orthogonal vectors of equal 

length, lying on the plane 𝑆. Vectors 𝑘⃗ ± = ±|𝑘⃗ ±|𝐼3𝐼𝑆 are normal to that plane. The length 

of the wave vectors |𝑘⃗ ±| is equal to angular frequency  . 

Maxwell equation (1.2) is a linear one. Then any linear combination of 𝐹+ and 𝐹− saving the 
structure of (1.1) will also be a solution.  

Let’s write: 

{
𝐹+ = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟 )] = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[−𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟 ]]

𝐹− = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟 )] = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟 ]]
     (2.1) 

Then for arbitrary scalars 𝜆 and 𝜇: 

𝜆𝐹+ + 𝜇𝐹− = (𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒
𝐼𝑆𝜔𝑡(𝜆𝑒−𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟 ] + 𝜇𝑒𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟 ])  (2.2) 

is solution of (1.2). The item in second parenthesis is weighted linear combination of two 
states with the same phase in the same plane but opposite sense of orientation. The states 
are strictly coupled, entangled if you prefer, because bivector plane should be the same for 
both, does not matter what happens with it. 

One another option is: 

(𝜆1 + 𝐼3𝜇1)(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟 )] + 

(𝜆2 + 𝐼3𝜇2)(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟 )] = 

[𝜆1𝐸⃗ 0 − 𝜇1𝐻⃗⃗ 0 + 𝐼3(𝜇1𝐸⃗ 0 + 𝜆1𝐻⃗⃗ 0)]𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟 )] + 

[𝜆2𝐸⃗ 0 − 𝜇2𝐻⃗⃗ 0 + 𝐼3(𝜇2𝐸⃗ 0 + 𝜆2𝐻⃗⃗ 0)]𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟 )] 
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which is just rotation, along with possible change of length, of electric and magnetic initial 
vectors in their plane.  

 

3. Transformations of polarization states  

Polarizations, in our approach, exponents in the solution of (2.1), have the form of states [3], 
that’s elements of 𝐺3

+: 𝐺3
+ ∋ 𝛼 + 𝐼𝑆𝛽 ≡ cos𝜑 + 𝐼𝑆 sin 𝜑 = 𝑒

𝐼𝑆𝜑, distributed in (𝑡, 𝑟 ) space. 
They are operators than can act on observables, also elements of 𝐺3, particularly other 
polarizations. Such states can be depicted in the current geometric algebra formalism using 
a triple of basis bivectors in three dimensions {𝐵1, 𝐵2, 𝐵3} (Fig.3.1): 

 
Fig.3.1 

The basis bivectors satisfy multiplication rules (in the righthand screw orientation of 𝐼3):  

𝐵1𝐵2 = −𝐵3, 𝐵1𝐵3 = 𝐵2, 𝐵2𝐵3 = −𝐵1 

One can identify basis bivectors with usual coordinate planes: 𝐵1 = 𝑦̂𝑧̂,  𝐵2 = 𝑧̂𝑥̂,  𝐵3 = 𝑥̂𝑦̂. 
Any one of these three bivectors can be taken as explicitly identifying imaginary unit, though 
any unit value bivector in three dimensions can take the role  [2], [4].  

Thus:               𝛼 + 𝐼𝑆𝛽 = 𝛼 + 𝛽(𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3) ≡ 𝛼 + 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 

The difference between units of information in classical computational scheme, quantum 
mechanical conventional computations (qubits) and geometric algebra scheme (g-qubits) 
with variable explicitly defined complex plane is seen from Fig.3.2. 

Circular polarizations received as solutions of Maxwell equation (1.2) is an excellent choice 
to have such g-qubits in a lab. 

Commonly accepted idea to use systems of qubits to tremendously increase speed of 
computations is based on assumption of entanglement – roughly speaking when touching 
one qubit all the other in the system react instantly, in no time. A bit strange, though you 
should not care about that because our paradigm is very different. 

