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Abstract
A proof of the Continuum Hypothesis as originally posed by Georg Cantor in 1878; that an

uncountable set of real numbers has the same cardinality as the set of all real numbers. Any
set of real numbers can be encoded by the infinite paths of a binary tree. If the binary tree has
an uncountable node it must have a descendant with 2 uncountable successors. Each of those
will have descendants with 2 uncountable successors, recursively. As a result the infinite paths
of an uncountable binary tree will have the same cardinality as the set of all real numbers, as
will the uncountable set of real numbers encoded by the tree.

1 The Hypothesis

We know that some sets are countable, ie they can be put into a bijection with N. There are other
sets where this can’t be done, eg an interval of R. We want to prove that there are no sets whose
cardinality lies in between. That is, if a set is not countable its cardinality is at least that of R.

2 Outline of the Proof

I intend to prove the hypothesis in its original form as proposed by Georg Cantor in 18781:

Any uncountable set of real numbers is equinumerous with R

Since there is a bijection between the open interval (0,1) and the set of all the real numbers, there
is a bijection between any subset of (0,1) and a subset of R. Therefore it is sufficient to prove:

Any uncountable subset of (0,1) is equinumerous with R

2.1 Representation using Binary Trees

Any real number in (0,1) can be expressed using infinite binary notation, with a leading 0 before
the binary point and an infinite string of binary digits (bits) after the point. Therefore any subset
of (0,1) can represented by an infinite binary tree with 0 as the root node.

1"The conjecture that any uncountable set of real numbers is equinumerous with R was first posed by Cantor
(1878), and it is the first version of what is called the continuum hypothesis." Stillwell, The Real Numbers, p79
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Since the binary tree represents real numbers it is convenient not to have terminating nodes. Then
each node has either 1 or 2 immediate successors. Rational numbers which would otherwise termi-
nate are continued with an infinite string of repeating 0’s.

So for convenience I am using the following definition of a binary tree:

Definition. A binary tree is a rooted tree where every node has one or two successors

Which means that in this document the term binary tree actually refers to an infinite binary tree.
Using binary trees to represent real numbers has some ambiguity in that there may be more than
one way of representing some of the numbers. In particular, fractions whose denominators are a
power of two can be represented using either trailing 0’s or 1’s.

However any string from a binary tree specifies a particular real number.

2.2 Top Level of the Proof

1. Any subset of R has a bijection with the infinite paths of a binary tree

2. If the subset of R is uncountable then the binary tree must also be uncountable

3. An uncountable binary tree contains a tree isomorphic to a complete binary tree

4. Since a complete binary tree has cardinality c, therefore the uncountable binary tree and also
the subset of R must have cardinality c

2.3 Uncountable Binary Trees

We can prove that if a node of a binary tree is uncountable it must have a descendant node with
two uncountable successor nodes.

Assume the converse, ie that we have an uncountable node T0 where every descendant has at most
one uncountable successor. However T0 must have at least one uncountable successor otherwise it
is countable itself. Therefore it must have exactly one uncountable successor, say T1.

We can apply the same argument to T1 implying that it has exactly one uncountable subtree T2.
In this way we form a denumerable chain of uncountable subtrees T0, T1, T2, ...Tn, ... Each node Tn

in the chain has the property that it has exactly one uncountable successor Tn+1. They each may
have either zero or one countable subtrees.

As a consequence and contrary to assumption T0 is countable:

• The chain of nodes T0, T1, T2, ...Tn, ... defines one number

• The remaining numbers belong to one of the countable subtrees and so are countable since a
countable union of countable sets is countable.

Therefore an uncountable tree must have a descendant node which has two uncountable subtrees.
Applying the same argument recursively to each of those subtrees we obtain a binary tree with an
isomorphism to a complete infinite binary tree.

