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Abstract

In present article the original proposition is a generalization of the Einstein’s world
tensor gij by the introduction of pure inertial field tensor ğij such that R

 ğij ≠ 0.
Bimetric theory of gravitational-inertial field is considered for the case when the

gravitational-Inertial field is governed by either a perfect magnetic fluid.
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I.1.GTR in Riemannian Approximation.

General theory of Relativity (GTR) in Riemannian approximation to proceed from
assumptions :
 (I) One-metric geometric structures of the space-time continuum on the
standard assumption of Lorentzianian geometry

ds2  gikdxidxk,gik  gki, det‖gik‖ ≠ 0; 1.1.1

 (II) Equivalence of gravitational field and space-time metric tenzor gik.

I.2.GTR in Finsler-Lagrange Approximation (GTRFL).
 In contemporary literature pure formal a Finslerian-Lagrange extension of
general relativity was many developed [20]-[26]. Any extension of GTR such
that mentioned above based on a Finsler–Lagrange geometry [27]-[28].
Any Finsler geometry defined by a fundamental Finsler function Fx,y, being
homogeneous of type Fx,y  ||Fx,y, for nonzero  ∈ , may be considered
as a particular case of Lagrange space when Lx,y  F2x,y.
A differentiable Lagrangian Lx,y, i.e. a fundamental Lagrange function,

is defined by a map L : x,y ∈ TM → Lx,y ∈  of class C on TM  TM \0.A
regular Lagrangian has non-degenerate Hessian

Lgikx,y 
∂2Lx,y
∂xi∂yk

,

rank|Lgik| n, det‖Lgik‖ ≠ 0.

1.1.2

A Lagrange space is a pair Ln  M,Lx,y with Lgij being of fixed signature
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over V  TM. The Euler–Lagrange equations

d
d

∂L
∂yi

− ∂L
∂xi

 0 1.1.3

where yi ≡ dxi
d

are equivalent to the “nonlinear” geodetic equations

d2xa

d2
− 2Ga xk, dx

b
d

 0 1.1.4

defining paths of a canonical semispray

S  yi ∂
∂xi
− 2Gax,y ∂∂ya 1.1.5

where

Gix,y  1
2
Lgij

∂2Lx,y
∂xk∂yi

yk − ∂L
∂xi

1.1.6

There exists on V ≃ TM a canonical N–connection
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LNja 
∂Gax,y
∂yi

1.1.7

defined by the fundamental Lagrange function Lx,y, which prescribes nonholonomic
frame structures [26]: Le  Le i,ea and Le  ei, Lea.One obtain the canonical
metric structure

Lg  Lgijx,yei ⊗ ej  Lgijx,yLei ⊗ Lej 1.1.8

constructed as a Sasaki type lift from M for Lgijx,y.There is a unique canonical

d-connection LD h
L
D,v

L
D with the coefficients

L
Γ 


 

L
L jk
i
,
L
Cbc
a
 computed by

formulas


L jk
i
 1

2 g
ihekgjh  e jgkh − ehgjk,

C bc

a
 1

2 g
aeebgec  ecgeb − eegbc,

1.1.9

for the d–metric (1.1.8) with respect to Le and Le. All such geometric objects,

including the corresponding to LΓ 


,
L
g and LNjad–curvatures

L
R 
 

L
R hjk
i
,
L
P jka
i
,
L
S bcd
a

, 1.1.9′

where
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R hjk
i

 ek

L hj
i
− e j


L hk
i


L hj
m 
L mk
i
−

L hk
m 
L mj
i
− C ha

i
 kj
a ,

P jka
i

 ea

L jk
i
− DkC ja

i
,

S bcd
a

 edC bc

a
− ecC bd

a
 C bc

e
C ed

a
− C bd

e
C ec

a
,

1.1.10

where all indices a,b, . . . , i, j, . . . run the same values and, for instance, C bc
e → C jk

i , . . .

Thus any d–curvatures
L
R 
 are completely defined by a Lagrange fundamental

function Lx,y for a nondegerate Lgij.Note that such locally anisotropic configurations
are not integrable if  kj

a ≠ 0, even the d–torsion components

T jk
i
 0 and


T bc
a
 0.

General theory of Relativity (GTR) in Finsler-Lagrange approximation to proceed from
assumptions :
 (I) One-metric Finsler-Lagrange geometric structures Lg of the space-time

continuum on the standard assumption of Finsler-Lagrange geometry given by
Eqs.(1.1.8)-(1.1.10).

 (II) Equivalence of gravitational field and space-time structures:

Lg  Lgijx,yei ⊗ ej  Lgijx,yLei ⊗ Lej,

R hjk
i

 ek

L hj
i
− e j


L hk
i


L hj
m 
L mk
i
−

L hk
m 
L mj
i
− C ha

i
 kj
a ,

P jka
i

 ea

L jk
i
− DkC ja

i
,

S bcd
a

 edC bc

a
− ecC bd

a
 C bc

e
C ed

a
− C bd

e
C ec

a
.

1.1.11

I.3.Theory of Gravitational-Inertional field with necessity
admit Einstein’s "Strong Equivalence Principle" (SEP)
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When dealing with relativistic theories of gravity one is confronted with three types of
equivalence principles [36]:
 1.The Weak Equivalence Principle (WEP),

 2.The Einstein Equivalence Principle (EEP), and
 3.The Strong Equivalence Principle (SEP).
WEP: In a pure geometrical view the WEP states that all test masses move
along geodesics in space-time ℒGr.  M,gikGr.. Test masses are understood to
be bodies with negligible self-energy and therefore with negligible contribution
to space-time curvature Rik

l gik
Gr..

EEP:The EEP demands, besides the validity of the WEP, that in local Lorentz frames
the non-gravitational laws of physics are those of special relativity. The EEP implies
that space-time has to be curved,i.e. Rik

l gik
Gr. ≠ 0 and thus is the basic ingredient of

any metric theory of gravity.
SEP: The SEP states, besides the validity of the EEP, the "universality of free fall for
self-gravitating bodies".
Note that one has to be careful with the notion of a freely falling self-gravitating bodies
in an external gravitational field. There is no rigorous definition for the SEP in
relativistic theories of gravity. Because of non-linearity the split of the metric field into
an external and a local part can only be approximate. For a discussion of the SEP
within a slow-motion weak-field approximation see [39],[40]. For metric theories of
gravity, other than general relativity, it has been found that they typically introduce
auxiliary gravitational fields (e.g. scalar fields) and thus predict a violation of the SEP
see [36],[37].

Definition 2.3.1."Strong Equivalence Principle" (SEP) asserts that any gravitational field
gik
Gr. cannot be distinguished from a suitably chosen accelerated reference frame
ℱgikac. - essentially because we cannot distinguish between the reciprocal cases of
spacetime ℒGr.  M,gikGr. accelerating through us (gravity), or our own
acceleration through spacetime [4].

 Hence SEP in fact asserts that the gravitational curvature cannot be
distinguished from a suitably chosen curved accelerated reference frame (as
curved Bravais frame or Hollands frame) - essentially because we cannot
distinguish between the reciprocal cases of curved space-time
ℒGr.  M,gikGr.,Rikl gikGr. ≠ 0 accelerating through us (gravity), or our own
comoving curved space-time ℒac.  M,gikac.,Rikl gikac. ≠ 0 as curved Hollands
frame or curved relativistic Bravais frame.

However as shown by Fock [4] in fact SEP dos not was used by Einstein in GTR, but
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only Einstein’s "Weak Equivalence Principle" (WEP) was used by Einstein in GTR.
Recall theWEP: all objects are observed to accelerate at the same rate in a given
gravitational field.Therefore, the inertial and gravitational masses must be the same
for any object.This has been verified experimentally, with fractional difference in
masses  10−11.As a consequence, the effects of gravity and of inertial forces
(fictitious forces associated with accelerated frames) cannot locally be distinguished.

 Remark 2.3.1.Recall the accelerational fields in canonical GTR (in
contrast with tensor gravitational fields gik

Gr.) was introduced not as
objective physical field but only as fictive tensor fields gik

ac. which may
be created by means of an arbitrary choice of coordinates [1],[4],[35].

But as shown by Fock [1],[4] the equivalence of gravitational fields gik
Gr. and

accelerational fields gik
ac. such that mentioned above is limited not only to sufficiently

small domaines of space and sufficiently short intervals of time, but generally to weak
and homogeneous fields and slow motions.

 Remark 2.3.2.Thus one can pointed-out with Fock [4] that SEP is
inconsistent with canonical GTR.

By the way, here one should not confuse the law of equality of inertial and
gravitational masses with the mentioned principle of equivalence. The mathematical
expression of this principle is the possibility of introducing the locally geodetic
coordinate system such that

gik,l  0. 1.1.12

However from this statement a not quite correct conclusion is drawn by Fock namely
since the possibility of introducing of locally-geodetic system is contained in
Riemannian geometry, therefore the pointed-out principle does not constituate a
separate physical hypothesis. Actually the availability of such a possibility in the
Riemannian space-time is not nessessary at all [1].

Definition 2.3.2.Every gravitational field theory which contained standard assumptions of
GTR: (I) and (II) and which is consistent with SEP given by Def.(2.3.1), refers as
Theory of Gravitational-Inertional field in Riemannian Approximation
(GIFTR).

Notation Thus every GIFTR in contrast with GTR to proceed with necessity from

additional assumption related to SEP:
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Rikm
l gik

ac. ≠ 0. 1.1.13

Definition 2.3.3.Every gravitational field theory which contained standard assumptions of
GTRFL : (I) and (II) and which is consistent with SEP, refers as Theory of
Gravitational-Inertional field in Finsler-Lagrange Approximation (GIFTFL).

For the first time nontrivial gravitational-inertional field theory was proposed by
Davtyan
[1]-[3]. In contrast to GTR, in Davtyan’s theory [1] of the gravitational-inertial field
tensor gik

GI is not related to the pure gravitational field gik
Gr. In Davtyan’s GIFT the real

space-time metric tensor gik of the gravitational-inertial field is the metric tensor of the
real world (Universe), which formed by pure gravitational gik

Gr and gik
ac. pure inertial

metric tensors. From the field of this general metric tensor gik
U the Riemannian space is

also formed.
Davtyan’s field equations in general looks [1]:

glpgmn∇k −g gikgnp;i − ∇i −g gikgnp;k 

 8k −g gmn Tnl − 1
2
nl T ,

k  2
c4

,

1.1.14

where

∇lgik  gik;l  gik,l − Γ̆il
m
gmk − Γ̆kl

m
gim  0 1.1.15
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and

Γ̆kl
i
 1

2
ğimğmk,l  ğml,k − ğkl,m,

ğmk ≠ gmk.

1.1.16

Conclusion 2.3.1.Thus in papers [1]-[3] the author proposes that Inertia, like Gravitation,
could be a curved spacetime phenomenon caused by accelerating motion of matter
in the full consent with SEP and in contrast with canonical GTR.

Conclusion 2.3.2.However one can pointed-out that:

 1.The new theory proposed in [1] does not looks as true GIFT but looks only as
some kind of modified Einstein gravity with non metrical connection Γ̆il

m
and

completely hidden of the pure inertial field gik
ac. sector.

 2.The new theory proposed in [1] explains the origin of the pure inertial field gik
ac.

as being a curved space-time phenomenon, with the implication that
accelerating matter might influence the metrical tensor gik of the real space-time
by using of the canonical energy-momentum tensor of matter and this influence
completely depend only from a small coupling constant 8k by using the
manner of the canonical GTR.