Assume we have some general state:  

𝛼 + 𝐼𝑆𝛽 = 𝛼 + 𝛽(𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3) ≡ 𝛼 + 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 

 



5 
 

 

Fig. 3.2 

 

The state can be identified as a point (𝛼1, 𝛽1, 𝛽2, 𝛽3) on unit sphere 𝑆3. It can be subjected to 
a Clifford translation 

𝛼 + 𝐼𝑆𝛽 ⇒ 𝑒𝐼𝐶𝑙∆𝜓(𝛼 + 𝐼𝑆𝛽) 

executing displacement ∆𝜓 at point (𝛼1, 𝛽1, 𝛽2, 𝛽3) along intersection of 𝑆3 with the unit 
bivector plane 𝐼𝐶𝑙. 

Let’s make notations more like conventional quantum mechanical ones. I will write: 

𝛼 + 𝐼𝑆𝛽 ≡ |𝑔⟩(𝛼,𝛽,𝐼𝑆),    𝛼 + 𝐼𝑆𝛽
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛼 − 𝐼𝑆𝛽 ≡ ⟨𝑔|(𝛼,𝛽,𝐼𝑆) 

and use Hamiltonian like form of the Clifford translation bivector.  

Conventional Hamiltonian 

(
𝛾 + 𝛾1 𝛾2 − 𝑖𝛾3
𝛾2 + 𝑖𝛾3 𝛾 − 𝛾1

), 

with removed not important scalar 𝛾, has the lift in 𝐺3
+ [3]: 

ℋ = 𝐼3(𝛾1𝐵1 + 𝛾2𝐵2 + 𝛾3𝐵3) 

Then the associated Clifford translation plane bivector is −𝐼3ℋ(𝑡). By normalizing the 
bivector to unit value we get generalization of imaginary unit  
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𝑖 ⇒ 𝐼3
ℋ(𝑡)

|ℋ(𝑡)|
, 

that is critical for the whole approach. Therefore, for some 𝛥𝑡 , Clifford translation for a given 
Hamiltonian is: 

|𝑔(𝑡 + ∆𝑡)⟩(𝛼(𝑡+∆𝑡),𝛽(𝑡+∆𝑡),𝐼𝑆(𝑡+∆𝑡)) = 𝑒
−(𝐼3

ℋ(𝑡)

|ℋ(𝑡)|
)|ℋ(𝑡)|∆𝑡

|𝑔(𝑡)⟩(𝛼(𝑡),𝛽(𝑡),𝐼𝑆(𝑡))          (3.1) 

For an arbitrary sequence of infinitesimal Clifford translations, the final state is integral2  

∫𝑒−𝐼𝐻(𝑙)ℋ(𝑙)𝑑𝑙 |𝑔(𝑙)⟩(𝛼(𝑙),𝛽(𝑙),𝐼𝑆(𝑙)) 

along the curve on unit sphere 𝑆3 composed of infinitesimal displacements by 

−(𝐼3
ℋ(𝑡)

|ℋ(𝑡)|
) |ℋ(𝑙)|𝑑𝑙 

Let’s calculate the result of the right-hand side of (3.1) in general case when the plane of  

𝐼3
ℋ(𝑡)

|ℋ(𝑡)|
 differs from 𝑆(𝑡). 

To calculate the geometric algebra product of the two exponents in Clifford translation with 

not coinciding exponent planes, 𝑒𝐼𝑆1∆𝜑1𝑒𝐼𝑆2𝜑2, 𝑆1 ≠ 𝑆2, let’s first expand 𝐼𝑆1 in original basis 

to get formulas for generators of Clifford translation. If 𝐼𝑆1 = 𝛾1𝐵1 + 𝛾2𝐵2 + 𝛾3𝐵3 then a part 

of geometrical product 𝑒𝐼𝑆1∆𝜑1𝑒𝐼𝑆2𝜑2 is: 

𝐼𝑆1𝐼𝑆2 = (𝛾1𝐵1 + 𝛾2𝐵2 + 𝛾3𝐵3)(𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3) = 

−(𝛾1𝛽1 + 𝛾2𝛽2 + 𝛾3𝛽3) + (𝛾3𝛽2 − 𝛾2𝛽3)𝐵1 + (𝛾1𝛽3 − 𝛾3𝛽1)𝐵2 + (𝛾2𝛽1 − 𝛾1𝛽2)𝐵3 = 

−(𝛾 ⋅ 𝛽 ) − 𝐼3(𝛾 × 𝛽 ) = 𝐼𝑆1 ⋅ 𝐼𝑆2 + 𝐼𝑆1 ∧ 𝐼𝑆2     (see Fig.3.3.) 

where 𝛾  and 𝛽  are vectors dual to bivectors 𝐼𝑆1 and 𝐼𝑆2. 