Since the infinite paths of a complete infinite binary tree are equinumerous with R it implies that
the infinite paths of an uncountable binary tree are also equinumerous with R.
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3 Detailed Proof

3.1 A Subset of R ⇔ Some Subset of (0,1)

Lemma 3.1.1. Any subset of R has a bijection with some subset of (0,1)

Proof. For example let ϕ : R 7→ (0, 1) be defined by ϕ(x) = 1
1+ex . Then:

• ϕ(x1) = ϕ(x2) ⇒ x1 = x2,∀x1, x2 ∈ R since 1
1+ex1 = 1

1+ex2 ⇒ log(ex1) = log(ex2) and
exp(x) : (−∞,∞) 7→ (0,∞) while log(x) : (0,∞) 7→ (−∞,∞). Therefore ϕ is injective

• If ϕ(x) = 1
1+ex = y then x = log( 1

y − 1) ∀y : 0 < y < 1 That is, for any y ∈ (0, 1) we can find
an x such that ϕ(x) = y. So ϕ is also surjective

Therefore ϕ defines a bijection between R and (0,1).

3.2 A Subset of (0,1) ⇔ Some Binary Tree

Definition. denumerable means countably infinite

Definition. SS is the set of strings with a leading 0, followed by a denumerable number of 0’s and
1’s

Lemma 3.2.1. For every number r in (0,1) there is a string S ∈ SS that defines a series whose
limit equals r

We are using the normal method of encoding an infinite binary number. The value of an infinite
binary string after n places is given by 0.b1b2...bn where a bit bn with a value of 1 adds 1

2n

Proof. Let Sn = 0.b1b2...bn be the value of a string with n binary places.

Given any r ∈ (0, 1) assume we have constructed Sn so that Sn < r < Sn + 1
2n

In order to calculate the next bit:

If r > Sn + 1
2n+1 then take the value of bn+1 as 1

after which Sn+1 = Sn + 1
2n+1 , so now

Sn + 1
2n+1 < r < Sn + 1

2n , ie

Sn+1 < r < Sn+1 + 1
2n+1 since Sn + 1

2n = Sn + 2
2n+1 = Sn+1 + 1

2n+1

on the other hand:

if r < Sn + 1
2n+1 then take the value of bn+1 as 0

after which Sn+1 = Sn, so still

Sn+1 < r < Sn+1 + 1
2n+1

of course if r = Sn + 1
2n+1 then the process terminates; we just set bn+1 to 1 and fill the rest of the

string with an infinite sequence of zeros.
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If we take S0 to be 0 then since 0 < r < 1(= 1/20) we can apply the same procedure to find b1. So
for any series Sn = 0.b1b2...bn built using this procedure, we can always choose a bn+1 so that:

|r − Sn+1| < 1
2n+1 ,

which has limit zero as we increase n by adding digits to the infinite binary. Therefore the string
S = 0.b1b2...bn... defines a series whose limit equals r.

3.2.1 Defining a bijection between (0,1) and a subset of SS

The map from strings in SS to numbers in (0,1) is not injective because more than one string can
define the same number. However the strings in SS belong to equivalence classes where strings
in the same class define the same number. We can define a bijective map from a subset of the
equivalence classes of SS to numbers in (0,1):

• Strings in different classes map to different numbers, so the map is injective

• Lemma 3.2.1 shows that every number r in (0,1) is defined by some string in SS. Therefore
one of the equivalence classes will map to r, so the map is also surjective

In order to make a bijective map using the individual strings we need to select one from each of the
relevant equivalence classes.

Lemma 3.2.2. There is a bijective map between a subset SR* of the open interval (0,1) and some
subset SS* of SS

Note: SS* is always a proper subset of SS because the full set of strings in SS includes those that
define 0 and 1.

Definition. Strings in SS belong to the same equivalence class if they define the same number

Proof. Let SS* be a subset of SS that has one string from each equivalence class that maps to a
number in SR*.

Let ϕ : SS∗ 7→ SR∗ be the map that takes each string in SS* and maps it to the corresponding
number in SR*

From lemma 3.2.1 we know that every number in (0,1) is defined by some string in SS, therefore
there will be a string in SS* to map onto every number in SR*. That is, ϕ is surjective.