 3. The gravitational-inertial field equations proposed in paper [1] in a weak
gravitational- inertional field limit admits only equation of Newtonian gravity and
weak pure gravitational wave equations:

(a) in a weak stationary field limit corresponds exactly to Newton’s equation of
gravitation for continuous distribtion of masses i.e.

ΔGrx  4x,

Gr  −  dVr  − mr ;

1.1.17
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(b) in a weak nonstationary field limit corresponds exactly to wave equation, an
equation of propagation of weak pure gravitational waves hlm

Gr ≃ 0 :

Δ − 1
c2
∂2
∂t2

hlm
Gr  0; 1.1.18

 4. In GIFT proposed in paper [1] for a weak gravitational-inertial field gik ≃ 0
space-time interval equals

ds2  1  2Gr

c2
dt2 − dx12 − dx22 − dx32 

1 − 2m
c2

dt2 − dx12 − dx22 − dx32.

1.1.19

Conclusion 2.3.3.Thus one pointed-out that in a weak gravitational-inertial field limit
gik ≃ 0 GIFT proposed in [1] does non admit any pure inertial field phenomenon
which corresponds directly with hidden pure inertial field sector gik

ac..

Definition 2.3.4. (1) gik.   ∑ l,i,k,m |Rikm
l gik|, (2) Grgik

Gr  ∑ l,i,k,m |Rikm
l gik

Gr|

(3) acgik
ac.  ∑ l,i,k,m |Rikm

l gik
ac.|.

Claim One can pointed-out that the correct gravitational-inertial field equations
(GIFE) in a weak gravitational-inertional field limit with necessity admits:

 1. In a weak pure gravitational field limit: gik.  ≃ Grgik
Gr,gik,l

Gr ≃ 0, GIFE
admits equation of Newtonian gravity and pure weak gravitational wave
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equations.

 2.In a weak pure inertial field limit: gik.  ≃ acgik
ac.,gik,l

ac. ≃ 0, GIFE admits
equation of Newtonian inertia, which describe the Newtonian scalar potential of
the Newtonian inertial forces. If F denotes pure non gravitational force acting on
an sufficiently small object O (particle), r denotes its position vector in an
inertial frame, on can obtain the Newtonian scalar potential ac.x directly from
Newton’s law of motion.

 Let’s consider Newtonian inertial forces Fac related by canonical manner to the
some electric force F experienced by the charged particle in the external
stationary electric field E. Thus

divE  4x,

rotE  0,

x  q  x.

1.1.20

Substitution E  −gradac.x gives equation for the corresponding Newtonian
scalar potential

Δacx  4qx,

ac  −q  dVr ;

1.1.21

 3. For any GIFTR in a weak pure inertial field limit: gik.  ≃ acgik
ac.,gik

ac. ≃ 0,
for the case of the external stationary electric field E given by Eq.(1.1.20),
space-time interval with necessity equals:
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ds2  1  2ac

c2
dt2 − dx12 − dx22 − dx32. 1.1.22

 4.For any GIFT in a weak gravitational-inertial field limit: gik
Gr ≃ 0,gikac. ≃ 0, for the

case of the external stationary electric field E given by Eq.(1.1.20), space-time
interval with necessity equals:

ds2  1  2ac

c2
 2Gr

c2
dt2 − dx12 − dx22 − dx32. 1.1.23

 5.In a weak pure inertial field limit: gik.  ≃ acgik
ac.,gik,l

ac. ≃ 0, any GIFT (in a
Finsler-Lagrange approximation) with necessity admits equation of
Post-Newtonian inertia, which describe a sufficiently small relativistic inertial
forces related to external nonstationary electro-magnetic field E,H .

I.4. Bimetric Theory of Gravitational-Inertial Field in
Riemannian Approximation.

Note that one can construct the Bimetric Theory of Gravitational-Inertial Field in
Riemannian Approximation by using Rosen type bimetric formalism.
Recall the Rosen bimetric gravitational field theory. Rosen [5]-[7] proposed the
bimetric gravitational field theory only with the purpose to remove some of the
unsatisfactory features of the Einstein gravity, in which there exist two metric tensors
at each point of bimetric Lorentzian space-time   M,gij,ij viz a physical metric
tensor gij,which described gravitation and the background flat metric ij which does
not interact directly with matter fields and describes the inertial forces associated with
the acceleration of the frame of reference. Note that in Rosen’s theory of gravitation
for the derivation gravitational field equations one varies the quantities g, not the
quantities , in the variational principle.
The gravitational field equations of Rozen reads
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K − 1
2
Kg  −8kT,

k   g
 ,

K  K
  1

2
ğghgh| |.

1.1.24

Where vertical bar | stands for covariant differentiation with respect to .

Let’s consider a bimetric geometry 2  M,gij,ğij with metrics g and ğ of
Lorentzian signature that define two different ways of measuring angles, distances
and volumes on a manifold M. In present article the original proposition is a
generalization of the real world tensor gij by the introduction of a non flat inertial field
tensor ğij such that K  Kgij,ğij ≠ 0, ∇gğij ≠ 0 and R̆

  R ğij ≠ 0. The first
metric tensor gij in GIFTR, refers to the curved Lorentzian space-time ℒg  ℒM,g
and describes Gravitational-Inertial Field. The second metric tensor ğij in GIFTR,
refers to the curved Lorentzian space-time ℒğ  ℒğ and describes pure inertial
forces. The Rosen’s tipe curvature tenzor Kg,ğ refers to the curved Lorentzian
space-time ℒM,g and describes pure gravitational field.
This demands to use as a Action of the gravitational-inertial field the expression

SK, R̆  S1K, R̆ğ  S2R̆ğ 

ℒ1Kg,ğ −ğ d4x  ℒ2R̆ğ −ğ d4x.

1.1.25

On the basis of variational principle a system of more general Rozen’s tipe covariant
equations of the gravitational-inertial field is obtained:
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SK, R̆
g

 K − 1
2
Kg  −8

g
ğ
T g,

K  K
  1

2
ğghgh|| ||

S1K, R̆
ğ


S2K, R̆
ğ

 Θ̆  Ĕ  k1T̆ ğ,

Θ̆ 
SK, R̆
ğ

,

Ĕ  R̆ − 1
2
R̆g,

T̆; 
ğ
 F̆.

1.1.26

Here, a subscripts g,ğ stands for specifying that the labelled quantity is defined by
curved space-time metrics ds1

2  gdxdx and ds22  ğdxdx respectively and F̆

denote 4-vector of a pure nongravitational force and vertical duble-bar || stands for
covariant differentiation with respect to ğ.

In the Rosen approximation (R̆
 ≈ 0, k1T̆ ğ ≈ 0) Θ

 ≈ K and these equations

reduce to the field equations of Rosen: K − 1
2 Kg ≈ −8kT.

In the general theory of relativity by means of the new equations gives the same
results as the solution by means of Rosen’s equations only in the Rosen
approximation.
However, application of these equations to the standard astrophysical and cosmologic
models coupled with a sufficiently strong electromagnetic field or another
nongravitational fields, gives a result different from that obtained by Einstein’s or
Rosen’s equations. In particular, the solution gives Kantowski-Sachs model [8],[9] with
source cosmic cloud strings coupled with strong electromagnetic field in contrast with
corresponding solution gives in Rosen’s bimetric theory [5]-[7].
In this paper we also propose an nontrivial extension of General Relativity with
noninertial frames ℱg that experience space-time to have a metric g different from
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usual metric of noninertial frames given in canonical General Relativity.

II.1.Brief review of Rosen’s Bimetric Theory

Rosen [1] proposed some simplest type the bimetric gravitational field theory such that
at each point of Lorentzian space-time ℒ,gij a flat Lorentzian metric tensor ij in
addition to the curved Lorentzian metric tensor gij. Thus at each point of Rosen’s
space-time   gij,ij there are two metrics:

ds1
2  gijdxidxj, 2.1.1

and

ds2
2  ijdxidxj. 2.1.2

The first metric tensor gij in Rosen’s theory, refers to the curved space-time and thus
the gravitational field. The second metric tensor ij in Rosen’s theory, refers to the flat
space-time or space-time of constant curvature, for example such that: Eq.(2.1.3)

ds2
2  1 − r

2

a2
dt2 −

dr2

1 − r2/a2
− r2d2  sind2.

2.1.3

Remark 2.1.1. Note that in Rosen’s theory element (2.1.3) corresponds only to a
background space-time of constant curvature, to which the physical metric reduces
in the absence of any kind of energy.

The Christoffel symbols formed from gij and ij are denoted by i
jk

and Γjki

respectively. The quantities Δjki are defined via formulae
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Δjki  i
jk

− Γjki . 2.1.4

Remark 2.1.2. Let R
 and S

 be the curvature tensors calculated from g and 
respectively. Note that In the Rosen’s approach as ds2

2  dxidxj is the flat
metric, the curvature tensor is zero S

  0.

Now there arise two kinds of covariant differentiation:
(1) g-differentiation based on g (denoted by semicolon ; )

A;  A, − 
 

A − 
 

A 2.1.5

(2) differentiation based on ij (denoted by a slash |)

A|  A, − Γ 
 A − Γ 

 A , 2.1.6

where ordinary partial derivatives are denoted by comma , .
The straightforward calculations gives

R
  −Δ|

  Δ|
 − Δ

 Δ
 − Δ

 Δ
 . 2.1.7

Hence
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R  −Δ|
  Δ|

 − Δ
 Δ

 − Δ
 Δ

 . 2.1.8

This is the curvature tensor R associated with the curvature effects of pure
gravitation acting in the spacetime.

The geodesic equation in Rosen’s bimetric relativity takes the form

d2xi
ds

 Δjki dx
j

ds
dxk
ds



d2xi
ds

 i
jk

dxj
ds

dxk
ds
− Γjki dx

j

ds
dxk
ds

 0.

2.1.9

It is seen from Eqs. (2.1.4) and (2.1.9) that Γjki can be regarded as describing the flat
inertial field because it vanishes by a suitable coordinate transformation.

II.2.Brief review of Davtyan’s One-Metric Theory of
Gravitational-Inertial Field.

Einstein theory of General Relativity (GTR) and Einstein Gravitational field theory to
proceed from assumptions:
 (I) One-metric geometric structures of the space-time continuum on the
standard assumption of Lorentzianian geometry
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ds2  gikdxidxk,gik  gki, det‖gik‖ ≠ 0; 2.2.1

 (II) From equivalence of gravitational field and spacc-tirne metric tenzor
gikM  gikx1,x2,x3, ,x4;

 (III) From equivalence of accelerational field ik and flat space-time metric
tenzor
ikM  ikx1,x2,x3, ,x4, i.e. Rklmi ik   0.

Axiom 2.2.1.GTR is based on the following postulates:

 (1) In nonrelativistic approximation and very far from the localized masses the
metric
tensor describes a flat space-time, i.e. Rklm

i  0.

 (2) A sufficiently small domain of Lorentzian space-time is flat, i.e. Rklm
i ≈ 0.

 (3) Homogenious gravitational field and accelerational field are equivalent.

 (4) Every accelerational field gik
ac. is flat, i.e. Rklm

i gik
ac.  0.

Let’s consider this postulates in more detail [1].

1.The exsistence of remote masses of this Universe, including the field masses, will
undoubtedly influence metric of the real world and create a general metrical
background in the Universe different from Galileo’s. Therefore everywhere in the
Universe in difference to the ideas of GTR gik,l ≠ 0.This metrical background will be
called henceforth an inertial field.In order to find the way out of this situation the
authors of the well-known scalar theory Brans and Dicke [36]-[37] proceeding from
Mach’s principle suggested an idea within that theory according to which tlere exists a
scalar field, besides the usual tensor field, with a long-range radius of action and
caused by universal mass - the “mass of fixed stars”.