Thus, the full product is: 

𝑒𝐼𝑆1∆𝜑1𝑒𝐼𝑆2𝜑2 = cos∆𝜑1 cos𝜑2 + sin∆𝜑1 cos 𝜑2 𝐼𝑆1 + cos ∆𝜑1 sin𝜑2 𝐼𝑆2 + sin∆𝜑1 sin 𝜑2 𝐼𝑆1𝐼𝑆2 = 

cos ∆𝜑1 cos𝜑2 − (sin ∆𝜑1 cos𝜑2 𝐼𝑆1𝐼𝑆2)𝐼𝑆2 − 𝐼𝑆1(cos ∆𝜑1 sin𝜑2 𝐼𝑆1𝐼𝑆2) + sin ∆𝜑1 sin 𝜑2 𝐼𝑆1𝐼𝑆2 = 

cos ∆𝜑1 cos𝜑2+sin∆𝜑1 sin𝜑2 (𝐼𝑆1 ⋅ 𝐼𝑆2)⏟                          +                                                                                

            (scalar part) 

sin ∆𝜑1 cos𝜑2 𝐼𝑆1 + cos∆𝜑1 sin𝜑2 𝐼𝑆2 + sin∆𝜑1 sin𝜑2 𝐼𝑆1 ∧ 𝐼𝑆2⏟                                                                          

(bivector part, expansion in non-orthonormal basis 𝐼𝑆1, 𝐼𝑆2, 𝐼𝑆1 ∧ 𝐼𝑆2)
3 

                                              
2 In the case of constant plane of Hamiltonian, it easily follows the Schrodinger equation of conventional 
quantum mechanics with clearly defined imaginary unit  
3 In the case 𝐼𝑆1= 𝐼𝑆2we trivially have rotation of 𝑒𝐼𝑆2𝜑2 by angle ∆𝜑1 
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Fig.3.3 

 

4. Transformations of circular polarized electromagnetic fields  

Now we have everything to retrieve action of Clifford translation generated by a Hamiltonian 
on general solution (2.2):   

𝑒
−(𝐼3

ℋ(𝑡)
|ℋ(𝑡)|

)|ℋ(𝑡)|∆𝑡
(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)(𝜆𝑒

𝐼𝑆𝜔(𝑡−(𝐼3𝐼𝑆)∙𝑟 ) + 𝜇𝑒𝐼𝑆𝜔(𝑡+(𝐼3𝐼𝑆)∙𝑟 )) 

To make expressions simpler I will use notations 𝐼3
ℋ(𝑡)

|ℋ(𝑡)|
≡ 𝐼ℋ, 𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟 ) ≡ 𝜑+, and 

𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟 ) ≡ 𝜑−. Then we get (see sections 1.3 and 1.6 in [3] for multiplication details): 

𝑒−𝐼ℋ |ℋ(𝑡)|∆𝑡(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)(𝜆𝑒
𝐼𝑆𝜑+ + 𝜇𝑒𝐼𝑆𝜑−) = 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)(𝜆𝑒
−𝐼ℋ|ℋ(𝑡)|∆𝑡𝑒𝐼𝑆𝜑+ + 𝜇𝑒−𝐼ℋ|ℋ(𝑡)|∆𝑡𝑒𝐼𝑆𝜑−) = 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝜆(cos(|ℋ(𝑡)|∆𝑡) cos𝜑+−sin(|ℋ(𝑡)|∆𝑡) sin𝜑+ (𝐼ℋ ⋅ 𝐼𝑆)) 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝜆(sin(|ℋ(𝑡)|∆𝑡) cos𝜑+ 𝐼ℋ + cos(|ℋ(𝑡)|∆𝑡) sin𝜑+ 𝐼𝑆
+ sin(|ℋ(𝑡)|∆𝑡) sin 𝜑+ (𝐼ℋ ∧ 𝐼𝑆)) 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝜇(cos(|ℋ(𝑡)|∆𝑡) cos𝜑−−sin(|ℋ(𝑡)|∆𝑡) sin𝜑− (𝐼ℋ ⋅ 𝐼𝑆)) 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)𝜇(sin(|ℋ(𝑡)|∆𝑡) cos𝜑− 𝐼ℋ + cos(|ℋ(𝑡)|∆𝑡) sin𝜑− 𝐼𝑆
+ sin(|ℋ(𝑡)|∆𝑡) sin 𝜑− (𝐼ℋ ∧ 𝐼𝑆)) 