Since SS* only takes a single string from each equivalence class, and strings from different equiva-
lence classes define different numbers, it follows that each different string in SS* maps to a different
number in SR*. That is, ϕ is injective. Therefore ϕ is a bijective map from SS* to SR*.

It is convenient to use the following term for an infinite path from the root node.

Definition. A strand is an infinite path from the root of an infinite binary tree

Lemma 3.2.3. Given a subset SR* of (0,1), there is a bijection between SR* and the strands of
some binary tree BT

Strings in SS can be put into a tree where those strings that share the first n bits will share a node
at that depth in the tree. Since every string in SS has a leading zero followed by a denumerable
string of zeros and ones, the root node will be a zero and it will be an infinite binary tree.
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Proof. From lemma 3.2.2 there is a bijection between SR* and a subset SS* of SS. Let BT be the
binary tree that is created from the strings in SS*. Let ϕ : SS∗ 7→ BT take strings in SS* to the
corresponding strand in BT:

• ϕ is surjective because every string in SS* is included in BT

• ϕ is injective because different strings in SS* will map to strands in BT that differ after a
certain number of bits

Therefore ϕ is bijective. From lemma 3.2.2 there is a bijection between SR* and SS*, therefore
there is a bijection between SR* and the strands of BT.

Since we already know from lemma 3.1.1 that any set of real numbers has a bijection with a subset
of (0,1) this result means that any subset of R has a bijection with the strands of a binary tree.

3.3 If a Subset of R is Uncountable its Binary Tree must also be
Uncountable

Definition. The cardinality of a binary tree is determined by the cardinality of its strands

Lemma 3.3.1. If a subset of R is uncountable it has a bijection with the strands of an uncountable
binary tree

Proof. Lemma 3.1.1 shows that any subset of R has a bijection with some subset of (0,1) while
lemma 3.2.3 shows that a subset of (0,1) has a bijection with the strands of some binary tree.
Combined they prove that there is a bijection between the numbers in any subset of R and the
strands of some binary tree. Therefore they have the same cardinality so if the subset of R is
uncountable then the strands of its binary tree must also be uncountable.

3.4 An Uncountable Binary Tree has a Descendant that has Two
Uncountable Successors

Definition. A node(i) is a set of strands that share the first i binary digits. i ∈ N, i ≥ 1

Note: i = 1 means they just share the leading zero before the binary point.

Definition. A descendant of a node(i) is a node which is a subset of node(i)

Note: Since the subset is not necessarily a proper subset, the definition means that a node is a
descendant of itself.

Definition. A successor of node(i) is a descendant of node(i) and is a node(i+1)

Note: This definition means that a node cannot be its own successor.

Definition. The strands of a countable node can be put into a 1:1 relationship with a subset of
N

Note: Since the subset of N is not necessarily a finite subset the definition includes countably infinite
nodes.
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Lemma 3.4.1. A union of countable sets is countable

Proof omitted: For example refer Freiwald, An Introduction to Set Theory and Topology, p30

Lemma 3.4.2. If Tn is an uncountable node of an infinite binary tree, with at most one uncountable
successor then Tn has exactly one uncountable successor

Proof. If Tn has no uncountable successors then each of its successors must be countable, in which
case Tn would also be countable by lemma 3.4.1. So it must have at least one uncountable successor.

By assumption Tn has at most one uncountable successor, therefore it must have exactly one
uncountable successor.

Lemma 3.4.3. If T0 is a node which is uncountable and all of its descendants have at most one
uncountable successor then there is a chain of uncountable nodes T0, T1, T2, ...Tn, ... where each Tn

has the property that Tn+1 is its only uncountable successor

Proof. Since T0’s descendants include itself, it is also assumed to have at most one uncountable
successor. Therefore since it is uncountable, it has exactly one uncountable successor T1 by lemma
3.4.2

If Tk is a descendant of T0 then all of Tk’s descendants must also have at most one uncountable
successor. Therefore if Tk is an uncountable descendant of T0 it has exactly one uncountable
successor Tk+1 also by lemma 3.4.2

The lemma follows by induction.