2. A small domain of mathematical Riemannian or Lorentzian space cannot be flat, it
should be approximately similar to the flat space, to be more exact : for each of
Rieniannian space a tangent flat space may be constructed. Hence it follows that
though locally Rklm

i are sufficiently small quantities Rklm
i ≈ 0 of higher order,

nevertheless Rklm
i ≠ 0.

3. From the mentioned principle of equivalence it follows that the theory automatically
permits arbitrary holonomic transformations of coordinates, under which at linear
conditions the gravitational field vanishes or at other conditions new physical fields
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originate.This is evidently not correct, because the true gravitational field, which is
equivalent to the geometric structure of Riemannian spacc-time, cannot be eliminated
by means of choosing coordinates. On the other hand no objectivc physical field (in
contrast to fictive fields) may be created by means of an arbitrary choice of
coordinates. Moreover it is well known that, the principle of equivalencc in thc
mentioned sense has only a local and approximate character.
By the way, here one should not confuse the law of equality of inertial and
gravitational masses with the nientioned principle of equivalence. The mathematical
expression of this principle is the possibility of introducing the locally geodetic
coordinatc system such that gik,l  0.
However from this statement a not quite correct conclusion is drawn by Fock [4],
namely since the possibility of introducting of locally-geodetic system is contained in
Riemannian geometry, therefore the pointed-out principle does not constitute a
separate physical hypothesis. Actually the availability of such a possibility in the
Riemannian space-time is not nessessary at all. On the contrary, as we have seen,
everywhere in this space gik,l ≠ 0.

Therefore the principle of equivalence of Einstein may be exprcssed mathematically in
terms of any abstract tensor ğik : gik,l ≃ ğik,l  0 in locally-geodetic coordinate system
or,

gik,l ≃ ğik,l  0 2.2.2

in all coordinate systems. Without this assumption one cannot construct the EGTR.
Thus since in the locally-geodetic system gik;l may be equal to zero only
approximately: gik,l ≃ 0 the approximate character of the principle of equivalence
follows.
Actually one more very important fact (usually unnoticed) follows from the principle of
equivalencc, namely that the geodetic line is identified with a trajectory of motion of a
free material particle. Indeed it is well known that the notion of affine connection
Γ̆kl
i
.On the basis of parallel transfer the whole tensor analysis may be Constructed, the

expression for the tensor of curvature Rklm
i obtained, and geodetic lines be

constructed, i.e., the curves of parallel transfer of vector or tensor with their equations,
without introducing the notion of metrical tensor gik.
Indeed let an arbitrary scalar parameter t be taken as a parameter changing along the
curve of parallel transfer of vector ui, i.e. the curve is parametrically defined by the
equation xi  xit and ui  dxi/dt is a unit tangent vector to the curve. Then the
variations of vector components as a result of parallel transfcr from pointM to pointM ′

along the curve will be equal to
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dxiM ′ − dxiM
dt



dxiM ′
dt

− dxiM
dt



 −Γ̆kl
i
dxkdt  Δxl.

2.2.3

Dividing these equations by the value of transfer Δt fromM ′ toM ′ and taking the limit
when Δt → 0 we obtain the equations of the geodetic line

d2xi
dt2

 Γ̆kl
i dxk
dt

dxl
dt

 0. 2.2.4

The affine coefficients Γ̆kl
i
and the scalar parameter t in these equations are not related

to the metric of space-time. However Γ̆kl
i
may be expressed in terms of any abstract

tensor ğik (and its first derivatives) satisfying ğik;l  0 on the basis of expressions for

covariant derivatives :

ğik;l  ğik,l − Γ̆il
m
ğmk − Γ̆kl

m
ğim  0 2.2.5

and consequently one obtain
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Γ̆kl
i
 1

2
ğimğmk,l  ğml,k − ğkl,m 2.2.6

Thus it follows that in the EGTR the real space-time metric tensor gik is identified with
an
abstract tensor ğik..

Meanwhile the trajectory of motion of a free particle, in contrast to thc geodetic
line, can be obtained only on the basis of real space-time metric tensor gik from the
principle of least action

S  −mc  ds  0,ds2  gikdxidxk 2.2.7

and consequently from Eq.(2.2.7) one obtain

d2xi
dt2

 Γkli
dxk
dt

dxl
dt

 0,

Γkli  1
2
gimgmk,l  gml,k − gkl,m.

2.2.8

The curvature tensor Rklm
i is also defined through parallel transfer and one can

expressed curvature tensor by the affine coefficients Γ̆kl
i
and their derivatives. In

particular

23



R̆ik  Γ̆i,kl
l
− Γ̆il,k

l
 Γ̆ik

l
Γ̆lm
m
− Γ̆il

m
Γ̆km
l
,

R̆  ğikR̆ik.

2.2.9

Hence Einstein’s field equations reads

R̆ik − 1
2
ğikR̆  8

c4
Tik. 2.2.10

II.2.1.Postulates of Davtyan’s One-Metric Theory of
Gravitational-Inertial Field.

The fundamental principle of Davtyan’s gravitational-inertial theory [1], like that of
EGTR, is the assumption of equivalence of the gravitational-inertial field with the
geometric structure of space-time on the basis of statement and conditions (2.2.1) of
Rienimanian geometry and its “extension” all over the Universe.The essence of such
an “extension” lies in the point that because of the existence of the inertial field
(besides the gravitational fields) far from the masses and also locally the metric tensor
of the world is everywhere distinct from Calileio’s metric, i.e.,

gik,l ≠ 0 2.2.11

The space is permanently related to a weak metrical background hJ
lm . The field formed

by this tensor background hJ
lm M, as already noted, will be called inertial field. The

cause of formation of such tensor background, as we shall see in the later
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development of the theory, is the world energy-momentum tensor TJ
lm related to a field

mass of gravitational electromagnetic radiation surrounding the metagalaxy. Further,
as already shown, there are no theoretical are experimental reasons to considering gik
that represents a physical field as identical with ğik entering into the coefficients of
affine connection Γ̆km

l
, which is being abstractly constructed for operations in tensor

analysis. Independently of gravitational fields, in the inertial frame of reference and in
the locally geodetic coordinate system

ğik,l  0. 2.2.12

Remark 2.2.1.1. It should be recalled that according to GTR the gravitational field is
defined by the tensor ğik. Therefore in the presence of a gravitational field in the
locally-geodctic coordinate system though ğik,l  0 nevertheless:

ğik,lm 
∂2ğik
∂xl∂xm

≠ 0. 2.2.13

In contrast to this, in Davtyan’s theory [1] of the gravitational inertial field ğik is not
related to the gravitational field, so that even at the presence of such a field we have
in the locally-geodetic coordinate system

ğik,lm 
∂2ğik
∂xl∂xm

 0. 2.2.14

Thus on the basis of listed propositions one may conclude that the universal metric
tensor gik of the gravitational-inertial field is the metric tensor of the real world, formed
by gravitational gik

Gr and gik
In inertial metric tensors. From the field of this general metric
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tensor gikM the Riemannian space is also formed.
On the basis of original proposition given by Eq. (2.2.11) the following quite obvious
theorem may be proved [1]: If first derivatives of the metric tensor gir are nonzero in
the locally geodetic coordinate system then also nonzero will be its covariant
derivatives in all coordinate systems i.e.

gik;l  gik,l − Γ̆il
m
gmk − Γ̆ki

m
gim ≠ 0, 2.2.15

where

Γ̆kl
i
 1

2
ğimğmk,l  ğml,k − ğkl,m. 2.2.16

Since, according to Eq.(2.2.12) in the locally-geodetic coordinate system ğik,l  0, then
in Eq.(2.2.15) Γ̆il

m
and Γ̆ki

m
should be equal to zero and according to Eq. (2.2.11)

actually ğik;l ≠ 0. But since the quantity ğik;l is a tensor, it will be nonzero in all other
coordinate systems if it is nonzero in one of them.

 Remark 2.2.1.2. Note that the expression given by Eqs.(2.2.15)-(2.2.16) is
another important original proposition of Davtyan’s
gravitational-inertial field theory of the Universe. This proposition
actually means that the gravitational-inertia1 field gik and Riemannian
space ℒM,gik formed by a general metric tensor of real world
represents a truely physical field, that may not be eliminated by
means of transformation of coordinates.

Meanwhile the affine field Γ̆il
m
containing the tensor ğik may be eliminated by the choice

of a special coordinate system, Γ̆kl
i
 0. Further if the world is considered as

pseudoeuclidean, i.e. as a world without gravitational and inertial fields, then in
curvilinear coordinates or generally in non-inertial frames of reference Γ̆kl

i
≠ 0. Thus

whereas the real nietric tensor gik forms a truely physical field gikM, the tensor ğik
causes various kineinntical-dynamical effects due to origination of fictitious fields in
noninertial frames of reference.
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Remark 2.2.1.3. From the introduced propositions of Davtyan’s theory it follows apart
from the Riemannian space tensor gikM representing the gravitationel-inertial
field (of real world) with the quadratic form of space-time interval element

ds2  gikdxidxk 2.2.17

no other physical space or new tensor or scalar is being introduced, as done in
bimetrical and scalar theories.

Remark 2.2.1.4. Though it is formally supposed in Davtyan’s theory that gik may be
represented sum of a gravitational tensor gik

Gr and the metrical tensor background
hik
J, this assumption is not used in the Davtyan’s field equations (see [1] section
3.).

Remark 2.2.1.5.The potentials of the gravitational-inertial field obtained in [1]
represent themselves only the components of the universal metric tensor gik,
entering in (2.2.17). Further, as we have seen, in the locally-geodetic coordinate
system

gik,l  gik;l ≃ 0. 2.2.18

On the same basis the scalar quantity
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gikgik ≃ 1 2.2.19

in all coordinate systems.

II.2.2.Lagrangian Density and Field Equations in Davtyan’s
Theory of Gravitational-Inertial Field.

The expression (2.2.15) allows us to use the following variational action for obtaining
field equations [5]:

S  Sg  Sm  1
c g  m −g d4x, 2.2.20

where

g  1
8

glm;i  g;klmgik. 2.2.21

This corresponds to the fact, that in Euclidean space the Lagrange density is defined
as a square of gradient of the potential  :

g  1
8 

grad2 2.2.22
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In Riemann space this quantity should be generalized to an inner product of covariant
derivatives of the metric tensor as in Eq.(2.2.21).
By analogy with Eq.(2.2.21) the Lagrangian density for matter will be defined as

m  k  fgik,gilm −g −1 2.2.23

and the action will be equal to

Sm  1
c m −g d4x  k

c  fgik,gilmd4x 2.2.24

where k is a constant. As was shown by Davtyan’s in [1] that

k  2
c4

2.2.25

or k  4
c4

.

According to Eqs.(2.2.20)-(2.2.24) by using variational principle

S  Sg  Sm  0 2.2.26

one obtain [1]:
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S  Sg  Sm 

 1
8

glpgmn∇k −g gikgnp;i

−∇i −g gikgnp;k − kglpgmn −g Tnp ,

−g Tlm 
∂m −g
∂glm

− ∂
∂xi

∂m −g
∂g ,ilm

.

2.2.27

Finally Davtyan’s Gravitational-Inertial field equations sees [5]:

glpgmn∇k −g gikgnp;i − ∇i −g gikgnp;k 

 8k −g glpgmnTnp 

8k −g gmnTnl .