Let’s take popular case of 𝐼𝑆 = 𝐵3 = 𝑥̂𝑦̂ (plane orthogonal to 𝑧̂ axis) and 𝐼ℋ = 𝐵1 = 𝑦̂𝑧̂ (or 
𝐼ℋ = 𝐵2 = 𝑧̂𝑥̂, does not matter.) The above formula becomes: 

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0)[𝜆(cos(|ℋ(𝑡)|∆𝑡) cos𝜑+ + sin(|ℋ(𝑡)| ∆𝑡) cos𝜑+ 𝐵1 + sin(|ℋ(𝑡)|∆𝑡) sin𝜑+ 𝐵2
+ cos(|ℋ(𝑡)|∆𝑡) sin 𝜑+ 𝐵3)
+ 𝜇(cos(|ℋ(𝑡)|∆𝑡) cos 𝜑− + sin(|ℋ(𝑡)|∆𝑡) cos𝜑− 𝐵1 + sin(|ℋ(𝑡)|∆𝑡) sin𝜑− 𝐵2
+ cos(|ℋ(𝑡)|∆𝑡) sin 𝜑− 𝐵3)] 

It makes simpler if 𝐹+ and 𝐹− are equally weighted, say both 𝜆 and 𝜇 are equal to one:  

−(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0) [cos(|ℋ(𝑡)|∆𝑡) (cos𝜑+ + cos𝜑−) + sin(|ℋ(𝑡)| ∆𝑡)(cos𝜑+ + cos 𝜑−)𝐵1 + 

sin(|ℋ(𝑡)|∆𝑡)(sin𝜑+ + sin𝜑−)𝐵2 + cos(|ℋ(𝑡)| ∆𝑡)(sin𝜑+ + sin𝜑−)𝐵3] = 
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−2(𝐸⃗ 0 + 𝐼3𝐻⃗⃗ 0) cos(𝑧̂ ∙ 𝑟 )(cos(|ℋ(𝑡)|∆𝑡) cos𝜔𝑡 + sin(|ℋ(𝑡)|∆𝑡) cos𝜔𝑡 𝐵1 +

sin(|ℋ(𝑡)|∆𝑡) sin𝜔𝑡 𝐵2 + cos(|ℋ(𝑡)|∆𝑡) sin𝜔𝑡 𝐵3)     (4.1) 

 

5. Action of polarization states on observables  

Since a state in the described formalism is operator that gives the result of measurement 
when acting on observable, which can be any element of geometric algebra 𝐺3, the 
following is detailed description of the case when the element in parenthesis of the (4.1) 
expression acts on some bivector. Such operation is generalization of the Hopf fibration and 
rotates the bivector in three dimensions.  

Denoting4:  

𝑐𝑜𝑠(|ℋ(𝑡)|∆𝑡) 𝑐𝑜𝑠 𝜔𝑡 + 𝑠𝑖𝑛(|ℋ(𝑡)|∆𝑡) 𝑐𝑜𝑠 𝜔𝑡 𝐵1 + 𝑠𝑖𝑛(|ℋ(𝑡)| ∆𝑡) 𝑠𝑖𝑛 𝜔𝑡 𝐵2
+ 𝑐𝑜𝑠(|ℋ(𝑡)| ∆𝑡) 𝑠𝑖𝑛 𝜔𝑡 𝐵3 ≡ 𝛼 + 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 ≡ 𝑒

𝐼ℋ,𝜔𝜓 

where  

𝐼ℋ,𝜔 = (𝛾1𝐵1 + 𝛾2𝐵2 + 𝛾3𝐵3) 