Theorem 1. An uncountable node in an infinite binary tree must have a descendant that has two
uncountable successors.

Proof. Assume there is a node T0 which is uncountable and that all of its descendants have at
most one uncountable successor. Then by lemma 3.4.3 there is a chain of uncountable nodes
T0, T1, T2, ...Tn, ... where each Tn has the property that Tn+1 is its only uncountable successor.
Since the chain must be a subset of one of the strings in SS from which the tree was created, it’s
nodes must be denumerable.

In which case there is a map from the strands in T0 to N:

• Map the strand defined by the chain T0, T1, T2, ...Tn, ... to 1

• The remaining strands in T0 are the countable successors of those nodes in T0, T1, T2, ...Tn, ...
that have a countable as well as an uncountable successor. They form a countable union of
countable sets (since there are a denumerable number of nodes in the chain), so by lemma
3.4.1 it is possible to map them to the remaining numbers in N, starting with 2

So if there is an uncountable node where all of its descendants have at most one uncountable
successor, then contrary to assumption the node is countable. It follows that every uncountable
node must have a descendant with two uncountable successors.
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An explicit map from T0 to N

The strands from the countable successors in the chain T0, T1, T2, ...Tn, ... can be mapped to N using
a similar diagonal method to that used for Q.

In the following table the rows denote the junctions that have countable successors. The columns
denote the strands from each of those successors. The numbers in the cells show the order of
counting. It assumes that the countable successors are all countably infinite.

1 2 3 ... m ...

1 1 2 4 ... m(m−1)
2 + 1 ...

2 3 5 ... (m+1)m
2 + 2 ...

3 6 ... (m+2)(m+1)
2 + 3 ...

... ... ...

n n(n+1)
2 ... (m+n−1)(m+n−2)

2 + n ...

... ... ...

After including the initial strand from the chain T0, T1, T2, ...Tn, ..., the mth strand from the count-
able successor of the nth junction is mapped to (m+n−1)(m+n−2)

2 + n+ 1.

It follows that every strand in the tree defined by T0 is eventually counted.

3.5 An Uncountable Binary Tree is Equinumerous with R

We know from theorem 1 that any uncountable node has a descendant node with two uncountable
successors. Applying this recursively we get a tree with the same structure as a complete binary
tree. We can call it an isocomplete binary tree. The strands that connect the junctions of the
isocomplete binary tree should be equinumerous with those of a complete binary tree, which has
the same cardinality as R. Since the strands in the isocomplete binary tree are a subset of the strands
in the uncountable tree, it follows that the uncountable tree’s strands are at least equinumerous
with R.

To prove this we first show that the real junctions of an uncountable binary tree have the same
relationship of descent as the nodes of a complete binary tree. We can then show that the real
junctions induce strands in the uncountable tree that are equinumerous with those of a complete
binary tree.

Definition. A junction is a node with two successors

Definition. A real junction is a node with two uncountable successors

Definition. Every node of a complete binary tree has two successor nodes
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3.5.1 Real Junctions ⇔ Nodes of a Complete Binary Tree

Definition. a � b means a is an ancestor of b

Definition. Λ is a function that maps nodes to their label, either 0 or 1

Definition. The real junction root of an uncountable binary tree is the first descendant of the
root node of the tree that has two uncountable successors

Definition. A real junction rj is the nearest real descendant of a node n if there is no real
junction ri such that n � ri � rj

Lemma 3.5.1. An uncountable binary tree has a unique real junction root

Proof. By theorem 1 an uncountable tree must have a node with two uncountable successors, so
there must be a real junction descended from the root of the tree. If each of the root node’s
successors has a descendant with 2 uncountable successors then the root node itself is the real
junction root. Otherwise the root node’s nearest real descendant is the real junction root.