2.2.28

In the cquations (2.2.28) the components of gik represent the potentials of the
gravitational-inertial field. The components of tensor ğik entering only into Christoffel
symbols Γkli ğik,ğik,l may be eliminated. The possibility of eliminating ğik may be
explained in virtue of the fact that, was pointed out, the space of affine connection
Γ̆kl
i
M auxiliary, abstract mathematical space while gikM ) defines a Riemannian

world and the gravitational-inertia1 field. Therefore Γ̆kl
i
M may be chosen arbitrarily

[1]. Thus the Γ̆kl
i
may be defined in such a way that ğik,l  0 and hence Γ̆kl

i
 0. It sllould

be noted that the elimination of Christoffel symbols in (2.2.28) actually means the
elimination of various fictive fields. In order that no misunderstanding of these items
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will arise (due to existing traditional habits) we consider it necessary to specify the
essence of one of the major differences between the GTR and present theory. As
already pointed out, in GTR it is assumed that gik ≡ ğik.Therefore if gik is taken in
some coordinate system, then Γ̆kl

i
should be taken in the same coordinate system. In

contrast to this in the present theory [1] the Riemann space M,gik is everywere and
always curved, therefore gik is always taken in curvilinear coordinates. Since gik is not
physically related to ğik the coordinate system for ğik may be chosen independently of
that for gik.

For example, in the locally geodetic coordinate system ğik,l  0 while gik,l ≠ 0.This
means that ğik is taken in Carhian coordinates, while gik is still related to the curved
space and may be taken in arbitrary curvilinear coordinates. This also means that, as
mentioned above, the parallel transfer operation and its curve do not depend on the
curvature of space-time and hence on the trajectory of motion of a free particle. Thus
according to conditions (2.2.12)-(2.2.14) for Γ̆kl

i
 0 in (2.2.28).Hence all Christoffel

symbols are being eliminated and (2.2.28) are transformed into the equations

∇kglm  g ,klm,

∇i∇kglm  g ,kilm.

2.2.29

Hence all Christoffe1 symbols are being eliminated and (2.2.28) are transformed into
the equations [1]:

glpgmn ∂
∂xk

−g gikgnp;i − ∂
∂xi

−g gikgnp;k 

 8k −g gmn Tnl − 1
2
nl T .

2.2.30

These equations are very attractive not only because Christoffel symbols are absent in
them (and hence they are extremely simple), but mainly because the solution of
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fundamental problems of GTR by means of these equations gives the same results as
the solution by means of the Einstein equations [1].

II.2.3. Davtyan’s Field Equations in Einstein approximation.

It is necessary to observe that the original variational equations make it possible to
obtain another version of field equations, somewhat different from Eq.(2.2.28) Indeed
in the proccss of variation of Lagrangian m, for the matter (2.2.23) a tensor density is
obtained in the form (2.2.27). This expression with some coefficient may also be
considered as the tensor density

−g T̆lm  −g Tlm − 1
2
glmT 2.2.31

Anyway one may always (with equal hasis) proceed from the fact. That for the
gravitational- inertial field the following formula holds

Sm  k
c  T̆ −g glmd4x 

k
c Tlm − 1

2 glmT −g g
lmd4x.

2.2.32

Therefore the choice of tensor Tlm, is mathematically equivalent to the choice of T̆lm
However the analysis of equations (2.2.28) shows that in the Einstein approximation,
i.e. in the limit gik ≃ ğik they reduce to
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Rlm  4kTlm. 2.2.33

Where Rlm is the Ricci tensor. Therefore, in order to satisfy the continuity law as well
as the Bianchi identity the choice of the second tensor version-the source of
gravitational- inertional field as

T̆lm  Tlm − 1
2
glmT 2.2.34

is more expedient. Then the gravitional-inertial field equations take the following form

glpgmn∇k −g gikgnp;i − ∇i −g gikgnp;k 

 8k −g gmn Tnl − 1
2
nl T .

2.2.35

In the above mentioned limit one get

Rlm  4k Tlm − 1
2
glmT 

8
c4

Tlm − 1
2
glmT .

2.2.36
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Thus in the Einstein approximation the gravitational-inertial field equations reduce to
the usual Einstein equations of the gravitational field.

II.2.4.Weak Field limit in Davtyan’s Theory of
Gravitational-Inertial Field.

Under these conditions the metric of space-time is close to the Galileo metric:

g11
0  g220  g330  −1,g440  1,

gik
0  0, i ≠ k.

2.2.37

with a certain background of an inertial field hJ
jk . A weak perturbation, caused by

gratvitational field (plus the inertial field hJ
il )) may be represented by a tensor hik,

which is a first order small quantity:

glm  glm0  hlm. 2.2.38

With the same accuracy one obtain the expression for the determinant of the inetricsl
tensor :

g  det‖glm‖  −1  glmhlm. 2.2.39
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On the basis of these simplifications one may proceed to the solution of the
gravitational field equations (2.2.30). According to Eq.(2.2.38) one obtain

glp0 − hlpgnm0 − hmn ∂∂xk
gik0 − hik ∂∂xi

gnp
0  hnp −

− ∂
∂xi

gik0 − hik ∂∂xk
glm0 − hlm 

 8kgmn0 Tni − 1
2
ni T .

2.2.40

From Eq.(2.2.40) one obtain

hml  4kgnm0 Tni − 1
2
ni T 2.2.41

The solution of this equation is

hml  −k 
gnm0 Tni − 1

2
ni T

r d3x. 2.2.42

The energy-momentum tensor may be taken in the form
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Tl
n  vlvn,

vl 
dxl
dt

,vn  dxn
dt

,

l,n  1,2,3,4

2.2.43

where  is the density of mass.
Since according to condition the field is weak the components of thrce-dimensional
velocity should be very small with respect to the fudamental velocity c. Therefore all
space components of velocity in Eq.(2.2.43) inay he neglected. Hence only the time
coinponent c2 remains. Hence T4

4  c2 and system (2.2.41) consisting of 10
equations turns into a single equation

h44  2c2k 2.2.44

If the field is stationary we have ∂h44
∂x4

and hence from Eq.(2.2.44) one obtain

Δh44  2c2k. 2.2.45

Thc solution of this equation is
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h44  k
2
c2  r d3x. 2.2.46

Thus

h44  g44
0 − k

2
c2  r d3x,

h44  k
2
c2,g44  g44

0  k
2
c2,

  −  r d3x

2.2.47

and according to Eq.(2.2.45)

Δ  4. 2.2.48

This expression corresponds exactly to Newton’s equation of gravitation for
continuous
distribution of masses.

III. Variational Action Principles in Rozen’s Bimetric Theory.
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General variational Action Principle [38] was introduced, in the Rosen’s Theory of
Gravitation, in view of deriving field equations, motion equations,canonical energy
tensor. and conservative principles. Using the constraint of metric invariance during
the variational process along the trajectory, a certain relationship between the
canonical tensor and the motion equations is established as a test for selfconsistency.
As was pointed out in the paper [38] the Equivalence Principle between gravitational
mass and inertial mass does hold in a weak version, i.e. equality of masses but not
also of their space distributions.

III.1.Simple Variational Action Principle in Rozen’s Bimetric
Theory. Field Equations.

The field and motion equations, as well as the canonical energy tensor, may by
derived, in the case of Rosen’s theory of gravitation [5]-[7], from a certain Action
Principle adopting the perfect magnetic fluid scheme for the matter tensor and
specifying the field part of the Action as depending on Minkowskian quantities of
definite variance not exceeding the first order derivatives, the Action integral takes the
form

S  1
64 ℒ g, − d4x  Sm 3.1.1

where

ℒ g, 

gg g|g| − 1
2
g|g| ,

3.1.2

where the bar " |"  denotes covariant derivative with respect to . The
corresponding field equations may be written in the form:
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g − g  −16 g/ T − 1
2
gT 3.1.3

or in the form

g| − g  −16 g/ T − 1
2
gT 3.1.4

Remark 3.1.1. Note that in Rosen’s theory of gravitation for the derivetion
gravitational field equations by simple variational principle one varies the
quantities g, not the quantities , in the simple variational principle.

Suppose that the second metric tensor ij in Rosen’s theory, refers to space-time of
constant curvature, given by Eq.(2.1.3).The gravitational field equations reads

K − 1
2
Kg  −8kT 3.1.5

or
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R − 1
2
Rg − 3

a2
 − 1

2
gg  −8kT,

k  
c4

.

3.1.6

One sees that (3.1.6) differs from the Einstein field equations by an additional term on
the left hand side.

Suppose that the background space-time metric  corresponding to the metric g is

ds2
2  dt2 − dx2 − dy2 − dz2. 3.1.7

The energy momentum tensor for perfect fluid is given by

T
FL  P  uu − gP. 3.1.8

The Rozen-Maxwell equations for ideal MHD flow are

K − 1
2
Kg  −8kTFL  TEM,

k   g
 ,

K  K
  1

2
ğghgh| |,

3.1.9
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where the energy momentum tensor of the electromagnetic field denoted by T
EM.

The electromagnetic field tensor for the MHD fluid is given by the covariant expression

F  uE − uE  uB 3.1.10

and similarly in a contravariant form

F  uE − uE  uB, 3.1.11

where the four vectors E and B, denoting the electric and magnetic field
components in the four dimensional spacetime, are orthogonal to the velocity four
vector u. Here the volume element 4-form of V4 namely  and its dual  is
defined

  −g ,

  1
−g ,

3.1.13

where g represents the determinant of the metric tensor g and  is the Levi
-Civita symbol, which is 1,−1, and 0 for a cyclic, anti-cyclic, and noncyclic
permutation of  respectively. It should be noticed that the choice of spacetime V4

is quite general here, namely of a four dimensional vector space, or more generally of
a differentiable manifold of four dimensions. Also the signature of an axially symmetric
metric defined on this manifold must be either  − − − or −   .
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III.2.General Variational Action Principle in Rozen’s Bimetric
Theory.

Let’s consider bimetric Rosen’s space-time M,g,ğ with Rg ≠ 0, Rğ  0.
Action integral takes the form

S  1c ℒ −ğ d4x,

ℒg,ğ  ℒmg,ğ  ℒf ;g|, h̆ ,

3.2.1

where
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ℒm  c2   − pg  K,K  −g
−ğ ,

ℒf  c4
16G

f ,g|; h̆ .

g   ; ğh̆   ,

g  gh̆h̆ ≠ ,

  ğğ ≠ g.

  
0

p dp
p

,

p  p,  p,

g  det‖g‖  0,ğ  det‖ğ‖  0.

3.2.2

Here, a subscript g stands for specifying that the labelled quantity is defined by curved
space-time metric ds1

2  gdxdx. Besid this, a flat space-time metric is
ds2

2  ğdxdx.

The quantity K in (3.2.2)) is a Minkowskian scalar, while the quantities  (mass
density) p (pressure) and  (Helmoltz potential) are scalar in both M4 and ℒM,g.

For ensuring coherence of the whole variational process, not only the coordinates x

and the signatures (time-like) should be the same for the two metrics, but also the
metric tensor g of the curved Lorentzian space-time ℒg  ℒM,g must be
considered as a tensor in M4 (Minkowskian space time). Arbitrary coordinates in M4

are adopted (necessary for carrying out the variational calculations) and x0  ct is
taken as the time coordinate (with physical dimension of a length). So, in Rosen’s
theory the role of the two metrics is strongly dissymmetrized, g are some quantities
preserving only the meaning of gravitational potentials, and the metric ds1

2  gdxdx

turns out to be a simple mathematical artifact necessary to formulate the specific
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coupling of gravitational field to its sources This bimetric philosophy (which restricts
the main role of Lorentzian metric ds1

2 to the motion equations) entitles us to treat the
quantities g, as true gravitational potentials, distinct from the metric functions ğ.
Now, performing the variations against g, in the action integral, we come to field
equations; variation against ğ delivers a canonical energy tensor, while the variation
against the coordinates of a fluid particle delivers motion equations.
The Minkowskian covariant derivatives are denoted by a vertical bar (|) followed by a
certain (Greek) subscript, or (equivalently) by a derivative symbol (D) followed by the
same subscript. For example

g|  D̆g  g, − Ğ
 g − Ğ

 g,

Ğ
  1

2
h̆ğ,  ğ, − ğ,.