𝛾1 =
𝑠𝑖𝑛(|ℋ(𝑡)|∆𝑡) 𝑐𝑜𝑠 𝜔𝑡

√𝑠𝑖𝑛2(|ℋ(𝑡)|∆𝑡) + 𝑐𝑜𝑠2(|ℋ(𝑡)|∆𝑡)𝑠𝑖𝑛2 𝜔𝑡
 

𝛾2 =
(𝑠𝑖𝑛|ℋ(𝑡)|∆𝑡) 𝑠𝑖𝑛 𝜔𝑡

√𝑠𝑖𝑛2(|ℋ(𝑡)|∆𝑡) + 𝑐𝑜𝑠2(|ℋ(𝑡)|∆𝑡)𝑠𝑖𝑛2 𝜔𝑡
 

𝛾3 =
𝑐𝑜𝑠(|ℋ(𝑡)|∆𝑡) 𝑠𝑖𝑛 𝜔𝑡

√𝑠𝑖𝑛2(|ℋ(𝑡)|∆𝑡) + 𝑐𝑜𝑠2(|ℋ(𝑡)|∆𝑡)𝑠𝑖𝑛2 𝜔𝑡
 

𝜓 = cos−1(𝑐𝑜𝑠(|ℋ(𝑡)|∆𝑡) 𝑐𝑜𝑠 𝜔𝑡) 

and taking a bivector operand (observable) 𝑐1𝐵1 + 𝑐2𝐵2 + 𝑐3𝐵3 we get the result of 
measurement, action of the state on observable (see [3], [4] for details): 

𝑒−𝐼ℋ,𝜔𝜓(𝑐1𝐵1 + 𝑐2𝐵2 + 𝑐3𝐵3)𝑒
𝐼ℋ,𝜔𝜓

= (𝑐1[(𝛼
2 + 𝛽1

2) − (𝛽2
2 + 𝛽3

2)] + 2𝑐2(𝛽1𝛽2 − 𝛼𝛽3) + 2𝑐3(𝛽1𝛽3 + 𝛼𝛽2))𝐵1
+ (2𝑐1(𝛼𝛽3 + 𝛽1𝛽2) + 𝑐2[(𝛼

2 + 𝛽2
2) − (𝛽1

2 + 𝛽3
2)] + 2𝑐3(𝛽2𝛽3 − 𝛼𝛽1))𝐵2

+ (2𝑐1(𝛽1𝛽3 − 𝛼𝛽2) + 2𝑐2(𝛽2𝛽3 + 𝛼𝛽1) + 𝑐3[(𝛼
2 + 𝛽3

2) − (𝛽1
2 + 𝛽2

2)])𝐵3 = 

(𝑐1𝑐𝑜𝑠2𝜔𝑡 − 𝑠𝑖𝑛2𝜔𝑡 (𝑐2𝑐𝑜𝑠(2|ℋ(𝑡)|∆𝑡))− 𝑐3 𝑠𝑖𝑛(2|ℋ(𝑡)| ∆𝑡))𝐵1 + 

(𝑐1𝑠𝑖𝑛2𝜔𝑡 + 𝑐𝑜𝑠2𝜔𝑡(𝑐2 𝑐𝑜𝑠(2|ℋ(𝑡)|∆𝑡) − 𝑐3 𝑠𝑖𝑛(2|ℋ(𝑡)|∆𝑡)))𝐵2 + 

(𝑐2 𝑠𝑖𝑛(2|ℋ(𝑡)|∆𝑡) + 𝑐3 cos(2|ℋ(𝑡)|∆𝑡))𝐵3 

One interesting remark. If the observable belongs only to the 𝐵1 plane, that’s 𝑐2 = 𝑐3  = 0, 
the result of measurement has only components in 𝐵1 and 𝐵2, projections of the value 𝑐1 
due to rotation with angular velocity 2𝜔 around the 𝑧̂ axis. 