Lemma 3.5.2. There is an isomorphism between the real junctions of an uncountable binary tree
and the nodes of a complete binary tree which preserves labels and the relation of descent

We will prove the lemma by defining a binary tree RJT whose nodes are mapped isomorphically
to the real junctions of an uncountable binary tree UNC. We will map the real junction root r0 of
UNC to the root c0 of RJT.

Let RJ be the set of real junctions in UNC. To prove the isomorphism we prove that there is a
bijective map ϕ : RJ 7→ nodes(RJT ), with the properties that when ϕ(r0) 7→ c0 :

• ri � rj ⇔ ϕ(ri) � ϕ(rj) and

• Λ(r) = Λ(ϕ(r))

where ri, rj and r are real junctions in RJ

We use induction to establish the isomorphism. We also need to prove that RJT is a complete
binary tree.

Proof. By lemma 3.5.1 UNC must have real junction root r0 ∈ RJ . Label it with 0 and map it
to the root of RJT. That is, ϕ(r0) = c0 where c0 is the root of RJT. Also label c0 with 0. So
Λ(r0) = Λ(ϕ(r0)) = 0. Define them both as being at level 1.

By theorem 1, every real junction in UNC has two real junctions as descendants. So every real
junction in UNC has two successors labelled 0 and 1, which are the ancestors of the two nearest
real descendants. Label them 0 or 1 corresponding to which successor they are descended from.
(This includes the possibility that either descendant in UNC is also the successor in UNC.)

Inductive step:

Assume that there is an isomorphism between the respective real junctions of RJ and nodes of RJT
for all levels from 1 to k. That is, there is a map ϕ : RJ 7→ RJT where:

• r1 � r2 ⇔ ϕ(r1) � ϕ(r2) for all real junctions r1, r2 ∈ RJ in levels 1 to k

• Λ(r) = Λ(ϕ(r)) for all real junctions r ∈ RJ in levels 1 to k
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For every real junction rk in RJ at level k and corresponding node ck = ϕ(rk) in RJT at level k, we
extend the isomorphism by mapping each of rk’s nearest real descendants, say rk0 and rk1 labelled 0
and 1 to corresponding successors of ck say ck0 and ck1. That means ϕ(rk0) = ck0 and ϕ(rk1) = ck1
and also that Λ(rk0) = Λ(ck0) and Λ(rk1) = Λ(ck1)

Since rk0 and rk1 are descendants of rk, then for any real junction r ∈ RJ in levels 0 to k, r � rk0
and r � rk1 if and only if r � rk. We can summarise this as r � rk+1 if and only if r � rk.

The same way ϕ(r) � ϕ(rk+1) if and only if ϕ(r) � ϕ(rk) for any node ϕ(r) ∈ RJT in levels 0 to k.

We already have r1 � r2 ⇔ ϕ(r1) � ϕ(r2) for all real junctions r1, r2 ∈ RJ in levels 0 to k. In
particular r � rk ⇔ ϕ(r) � ϕ(rk). Therefore:

r � rk+1 ⇔ r � rk ⇔ ϕ(r) � ϕ(rk)⇔ ϕ(r) � ϕ(rk+1) for any real junctions r ∈ RJ in levels
0 to k, any rk at level k and rk+1 at level k+1.

As a result:

r1 � r2 ⇔ ϕ(r1) � ϕ(r2) for all real junctions r1, r2 ∈ RJ in levels 0 to k+1

The inductive step for the label:

Λ(rk0) = Λ(ck0) = Λ(ϕ(rk0)) and Λ(rk1) = Λ(ck1) = Λ(ϕ(rk1)) Therefore since Λ(r) = Λ(ϕ(r)) for
all real junctions r ∈ RJ in levels 0 to k, it follows that:

Λ(r) = Λ(ϕ(r)) for all real junctions r ∈ RJ in levels 0 to k+1

The root node:

We have that ϕ : r0 7→ c0 so r0 � r0 ⇒ ϕ(r0) � ϕ(r0)

Additionally Λ(r0) = 0 and Λ(c0) = 0 so Λ(r0) = ϕ(Λ(r0)).

It follows that the isomorphism between the real junctions in RJ and nodes in RJT extends to all
levels 0,1,2, ... n, ...