3.2.3

For obtaining the field equations and the energy canonical tensor one obtain to the
following identity

1
−ğ

 −ğ L  D̆q −

1
2
K T g 

c4
8G

E  − 1
2
ℑh̆,

3.2.4

where
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q  P||g  2P||||h,

P|| 
∂Lf
∂g|

,

̆||
  1

4
ğ  ğ  ğ 

ğ − h̆ğğ − h̆ğğ,

T g  c
2  UU − pgg,

E  R − 1
2
g R

R  − 1K
∂f
∂

− 1
2
g ∂f

∂ 

gg − 1
2
gg Dp|| ,

p||  16G
c4

P||,

ℑ  D̆Q
 − 2

∂Lf
∂h̆

− 1
2
ğLf

Q
  4gP||̆||

 .

3.2.5

Putting the variation of the action integral against  to vanish, one obtains the field
equations
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R − 1
2
g R  − 8G

c4
T g 3.2.6

Rosen’s gravitation field equations may be obtained out of the general bimetric theory
so far presented by specifying the function f

f  − 1
8
h̆Wg|  g|,

W     − .

3.2.7

Hence

R  1
2K

h̆D̆D̆g − g|g
| , 3.2.8

and

ℑ  c4
32G

 g|g| − 1
2
ğg|g

| −

2 lnK ,lnK , −
1
2
ğh̆lnK ,lnK , − P,

3.2.9

where
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P  g| |  g|
 |  g

| 


|


g
| 



|
− g|

 


|
− g|

 


|
− 2ğh̆D̆D̆ lnK,

3.2.10

where the covariant derevative . . . | is a lift via h̆.

IV.Bimetric Theory of Gravitational-Inertial Field in
Riemannian approximation.

Bimetric Theory of Gravitational-Inertial Field in Riemannian approximation to proceed
from assumptions:
 I. Bimetric geometrical structures 2M,gij,ğij of the space-time continuum on
the standard assumption of Bimetric Lorentzianian geometry:

ds1
2  gikdxidxk,gik  gki, det‖gik‖ ≠ 0;

ds2
2  ğikdx

idxk,ğik  ğki, det‖ğik‖ ≠ 0;

4.1

 II. Equivalence of gravitational-inertial field and spacc-time metric tenzor

gikM  gikx1,x2,x3, ,x4;
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 III. Equivalence of pure accelerational field ğik and space-time metric tenzor

ğikM  ğikx1,x2,x3, ,x4.

Axiom Bimetric Theory of Gravitational-Inertial Field in Riemannian approximation
is based on the following postulates:

1.In nonrelativistic approximation, i.e. if reference frame (body) is accelerate by a
sufficiently small external nongravitational force and very far from the localized
masses, then the metric tensors gik and ğik describes a flat space-time, i.e.
Rklm
i gik  0 and R̆klm

i
ğik  0.

2. A sufficiently small domain of bimetric space-time 2 M,gij,ğij is flat, i.e. Rklm
i ≈ 0

and R̆klm
i ≈ 0.

3. If reference frame (body) is accelerate by an arbitrary external nongravitational
force but very far avay from the localized masses, then gik||l ≃ 0.
4. SEP is satisfied. In particular: there is no experiment observers can perform to
distinguish whether an acceleration arises because of a gravitational force or because
their reference frame is accelerating by an external nonravitational force.

IV.1.Simple Variational Action Principle in Bimetric Theory
of Gravitational-Inertial Field.

Let’s consider Gravitational-Inertial field theory (GIFTR) such that at each point of
Lorentzian space-time ℒ,gij a curved Lorentzian metric tensor ğij in addition to the
curved Lorentzian metric tensor gij. Thus at each point of generalized Rosen’s
space-time 2  2M,gij,ğij there are two curved metrics:

ds1
2  gijdxidxj,

ds2
2  ğijdxidxj.

4.1.1

Notation The first metric tensor gij in GIFTR, refers to the curved space-time and
describes Gravitational-Inertial Field. The second metric tensor ğij  gijac. in

48



GIFTR, space-time and describes pure inertial forces. The Christoffel symbols
formed from gij and ğij are denoted by Γjki and Γ̆jki respectively.

The quantities Δ̃jki are defined via formulae

Δ̃jki  Γjki − Γ̆jki . 4.1.2

Remark 4.1.1. Let R
 and R̆

 be the curvature tensors calculated from g and ğ
respectively. We set R

 ≠ 0, R̆ ≠ 0.

Now there arise two kinds of covariant differentiation:

 (1) g-differentiation based on g (denoted by a semicolon ; )

A;  A, − Γ 
 A − Γ 

 A 4.1.3

 (2) ğ-differentiation based on ğ (denoted by a bislash ||)

A||  A, − Γ̆ 
 A − Γ̆ 

 A , 4.1.4

where ordinary partial derivatives are denoted by comma , .
The straightforward calculations gives

R̃
  −Δ̃||

  Δ̃||
 − Δ̃

 Δ̃
 − Δ̃

 Δ̃
 . 4.1.5
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Hence

R̃  −Δ̃||
  Δ̃||

 − Δ̃
 Δ

 − Δ̃
 Δ̃

 . 4.1.6

This is the curvature tensor R̃ associated with the curvature effects of pure
gravitation acting in the bimetric spacetime 2  2M,gij,ğij.
The geodesic equation in bimetric spacetime 2 takes the form:

d2xi
ds1

 Δ̃jki dx
j

ds1
dxk
ds1



d2xi
ds1

 Γjki dx
j

ds1
dxk
ds1

− Γ̆jki dx
j

ds1
dxk
ds1

 0.

4.1.7

Action integral takes the form

S S1K, R̆ğ  S2R̆ğ  Sm 

1
64 ℒ1 g,ğ −ğ d4x  1

8 ℒ2 ğ −ğ d4x  Sm,

4.1.8

where

50



ℒ1 g,ğ 

ğgg g||g|| − 1
2
g||g|| ,

4.1.9

where the duble bar " ||"  denotes covariant derivative with respect to ğ. The
corresponding field equations may be written in the form:

ğg − gğ  −16 g/ğ T g −
1
2
gTg ,

Θ̆  Ĕ  k1T̆ ğ,

Θ̆ 
SR, R̆
ğ

,

Ĕ  R̆ − 1
2
R̆g,

T̆; 
ğ
 F̆.

4.1.10

or in the form
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ğg|| − gğ  −16 g/ğ T g −
1
2
gTg ,

Θ̆  Ĕ  k1T̆ ğ.

4.1.11

Here, a subscripts g,ğ stands for specifying that the labelled quantity is defined by
curved space-time metrics ds1

2  gdxdx and ds22  ğdxdx respectively and F̆

denote 4-vector of a pure nongravitational force and vertical duble bar || stands for
covariant differentiation with respect to ğ.

IV.2.The Weak Field Limit of the Bimetric Theory of
Gravitational-Inertial Field in Riemannian Approximation.

IV.2.1.

Let us recall the weak field limit procedure of the GTR.
Using Cartesian space coordinates, the metric determined from the radar method is,

gab  gab 

k−2 0 0 0

0 −k2 0 0

0 0 −k2 0

0 0 0 −k2

4.2.1.1

The partial derivatives of the metric are
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gab,c 

−2k−3k ,c 0 0 0

0 −2kk ,c 0 0

0 0 −2kk ,c 0

0 0 0 −2kk ,c

4.2.1.2

The geodesic equation is ẋa  −Γbca ẋbẋc where the Christoffel symbols are
Γabc  gab,c  gac,b − gcb,a/2. For the Christoffel symbols to be non-zero, two indices
must be the same, and, in a constant field, the other must not be zero. For
non-relativistic velocities, terms in the order of velocity squared can be ignored, and
we have ẋ0 ≈ 1. Then, 3-acceleration is given by, for
a ≠ 0, ẍa ≈ −Γ00

a  −gabΓb00  −k−k2−2kk ,c/2  −k−1k ,c. Writing k  1  , where  is
small, we have that acceleration is minus the gradient of ,i.e. ẍa ≈ − ,a.So,
gravitational redshift can be identified with the scalar potential in Newtonian gravity.
Hence the time component of the metric is g00  k−2 ≈ 1  2x,y, z.
This is called the weak gravitational field limit. m has units of kinetic energy, 1

2 mv
2.

To convert to conventional units, we must divide by c2, i.e.

g00  k−2 ≈ 1 
2x,y, z
c2

,

k  1 − x,y, z
c2

.

4.2.1.3

Note that Lagrangian of a relativistic particle in a weak gravitational field is:

Lt  −mc2 1 − v2t
c2

− mx,y, z. 4.2.1.4

In nonrelativistic limit v2/c2 → 0 from Eq.(4.2.1.4) one obtain

53



S  Ltdt  −mc  c − v2t
2c


x,y, z
c dt. 4.2.1.5

Take into account that S  −mc ds from Eq.(4.2.1.5) one obtain

ds  c − v2t
2c


x,y, z
c dt. 4.2.1.6

Thus (take into account that dr  vdt ) in nonrelativistic limit v2/c2 → 0 we obtain

ds2  c − v2t
2c


x,y, z
c

2

dt2 − dr2 ≈

≈ c2 1 
2x,y, z
c2

dt2 − dr2.

4.2.1.7

Finally Eq.(4.2.1.7) gives again the same weak gravitational field limit:

g00 ≃ − 1 
2x,y, z
c2

. 4.2.1.8

Einstein’s field equation, written in terms of the Ricci tensor is
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Rab − 1
2
gabR  Tab. 4.2.1.9

In the case of a static body of uniform density, , Tab is

Tab  

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

4.2.1.10

Contract the indices a and b, noting from the standard summation convention that
gabgab  aa  4 one obtain

gabRab − 1
2
gabgabR  gabTab,

R − 2R  ,

R  −.

4.2.1.11

Thus
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Rab  Tab  1
2
gabR  Tab − 1

2
gab,

R00  1
2
.

4.2.1.12

The Ricci tensor is

Rab  Racbc  Γab,cc − Γac,bc  Γabe Γecc − Γace Γebc , 4.2.1.13

In the Newtonian approximation, the metric g, is slowly varying in space and constant
in time. We may neglect terms of second order in derivatives of the metric, and set
time derivatives to zero. Then from Eq.(4.2.1.12) one obtain

R00 ≈ Γ00,c
c ≈ gcdΓd00c  −

1
2
gcdg00,dc 4.2.1.14

In Cartesian, x,y, z -coordinates one obtain

R00 ≈ 1
2

∂2
∂x2

 ∂2
∂y2

 ∂
2

∂z2
k  Δk,

Δk  1
2
x,y, z.

4.2.1.15

Hence Poisson’s equation for a Newtonian gravitational potential, k, due to a mass
distribution of density  is
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Δk  x,y, z,

  8G.

4.2.1.16

IV.2.2.