                                              
4 Easy to see that the left-hand side is unit value element of 𝐺3

+ 
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6. Polarization states acting on multiple observables 

The core of quantum computing should not be in entanglement as it understood in 
conventional quantum mechanics, which only formally follows from representation of the 
many particle states as tensor products of individual particle states and not supported by 
really operating physical devices. The core of quantum computing scheme should be in 
manipulation and transferring of sets of states as operators decomposed in geometrical 
algebra variant of qubits (g-qubits), or four-dimensional unit sphere points, if you prefer. 
Such operators can act on observables, particularly through measurements. From the 
recent calculation we realize that the action of state, which depends on (𝑡, 𝑟 ), on an 
observable can be done only if observable is defined at the same point (𝑡, 𝑟 ) where the 
state is defined [5]. In this way quantum computer is an analog computer keeping 
information in sets of objects with infinite number of degrees of freedom, contrary to the two 
value bits or two-dimensional Hilbert space elements, qubits. 

Thus, if we have a state  

𝛼 + 𝐼𝑆𝛽 ≡ |𝑔⟩(𝛼,𝛽,𝐼𝑆) = |𝑔⟩(𝛼(𝑡,𝑟 ),𝛽(𝑡,𝑟 ),𝐼𝑆(𝑡,𝑟 )) 

as in the case of polarization defined states, it becomes a state acting on a set of 
observables if the latter are defined at some given points:  

|𝑐𝑛⟩ = |𝑐⟩(𝑐(𝑡𝑛,𝑟 𝑛),𝐼𝐶(𝑡𝑛,𝑟 𝑛)) = 𝑐0(𝑡𝑛, 𝑟 𝑛) + 𝐼𝐶(𝑡𝑛,𝑟 𝑛)√1 − 𝑐0
2(𝑡𝑛, 𝑟 𝑛),   𝑛 = 1,… , 𝑁 

Then the state transforms into multi-observable one: 

|𝑔(𝛼(𝑡1, 𝑟 1), 𝛽(𝑡1, 𝑟 1), 𝐼𝑆(𝑡1, 𝑟 1))…𝑔(𝛼(𝑡𝑁, 𝑟 𝑁), 𝛽(𝑡𝑁, 𝑟 𝑁), 𝐼𝑆(𝑡𝑁, 𝑟 𝑁))⟩ ≡ |𝑔1…𝑔𝑁⟩

= ∬|𝑔⟩(𝛼(𝑡,𝑟 ),𝛽(𝑡,𝑟 ),𝐼𝑆(𝑡,𝑟 )) 𝛿(𝑟 − 𝑟 1)𝛿(𝑡 − 𝑡1)𝑑𝑟 𝑑𝑡 +⋯

+∬|𝑔⟩(𝛼(𝑡,𝑟 ),𝛽(𝑡,𝑟 ),𝐼𝑆(𝑡,𝑟 )) 𝛿(𝑟 − 𝑟 𝑁)𝛿(𝑡 − 𝑡𝑁)𝑑𝑟 𝑑𝑡

=∑ ∬|𝑔⟩(𝛼(𝑡,𝑟 ),𝛽(𝑡,𝑟 ),𝐼𝑆(𝑡,𝑟 )) 𝛿(𝑟 − 𝑟 𝑛)𝛿(𝑡 − 𝑡𝑛)𝑑𝑟 𝑑𝑡
𝑛=𝑁

𝑛=1
 

This formula for |𝑔1…𝑔𝑁⟩ bears clear physical and geometrical sense, contrary to 
conventional quantum mechanics definition following formally from tensor product which 
does not have good physical interpretation but is the root of entanglement-based quantum 
computing.  

The formula also prompts how quantum encryption decoding can be effectively 
implemented with the bivector value security key (see Fig.6.1.)  

 

 

Fig.6.1 
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The formula can also be applied to challenging area of anyons in three dimensions. 

 

7. Conclusions 

Two seminal ideas – variable and explicitly defined complex plane in three dimensions, and 

the 
3G  states5 as operators acting on observables – allow to put forth comprehensive and 

much more detailed formalism appropriate for quantum mechanics in general and 

particularly for quantum computing schemes. The approach may be thought about, for 

example, as a far going geometric algebra generalization of some proposals for quantum 

computing formulated in terms of light beam time bins, see [6], [7], but giving much more 

strength and flexibility in practical implementation. 
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5 Good to remember that “state” and “wave function” are (at least should be) synonyms in conventional 
quantum mechanics  