ϕ : RJ 7→ RJT is bijective:

It is injective because:

ϕ(r1) = ϕ(r2)⇒ (ϕ(r1) � ϕ(r2) and ϕ(r2) � ϕ(r1))⇒ (r1 � r2 and r2 � r1)⇒ r1 = r2

ϕ is also surjective since nodes are only defined in RJT as the result of being the target of some
ϕ(r).

RJT is a complete binary tree:

Since each real junction in RJ has two nearest real descendants and ϕ : RJ 7→ RJT is an isomor-
phism that preserves descent, it follows that every node of RJT has 2 successors.

3.5.2 Rooted Real Junction Sequences ⇔ Strands of a Complete Binary Tree

Since it is the real junctions of an uncountable tree that have an isomorphism with the nodes of a
complete binary tree, we first show that there is a bijection between an infinite sequence of those
junctions and the strands of a complete binary tree. Later we show that the real junction sequences
also have a bijection with strands they induce in the uncountable tree.

9



A path is a sequence of nodes where each node is followed by one of its successors. We can define
an equivalent concept for real junctions.

Definition. A real junction sequence (RJS) is a sequence of real junctions where each real
junction in the sequence is followed by one of its nearest real descendants

Definition. A rooted real junction sequence is a real junction sequence starting with the real
junction root

Lemma 3.5.3. There is a bijection between the rooted real junction sequences of an uncountable
binary tree and the strands of a complete binary tree

Proof. We know from lemma 3.5.2 that there is a bijective map ϕ between the real junctions RJ of
an uncountable binary tree and the nodes of a complete binary tree CBT that preserves descent.
That is when ϕ(r0) = c0, where r0 is the real junction root in RJ and c0 is the root node of RJT,
ri � rj ⇔ ϕ(ri) � ϕ(rj) where ri, rj ∈ RJ

A strand of a complete binary tree is defined by a denumerable sequence of successor nodes starting
from the root. So a strand C in CBT consists of nodes c0, c1, c2, ...cn, ... where c0 is the root node
and ci � cj when i ≤ j

A rooted real junction sequence R in an uncountable tree consists of real junctions r0, r1, r2, ...rn, ...
where r0 is the real junction root, each ri ∈ RJ and ri � rj when i ≤ j

Applying the bijective map ϕ to the nodes of R we get a strand C in CBT ϕ(r0), ϕ(r1), ϕ(r2), ...ϕ(rn), ...
where ri � rj ⇔ ϕ(ri) � ϕ(rj), that is ϕ preserves the order of descent. Also since ϕ is bijective
ϕ(ϕ−1(ri)) = ri. So applying ϕ−1 to C gives back the original strand R.

Let RRJS be the set of rooted real junction sequences and STR be the set of strands in CBT.
Define ρ : RRJS 7→ STR by mapping the junctions in a rooted real junction sequence from RRJS
to nodes in CBT using ϕ. Then ρ(R) = C produces a strand C ∈ STR which is isomorphic to R
and ρ(ρ−1(R)) = R.

It follows that ρ is a bijection.

3.5.3 Rooted Real Junction Sequences ⇔ Real Strands

A real junction sequence contains only real junctions and their descendant real junctions. If we
extend it to include the other nodes in the tree that are ancestors of those real junctions, it will
induce a strand.

Definition. A real strand of an uncountable binary tree is a real junction sequence together with
the nodes that are ancestors of the real junctions in the sequence

Lemma 3.5.4. In a tree there is a unique path between any two nodes

Proof omitted: For example refer Rosen, Discrete Mathematics and Its Applications, p746

Lemma 3.5.5. The unique path between a real junction r of a real junction sequence and the root
node of the tree includes all of r’s ancestors

Proof. Let rj be a real junction in a real strand. Let ri be a node which is an ancestor of rj . (ri

may be a real junction or just a normal node.) By lemma 3.5.4 there is a unique path from rj to
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ri. There is also a unique path from ri to r0, the root node. It follows that the unique path from
rj to r0 includes ri.