Let us consider the motion of a charged particle with a charge e and masses m in any
external electric field EExtx,y, z, t. Note that Lagrangian of a relativistic particle in
electric field is [65]:

Lt  −mc2 1 − v2t
c2

− ex,y, z, t. 4.2.2.1

In nonrelativistic approximation, i.e. v/c ≃ 0 from Eq.(4.2.2.1) one obtain

Lt  −mc2  mv
2t
2

− ex,y, z, t. 4.2.2.2

The action for relativistic charged particle in electric field is:
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S  
t1

t2
Ltdt 


t1

t2
−mc2 1 − v2t

c2
− e  x,y, z, t dt.

4.2.2.3

In nonrelativistic approximation, i.e. v/c ≃ 0 from Eqs.(4.2.2.2)-(4.2.2.3) one obtain

S  
t1

t2
Ltdt 

−mc 
t1

t2
c − v2t

2c

e  x,y, z, t

m  c dt.

4.2.2.4

But from other side we have [65]:

S  −mc ds. 4.2.2.5

Thus from Eq.(4.2.2.4) and Eq.(4.2.2.4) one obtain

ds  c − v2t
2c

 e
mc  x,y, z, t dt. 4.2.2.6
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Thus (take into account that dr  vdt ) in nonrelativistic limit v2/c2 → 0 we obtain

ds2  c − v2t
2c

 e
mc  x,y, z, t

2

dt2 

c2dt2 
v4t
4c2

dt2  e
mc

2
 2x,y, z, tdt2 − v2tdt2 

2e
m  x,y, z, tdt2 − v2t

c
e
mc  x,y, z, tdt2 

c2 1 
2e  x,y, z, t

m  c2
 e

mc2
2
 2x,y, z, tdt2 

v4t
4c4

dt2 − dr2 ≃

c2 1 
2e  x,y, z, t

m  c2
 e

mc2
2
 2x,y, z, tdt2 dt2 − dr2

4.2.2.7.a

and

ds2 ≃ c2 1 
2e  x,y, z, t

m  c2
dt2 − dr2. 4.2.2.7.b

Let us consider now a system of charges located the electric field generated by a
charge distribution is

 ∑ ea
|R0 − ra | 4.2.2.8
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 ≈
∑ ea
|R0 |

− ∑ eara  grad 1
|R0 |



∑ ea
|R0 |

− d  grad 1
|R0 |

,

4.2.2.9

where sum∑ eara  d is colled dipole moment [65]. In the complete expansion of the
 in powers |R0 |−1

  0  1 . . .n . . . ,

n ~ |R0 |−n1.

4.2.2.10

We saw that:

0  |R0 |−1∑ ea,

1  −d  grad 1
|R0 |

.

4.2.2.11

If the total charge is thero, term 0 is vanishes, and
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  −d  grad 1
|R0 |

 O|R0 |−3. 4.2.2.12

The second term 1 is colled dipole potential of the system.

Let us consider now a system of charges located in an external electric field
EExtx,y, z, t. We denote the potential of this external electric field by Extr, t 
Extx,y, z, t.Total potential energy of the system is [65]:

U   j0Extx,y, z, tdV 

∑
i1

n  ei  r − r iExtr, tdV 

∑
i1

n
ei  Extr i, t.

4.2.2.13

We introduce another coordinate system with its origin anywhere within the system of
charges: r i is the radius vector of the charge ei in these coordinate.We assume that
the external field EExtr i, t changes slowly: (1) over region of the system of charges

and (2) over region of the time t ∈ 0,, i.e EExtr i, t ≃ E
Ext
r i. Then one can expand

the energy U is powers of r i

U  U0  U1 . . . 4.2.2.14

In this expansion the first term is

61



U0  0
Ext ∑

i1

n
ei, 4.2.2.15

where 0
Ext is the walue of the potential at the origin. In this approximation, the energy

of the system is the same as it would be if all the charges were located at one point:
the origin. The second term in the expansion is

U1  gradExt0 ∑i1

n
ei  r i. 4.2.2.16

Hence

U1  −d  E0
Ext,

E0  gradExt0.

4.2.2.17

The total force acting on the system in the external quasiuniform field is (to the order
O|R0 |−3 we are considering above)

F  E0 ∑
i1

n
ei  ∇d  E0. 4.2.2.18

If the total charge is thero, the first term in Eq.(4.2.2.18) is vanishes, and we obtain
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F  ∇  dE0, 4.2.2.19

where the derivatives of the field intensity taken at the origin R0.
Eq.(4.2.2.7) gives weak inertional field limit:

ğ00 ≃ −1 −
2ex,y, z
mc2

. 4.2.2.20

Let us consider Bimetric theory of gravitational-inertial field in pure inertial field
approximation (see section IV.5.2). Field equations we take in the form:

R̆ik ≃ ̆ Ťik − 1
2
 ikT̆ . 4.2.2.21

Now consider any discrete distribution of charged matter, with a four-current charge
density

si 
u
c , i ,

 
0

1 − u
2

c2

,

0 ∑
j1

n
r − r j  ej

4.2.2.22
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in a given external electromagnetic field Fik
Ext, where 0 is the charge density in the rest

system S.Consider a definite point in space at a definite time; the charged
matter at this point is moving with a certain velocity.Now, let S0 be the momentary rest
system of the matter at this point. The components of si in this system are then

si
0  0,0,0, i0 4.2.2.23

The action of the electromagnetic field Fik with charged particles is S  

LdV with

L  − 1
4
Fik
ExtFik

Ext  AiExtsi − 0c2 

− 1
4
∂AkExt

∂xi
− ∂Ai

Ext

∂xk
∂AkExt

∂xi
− ∂Ai

Ext

∂xk
 AiExtsi − 0c2,

0 ∑
j1

n
r − r j  j.

4.2.2.24

Note that Lagrangian L does not contain any derivatives of the metric ğik. Hence the
energy-momentum tensor of the electromagnetic field Fik with charged particles is

T̆ik  −2 ∂L∂ğik
 ğikL. 4.2.2.25

In the weak (pure inertional) field approximation, the metric ğ, is slowly varying in
space and constant in time. We may neglect terms of second order in derivatives of
the metric, and set time derivatives to zero.
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Substitution Eq.(4.2.2.20) into Eq.(4.2.2.) gives

R̆00  −R̆0
0  ∂Γ̆00



∂x
,

Γ̆00
 ≃ − 1

2
ğ
∂ğ00
∂x

 e
mc2

∂
∂x

.

4.2.2.26

Hence

R̆0
0 ≃ − e

mc2
∂2
∂x2

 − e
mc2

Δ. 4.2.2.27

Suppose that:
 (1)∑

i1

n
ei ≠ 0,

 (2) gradExt0  1, i.e. U1 ≃ 0,
 (3) u ≃ 0,  1,2,3;u0  −u0  1.

T̆ik ≃ 0, i ≠ k,

T̆0
0 ≃ − 0

−ğ
0
Ext  − 1

−ğ
0
Ext ∑

j1

n
r − r j  ej.

4.2.2.28

From the field equations (4.2.2.21) for the case i  k  0 one obtain
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R̆0
0 ≃ −̆00

Ext 

−̆0
Ext∑

j1

n
r − r j  ej.

4.2.2.29

Substitution Eq.(4.2.2.29) into Eq.(4.2.2.27) gives

e
mc2

Δ  ̆0x,y, z0
Ext. 4.2.2.30

Poisson’s equation for a Newtonian gravitational-inertional potential, , due to a
distribution of charge density 0 is

Δ  e
mc2

−1
̆0x,y, z0

Ext. 4.2.2.31

Thus,

̆  e
0
Extmc2

, 4.2.2.32

and field equation is
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R̆ik ≃ ̆ Ťik − 1
2
 ikT̆ . 4.2.2.21

IV.2.3.Weak field limit of the geodesic equation for the
motion of a free test particle.

In the linear approximation, pure inertial field tensor ğ can be written as

ğ    h̆, 4.2.3.1

where  is the Minkowski metric tensor with signature 2 and h̆ is a first-order
perturbation.Under transformation of the background coordinates x ct,x, x →

x − , the pure inertial field potentials h̆ transform as

h̆ → h̆  ,  ,. 4.2.3.2

Henceforth, the nertial field potentials are considered to be gauge dependent, while
the background global inertial coordinate system is in effect fixed. The accelerated
spacetime curvature R̆ğ is, however, gauge invariant. It is useful to introduce the
trace-reversed pure inertial potentials
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h  h̆ − 1

2
h,

h  trh.

4.2.3.3

By imposing the transverse gauge condition

h ,

 0, the gravitational-inertial field

equations take the form



h  −k̆TEM. 4.2.3.4

Where TEM is the corresponding electromagnetic stress-energy tensor
The general solution of (4.2.3.4) is given by the special retarded solution


h 


h
a.c.
,


h
a.c.

 k̆  T
EMct − |x − x′ |,x′

|x − x′ |
dx′,

4.2.3.5

plus a general solution of the homogeneous wave equation that we comlete ignore in
this consideration.In the linear approximation, all terms of Oc−4 are neglected in the
metric tensor. Thus from Eqs.(4.2.3.5) for the sources under consideration here one
obtain
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h00
a.c.


4a.c.t,x

c2
,


h0i
a.c.

 − 2Ai
a.c.t,x
c2

,


hij  Oc−4; i, j ≠ 0.

4.2.3.6

Then the spacetime metric in the linear approximation is

ds2  −c2 1 − 2 
a.c.t,x
c2

− 4
c A

a.c.t,x  dxdt 

 1  2
a.c.t,x
c2

 ijdxidxj,

4.2.3.7

The geodesic equation for the motion of a free test particle is

dU

d
 Γ̆ UU, 4.2.3.8

where /c is the proper time and U  dx/d is the unit four-velocity vector of the test
particle. The Christoffel symbols are given by
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c2Γ̆0
0   ,

a.c.;c2Γ̆ij0  2Ai,j
a.c.   ij ,0

a.c.,

c2Γ̆00
i  − ,i

a.c. − 2Ai,0a.c;c2Γ̆0j
i   ij ,0

a.c.  ijkBk

c2Γ̆jki   ij ,k
a.c.   ik ,j

a.c. −  jk ,i
a.c.

4.2.3.9

The geodesic equation can be reduced via U  1, with   V/c to

c

d
d

 1 − 2 ,0
a.c.  2i  ,i

a.c. − Ai,ja.c. j ,

dVi
dt

 1  2 ,i
a.c. − 2  Bi  Ai,0

a.c − i3 − 2 ,0
a.c. 

2ij Aj,k
a.c. k − 2 ,j

a.c. .

4.2.3.10

Moreover, U
U  −1 implies that

1
2

 1 − 2 − 2
c2
1  2  4

c2
  Aa.c. 4.2.3.11

For a stationary source (∂t ≃ 0 and ∂tAa.c. ≃ 0), equations of motion (4.2.3.10)
reduces to
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m dV
dt

 mk̆E − 2mk̆ Vc B,

k̆  e
m .

4.2.3.12

where velocity-dependent terms of order higher that   V/c are neglected.

Thus

m dV
dt

 eE − 2e Vc B. 4.2.3.13

In the case of a general nonstationary source, however, the equations of motion
(4.2.3.10) does not reduces to the Lorentz force law.

IV.3.General Variational Action Principle in Bimetric Theory
of Gravitational-Inertial Field.

Let’s consider bimetric space-time 2g,ğ with Rg ≠ 0, R̆ğ ≠ 0.
Action integral takes the form

S  1c ℒ −ğ d4x,

ℒg,ğ  ℒmg,ğ  ℒf1g,ğ  ℒf2ğ,

4.3.1

where
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ℒm  c2   − pg  K,K  −g
ğ

,

ℒf1  c4
16G

f1 ,g||; h̆ ,

ℒf2  c4
16G

f2ğ,ğ;,

g   ; ğh̆   ,

g  gh̆h̆ ≠ ̆,

  ğğ ≠ g.