Therefore the unique path between any real junction r of a real strand and the root node includes
all of r’s ancestors.

Lemma 3.5.6. A real strand is a strand

Proof. From lemma 3.5.5 the unique path between any real junction rk of a real strand and the
root node includes all of rk’s ancestors. The nodes in that path also define a path in the opposite
direction from the root node back to rk. There is also a path from the root to rk’s immediate
descendant rk+1 which includes the path to rk since rk is rk+1’s ancestor.

Since a real strand contains an infinite sequence of real junctions each of which has the previous
real junction as an ancestor, it follows that a real strand defines an infinite path from the root node
and so is also a strand.

A real junction sequence does not necessarily contain all the real junctions that are ancestors of
the real junctions in the sequence. So two different real junction sequences can induce the same
real strand. However a rooted real junction sequence does contain all of the ancestors of the real
junctions in the sequence, so two different rooted real junction sequences will always define different
strands.

Lemma 3.5.7. A rooted real junction sequence includes all the real junctions that are ancestors of
the other real junctions in the sequence

Proof. From lemma 3.5.5 the unique path from any real junction r of an RJS R to the root node
of the tree includes all of r’s ancestors including r0 the real junction root. If R is additionally a
rooted RJS then r0 will be included in R. Any other real junctions which are r’s ancestors must be
descended from r0. Since R is an RJS starting from r0 which includes r and since r’s ancestors are
on the unique path from r0 to r they will also be included in R .

Lemma 3.5.8. There is a bijection between the rooted real junction sequences of an uncountable
binary tree and its real strands

Proof. If two RJS R1 and R2 are different, one of them say R2 must contain a real junction r not
in R1. If R1 is a rooted RJS then r cannot be an ancestor of the other real junctions in R1 since by
lemma 3.5.7 a rooted RJS contains all its ancestors. In that case R1 and R2 must induce different
real strands since the real strand that R2 induces will contain r but the one induced by R1 will not.

Let ρ : RRJS 7→ SRS where RRJS is the set of rooted RJS in an uncountable tree and SRS is the
set of real strands. We have shown that R1 6= R2 ⇒ ρ(R1) 6= ρ(R2). So ρ is injective. Since every
RJS induces a real strand, ρ is also surjective.

Therefore ρ is bijective.
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3.5.4 Real Strands ⇔ Strands of a Complete Binary Tree

Lemma 3.5.9. The strands of an uncountable binary tree are at least equinumerous with the strands
of a complete binary tree

Proof. Lemma 3.5.3 shows that the rooted real junction sequences of UNC have a bijection with the
strands of CBT. Lemma 3.5.8 shows that they have a bijection with UNC’s real strands. Therefore
there is a bijection between the real strands of UNC and the strands of CBT. Lemma 3.5.6 shows
that UNC’s real strands are a subset of its strands.

Therefore the strands of UNC are at least equinumerous with the strands of CBT.

Lemma 3.5.10. The strands of a complete binary tree are at least equinumerous with R

Proof. Every node of CBT has two successors which we can label 0 and 1. If the root node is
labelled 0 then the complete set of paths through CBT will each start at 0 and together they then
include every possible sequence of nodes labelled 0 and 1. As such there is a 1:1 correspondence
between the infinite paths through CBT and the strings in SS. By lemma 3.2.2 there is a bijective
map between (0,1) and a subset of SS.

Since (0,1) has cardinality c, the infinite paths of CBT are at least equinumerous with R.

3.6 Conclusion

Theorem 2. An uncountable set of real numbers is equinumerous with R

Proof. From lemma 3.3.1, if a subset of R is uncountable it has a bijection with the strands of an
uncountable binary tree.

From lemma 3.5.9 the strands of an uncountable binary tree are at least equinumerous with those
of a complete binary tree, which by lemma 3.5.10 are at least equinumerous with R.

Therefore since a subset of R is at most equinumerous with R, an uncountable set of real numbers
is equinumerous with R.
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