  
0

p dp
p

,

p  p,  p,

g  det‖g‖  0,ğ  det‖ğ‖  0.

4.3.2

Here, a subscripts g and ğ stands for specifying that the labelled quantity is defined by
curved space-time metric ds1

2  gdxdx and ds22  ğdxdx accordingly.
The ğ-covariant derivatives are denoted by a bislash (||) followed by a certain (Greek)
subscript, or (equivalently) by a derivative symbol (D̆) followed by the same subscript.
For example
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g||  D̆g  g, − Ğ
 g − Ğ

 g,

Ğ
  1

2
h̆ğ,  ğ, − ğ,.

4.3.3

For obtaining the field equations and the energy canonical tensor one obtain to the
following identity

1
−g  −g L  Dq −

1
2
K T  c4

8G
E  − 1

2
ℑh,

4.3.4

where
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q  P|||g  2gP||||h̆,

P||| 
∂Lf1
∂g||

,

̆||
  1

4
ğ  ğ  ğ 

ğ − h̆ğğ − h̆ğğ,

T g  c
2  UU − pg,

E  R − 1
2
g R ,

R  − 1K
∂f1
∂

− 1
2
g ∂f1

∂ 

gg − 1
2
gg D̆p|| ,

p|||  16G
c4

P|||,

ℑ  DQ
 − 2

∂Lf1
∂h̆

− 1
2
ğLf1 ,

Q̆
  4gP||̆||

 .

4.3.5
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V.4.Linear Post-Newtonian Approximation to Bimetric
Theory of Gravitational-Inertial Field. Gravito-Inertial
Ectromagnetism (GIEM).

V.4.1.Linear Post-Newtonian Approximation to Bimetric
Theory of Gravitational-Inertial Field. Gravito-Inertial
Ectromagnetism in a purely inertial approximation.

In Maxwell’s electromagnetism, the combined dynamics of charged particles and
electromagnetic field are consistently described by Maxwell’s field equations and the
Lorentz force law. Well-known that general relativity does indeed contain induction
effects. These effects turn out to be, despite the differences, on the whole closely
analogous to electromagnetic induction effects.
Let’s consider the curved bimetric accelerated spacetime ℒV4,g,ğ (Kijg ≃ 0
‖Kijg‖  ‖R̆ijğ‖) generated by an external pure nongravitational "nonrelativistic"
Lorentz force [53] and sufficiently small gravitational force [54]. Suppose that the
gravitational-Inertial field gijt,x is governed by either:
(1) massive gravitational source with mass density t,x,
(2) ectromagnetic field At,x,t,x and
(3) charged massive particles with mass density t,x and charge density cht,x.
Here t,x is the electric potential and At,x is the magnetic vector potential. In the
linear approximation, pure inertial field tensor ğ can be written as

ğ    h̆, 4.4.1.1

where  is the Minkowski metric tensor with signature 2 and h̆ is a first-order
perturbation.Under transformation of the background coordinates x ct,x, x →

x − , the pure inertial field potentials h̆ transform as

h̆ → h̆  ,  ,. 4.4.1.2

Henceforth, the potentials are considered to be gauge dependent, while the
background global inertial coordinate system is in effect fixed. The accelerated
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spacetime curvature R̆ğ is, however, gauge invariant. It is useful to introduce the
trace-reversed pure inertial potentials


h  h̆ − 1

2
h,

h  trh.

4.4.1.3

By imposing the transverse gauge condition

h ,

 0, the gravitational-inertial field

equations take the form



h  −k̆Ta.c. − 4G

c4
T. 4.4.1.4

Where Ta.c.  TEM is the corresponding electromagnetic stress-energy tensor.
The general solution of (4.4.1.4) is given by the special retarded solution


h 


h
a.c.



h
Gr.
≃

h
a.c.
,


h
a.c.

 k̆  T
EMct − |x − x′ |,x′

|x − x′ |
dx′,


h
Gr.

 4G
c4
 T

Gr.ct − |x − x′ |,x′
|x − x′ |

dx′,

4G
c4
 k̆,

4.4.1.5

plus a general solution of the homogeneous wave equation that we ignore in this
consideration.In the linear GIEM approximation, all terms of Oc−4 are neglected in
the metric tensor. Thus from Eqs.(4.4.1.4) for the sources under consideration here
one obtain
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h00
a.c.


4a.c.t,x

c2
;

h00
Gr.


4Gr.t,x

c2
,


h0i
a.c.

 − 2A
a.c.t,x
c2

;

h0i
Gr.

 − 2A
Gr.t,x
c2

,


hij  Oc−4; i, j ≠ 0.

4.4.1.6

Where:
 a.c.t,x is the inertiaelectric potential,
 Aa.c.t,x is the inertiamagnetic vector potential,
 Gr.t,x is the gravitoelectric potential,
 AGr.t,x is the gravitomagnetic vector potential.
Where far from the gravitational source potentials Gr.t,x and AGr.t,x can be
expressed as [54]:

Gr.t,x  GM
r ,

AGr.t,x  G
c
J  x
r3

,

4.4.1.7

Here M and J are the inertial mass and angular momentum of the source, r  |x|,
r  GM/c2and r  J/Mc.
The spacetime metric in the linear GIEM approximation is
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ds2  −c2 1 − 2 
Gr.It,x
c2

− 4
c A

Gr.It,x  dxdt 

 1  2
Gr.It,x

c2
 ijdxidxj,

Gr.It,x  a.c.t,x  Gr.t,x,

AGr.It,x  Aa.c.t,x  AGr.t,x.

4.4.1.8

Let us note that the gauge condition implies that

1
c ∂t

Gr.  ∇  1
2
AGr.  0,

1
c ∂t

a.c.  ∇  1
2
Aa.c.  0,

1
c ∂t

Gr.I  ∇  1
2
AGr.I  0.

4.4.1.9

This is related to the conservation of mass-energy of the gravitational-inertional
sources via Eq.(4.4.1.4).That is,let

TGr.00    c2

TGr.0i  cjGr.i,

4.4.1.10

78



where jGr.  c, j is the mass-energy current of the gravitational source.
Hence equations (4.4.1.9) is equivalent to

j;
Gr.I  0,

jGr.I  jGr.  jEM.

4.4.1.11

Thus one can to define:
 the gravitoelectric field EGr.,
 the gravitomagnetic field BGr.

 the inertialelectric field Ea.c.,
 the inertialmagnetic field Ba.c.

 the gravitoinertialelectric field EGr.I

 the gravitoinertialmagnetic field BGr.I

in complete analogy with electrodynamics

EGr.  −∇Gr.  1
c ∂r

1
2
AGr. ,

BGr.  ∇  AGr.,

Ea.c. − ∇a.c.  1
c ∂r

1
2
Aa.c. ,

Ba.c.  ∇  Aa.c..

EGr.I  EGr.  Ea.c..

4.4.1.11
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From Eq.(4.4.1.11) one obtain

∇  EGI  − 1c ∂r
1
2
BGI ,

∇  1
2
BGI  0.

4.4.12

Eq.(4.4.12) and the gravitational-inertial field equations (4.4.1.4) imply

∇  EGr.I  4G    4k̆ch.,

∇  1
2
BGr.I  1

c ∂tE
Gr.I  4G

c  jGr.  4k̆
c  jEM.

4.4.13

IV.5. Bimetric theory of gravitational-inertial field in a purely
inertial field approximation.

IV.5.1.Bimetric theory of gravitational-inertial field in a
purely inertial field approximation. Rosen type
approximation.

IV.5.2.Bimetric theory of gravitational-inertial field in a
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purely inertial field approximation. Einstein type
approximation.

The Gravitational-Inertial field equations in Einstein approximation is

R̆ − 1
2
gR̆ ≃ ̆T̆, 4.5.2.1

where R̆ is the Ricci tensor and where T̆ is the energy-momentum tensor which
in our farther consideration is the one for electromagnetism

T̆  FF
 − 1

4
ğFF, 4.5.2.2

where F is the electromagnetic field strength tensor.Note that T̆ has zero trace,
T̆  ğF  0.Eq. (4.5.2.2) allows us to rewrite the Eq. (4.5.2.1) in the following form

R̆ ≃ ̆T̆. 4.5.2.3

Finally, the Maxwell’s equations are
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ğ∇F  0,

∇F  0.

4.5.2.4

IV.5.3. Gravitational-inertial black hole in a purely inertial
field approximation. Einstein type approximation.

In General Relativity one of famous static solutions to the Einstein’s field equations is
the Reissner-Nordstrom metric describing the geometry of the spacetime surrounding
a non-rotating charged spherical black hole. In this section we obtain
completely purely inertial analog of the Reissner-Nordstrom black hole in Einstein
approximation.
Canonical form for the metric in 4D spherical coordinates t, r,, is

ds̆2  −e2r,tdt2  e2r,tdr2  r2d2,

d2  d2  sin2d.

4.5.3.1

Since there is spherical symmetry, the only non-zero components of the magnetic and
electric fields are the radial components which should be independent of  and
.Therefore the radial component of the electric field has a form of
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Er  Ftr  −Frt  f1r, t 4.5.3.2

The radial component of the magnetic field has a form of

Br 
2ğrr
|g|
F,

F  −F  f2r, tr2 sin2.

4.5.3.3

All the remaining components of the electromagnetic field strength tensor are either
zero or related to these two through symmetries. Therefore for the electromagnetic
field strength tensor one obtain

F 

0 f1r, t 0 0

−f1r, t 0 0 0

0 0 0 f2r, tr2 sin2

0 −f2r, tr2 sin2 0 0

4.5.3.4

For the -component of the the Riemann tensor R̆ and of the electromagnetic stress
tensor T̆ one obtain
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R  e−2r,tr∂rr, t − ∂rr, t − 1  1

T̆  1
2
r2f2r, t  f1r, te−2r,tr,t,

r, t  r  −r.

4.5.3.5

Now lets solve the Maxwell equations for the form of the electromagnetic field strength
tensor given in Eq.(4.5.3.4).Finally, for the electromagnetic field strength tensor one
obtain

F  1
4

0 Qr−2 0 0

−Qr−2 0 0 0

0 0 0 P sin

0 0 −P sin 0

4.5.3.6

Lets consider the  component of the Eq.(4.5.2.3).

R̆ ≃ 8̆T̆. 4.5.3.7

Substituting Eq.(4.5.3.5) into Eq.(4.5.3.7) we obtain

∂rre2  1 − ̆
r2
Q2  P2. 4.5.3.6

By integration we obtain
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e2r  1  constr  ̆
r2
Q2  P2. 4.5.3.7

Take into account Eq.(4.2.2.7.a) we obtain

e2r  1  2 ̆Q
r  ̆

r2
Q2  P2,

̆  e
mc2

2
,

4.5.3.7

or

e2r  1 
2Q
r 

2

r2
Q2  P2,

  e
mc2

.

4.5.3.7

Finally, upon substitution of Eq.(4.5.3.7) into Eq.(4.5.3.1) the metric of the purely
inertial Reissner-Nordstrom black hole is readily found:
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ds̆2  −Δdt2  Δ−1dr2  r2d2,

Δ  1 
2Q
r 

2

r2
Q2  P2,

  e
mc2

.

4.5.3.8

Note that in the absence of charges, this should reduce to the flat metric and hence
purely inertial analog of the Schwarzschild black hole is absent.

V.Noninertial Pure Accelerated Curved Reference Frame in
Bimetric theory of gravitational-inertial field.

Recall the basic concept and definitions of the accelerated reference frame in
canonical GTR [43],[44],[45].Let us considered flat (curved) basic Lorentzian
space-time ℒ4  ℒV4,g and any timelike congruence C, in a certain domain A4  V4,
defined in a coordinate system x by

C : x  xt,i,

,  0,1,2,3; i  1,2,3

5.1

where i are three parametr marking the specific curve in C an t is any parametr
along these curves in C.
Some canonical intristict element defined by the congruence C are:
(i) The quotient space V3C associated to C or the internal space of C given by the
equivalence relation: V3C  V3/C.
(ii) The natural projection j : A4 → V3/C
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x →  i  ix 5.2

where ix are the inverted functions of (2.1.1) and  i are a coordinate sistem of
V3C.The pull-back and push-forward of j allow us to define certain objects on A4 and
V3C respectively. For instance, three one-form fields d i of the naturalco- basis in
V3C can be pulleed back to the tree one-form fields i defined by

i 
∂ix
∂x

dx. 5.3

Thus 3-dimensional subspase Δ3 of TV4
∗ spanned by i, i.e.Δ3  span1,2,3 is

invariantly characterized by C. Concerning the push-forward projection, defined for
example as follows

j ′ : Tx → Tjx,

tx → tix  tx
i

5.4

(iii) The proper time  and 4-velocity vector u defined respectively by formulae

   −g ∂x


∂t
∂x
∂t

 C, 5.5
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and

u  1

−g ∂x


∂t
∂x
∂t

∂x
∂t

∂
∂x

. 5.6

Where C being an arbitrary function of arguments  [43].Notice that u is
orthogonal to the three i, i  1,2,3 which means that the functions ix are three
independent first integrals of u.Of course, given any timelike unit vector u one can
build its associated congruences locally by constructing the curves tangent to u by
means of the canonical integration. Therefore one can identifies a timelike congruence
and its tangent for-velocity vector field.The canonical kinematical quantities associated
with u are intistinc to congruence C. For example, the projection tensor orthogonal to
u : P  g  uu, the acceleration a , the deformation tensor  and the rotation
tensor .

Let us considered flat basic Lorentzian space-time ℒ4  ℒV4, where
  diag1,−1,−1,−1.Any timelike congruence C, in a certain domain A4  V4,
formed by Eq.(5.1) by using a regular parametrized timelike curves Γs,i. It is also
convenient to restrict ourselves to timelike curves x  xs i.e. those for which

 dx


ds
dx
ds

 1,where now s denotes the arc length parameter in the sense of

Minkowski metric .Accordingly,if we denote the tetrad vectors by uA
 (A  0,1,2,3),

then the orthonormality conditions read uA
 uA  uA

 uB
  AB.

If we chose u0
  dx

ds
then we can easily construct an orthonormal basis of vectors

uA
 ,defined along the curve, which obey the following four-dimensional

Serret-Frenet equations,given in matrix representation by
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du0s
ds

du1s
ds

du2s
ds

du3s
ds



0 s 0 0

s 0 1s 0

0 −1s 0 2s

0 0 −2s 0

u0s

u1s

u2s

u3s

5.7

Theorem.5.1. [46] Given differentiable functions s  0,1s and 2s, there exists a
regular parametrized timelike curve Γ such that s is the curvature, 1s and 2s
are, respectively, the first and second torsion of Γ.Any other curve Γ satisfying the
same conditions, differs from Γ by a Poincaré transformation, i.e. by a transformation
of the type x′  

x  a, where  represents a proper Lorentz matrix and a is a
constant four-vector.

As we have seen above, the canonical introduction of reference (comovin) frame
formulation the crucial role in their mathematical discription has to by played in a study
of congruences by the world lines of particles forming bodies of reference, i.e. the
physical time lines for the chosen reference frame.The congruence concept is
essential because for the sake of regularity of the mathematical description of the
frame,these lines have not to mutually intersect, and they must cover completely the
space-time region under consideration so that at every world point one has to find one
and only one line passing throus it.Exactly the same approach is used for description
of a regular continuous media,i.e. in relativistic gydrodynamics of a perfect (magnetic)
fluid [44].

Remark 5.1. However it is important to note that in canonical GTR in contrast with
GIFT, curvature of the basic Lorentzian space-time ℒV4,g does not depend from
accelerations of the particles forming fluid or bodies of reference.
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V.1. Non Inertial Anholonomic Accelerated Frame of
Refferences in Finsler-Lagrange Approximation. Hollands
type comovin frame.

Holland was studied a unified formalism which uses a anholonomic frame
(nonintegrable 1-form) on space-time, a sort of plastic deformation, arising from
consideration of a charged particle moving in an external electromagnetic field in the
background space-time viewed as a strained medium [10]-[11]. In fact, Ingarden [12]
was first to point out that the Lorentz force law, in this case, can be written as a
geodesic equation on a Finsler space called Randers space [13] i.e., the physical
space with a metric:

ds  gijdxidxj  akxdxk,

det‖gij‖ ≠ 0.

5.1.1

The metric given by Eq.(5.1.1) is defined by the pair gij,ak of the tensor field gij and
vector field ak, where gij influences the local inhomogeneity of the space, ak changes
the local anisotropy.

Remark 5.1.1.Note that the additional term in the geodesic equation acts as repulsive
force against the gravity [21].

For complete references on these Finsler spaces see [14]-[17].This results in
geometrical entities which depend on the electromagnetic field (vector potential),
particle (velocity) and background space-time parameters. The Finsler structure
implies the existence of a global anholonomic (Holland) frame which in turn yields a
connection with torsion and vanishing Finsler curvatures.His differential geometric
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method is based on fundamental work of S. Amari on a Finsler approach to crystal
dislocation theory [19]. Amari and Holland’s idea conduct one to considered Holland

type frames as non inertial anholonomic accelerated frame of refferences in
Finsler-Lagrange approximation.

V.2. Non Inertial Anholonomic Accelerated Frame of
Refferences in Riemannian Approximation.Bravais Type
Relativistic Comovin Frame with Curvature and Torsion.

Let M be a differentiable manifold of dimension n. At a point p ∈ M, let ei, i  1, . . . ,n

constitute the basis of the cotangent space Tp∗M and let ei be the base vectors of

the tangent space TpM. The local coordinate form of the bases of Tx∗M and TxM

at p  x are dxi and ∂i  ∂
∂xi

respectively. Let ki be the connection 1-form of M.

Then the description of M is given by Cartan’s structure equations:

Ti  Dei  dei  ki ∧ ek  1
2 Tkl

i ek ∧ el,

Rk
i  Dki  dki  li ∧ kl  1

2 Rklm
i el ∧ em.

5.2.1

The integrability conditions of the above equations are given by
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DTi  Rki ∧ ek,

DRk
i  0.

5.2.2

These are known as Bianchi identities. The Cartan equations and Bianchi identities
are present in both Yang-Mills and gravity-type gauge theories. However, the latter
type has the following additional structural features. A symmetric metric tensor
g  gikei ⊗ ek, gik  gki  ei  ek is introduced on M. In local coordinates, the metric is
used to describe the distance element: ds2  gikdxidxk.The inverse metric gkl is such
that gklgli   ik.The metric and the connection are so far two independent fields,
defined at each point of M. A manifold in which the covariant derivative of the metric
tensor vanishes is singled out by the property that the angle between two vectors and
their lengths remain unchanged by the operation of parallel displacement of vectors on
M. It is this property which guarantees locally Euclidean structure of the manifold. A
connection is called metric compatible if

Dgik  dgik − gilkl − gklil  0. 5.2.3

In general, the connection ki can have a torsion-free part ̃ki and an additional part ki
which represents the non-Riemannian part, called the contorsion 1-form. The local
coordinate representations of these geometrical objects are:

lk  Γmlk dxk, ̃lk  k
ml

dxm,

 lk  Smlk dxm,Tk  1
2 Tml

k dxm ∧ dxl.

5.2.4

Here k
ml

 gks∂mgsl − ∂sglm  ∂lgms, and Smlk  gksSmsl − Sslm  Slms are respectively
the Christoffel symbol of the second kind and the contorsion tensor. We next relate the
above structure to that of a non inertial accelerated frame (comoving to accelerated
body).
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Definition 5.2.1.Non inertial accelerated frame (comoving to accelerated body) of
refferences is identified with a four dimensional differentiable manifold M
embedded in the real four-dimensional linear space 4.The current coordinates of
the manifold of the accelerated frame (accelerated deformed body) M′ are xi (
i, j,k, l,m,n, . . . 1,2,3,4) and the cartesian coordinates of the anholonomy-free
configuration (reference manifold M) are xa (a,b,c,d, . . . 1,2,3,4).

Definition 5.2.2.The current configuration of the accelerated frame (comoving to

accelerated deformed body) M′ is anholonomy-free iff functions xi  xixa and
xa  xaxi are well behaved, single-valued and differentiable functions of their
respective arguments. The matrix ai  ∂axi  ∂xi

∂xa
is the holonomy deformation

(distortion) matrix.Its inverse matrix is ia  ∂ixa  ∂x
a

∂xi
.

Anholonomy-free manifold M (defect-free body) is characterized by a global coordinate
basis of the reference manifold (reference body). The metric ea  eb  ab is Euclidean
and the connection ba  Γcba dxc vanishes identically.The metric and the connection of
the current configuration are

gik  iakbab,

ki  ai dka.

5.2.5

Holonomic (defect-free body) manifold M is characterized by a global coordinate basis
ei  dxi, and a (metric compatible) flat connection ki  ai dka.These equations may
be regarded as a set of differential equations for ei and ki . In this case the torsion and
curvature tensors are zero and the integrability equations are (5.2.1) with the right
sides set equal to zero. Torsion and curvature in general case represent anholonomic
deformation of the accelerated frame (or defects). Anholonomic deformation (defects)
are obstructions to diffeomorphisms from M to M′.
In order to relate the mathematical structure to the description of the accelerated
frame (accelerated deformed body), consider the infinitesimal transformation
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xa → xm  xa  uaxbam 5.2.6

where the total displacement ua consists of an holonomy (elastic) part and an
anholonomy (plastic) part. The elastic part is integrable and the plastic part is not. The
total deformation (distortion) tensors are

ai  ai  ∂aui,

ia   ia − ∂iua.

5.2.7

The metric gets related to the total "strain" tensor

gik  aika 

 ik − ∂iuk − ∂kui 

 ik − 2eik.

5.2.8

1. The present internal geometry of the accelerated frame (comoving to accelerated
deformed body) is Riemannian if :

94



Dg  0,

Rk
i  Dki ≠ 0,

DRk
i  0.

5.2.9

2. The present internal geometry of the accelerated frame (comoving to accelerated
deformed body) is non Riemannian (tele-parallel) if :

Dg  0,

Rk
i  0,

DRk
i  0,

DTi  0,

Ti  Dei ≠ 0.

5.2.10

3. In general case the present internal geometry of the accelerated frame (comoving
to accelerated deformed body) is characterized by Eq.(5.2.1), the Bianchi identities
Eq.(5.2.3) is non Riemannian. It is also called Riemann-Cartan geometry.

Definition 5.2.3.Cartan’s structure equations are nothing but the very definition of
"dislocation" and "disclination" density tensors of manifold:
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 ij  ikmTkm
j ,

ij  1
2
imnjklRklmn.

5.2.11

In general case (in particular the presence of "defects"), the coordinate system of M ′

is nonholonomic. Denoting the anholonomic coordinates by ea instead of ei,we may
write ea  adxa but a is no longer a gradient field.

VI.Gauge theories of accelerated comovin frame.

VI.1.General mathematical structure of gauge theories.

Gauge theories are divided into two different classes:
 1.Yang-Mills type gauge theories and
 2.Gravity type gauge theories.
 3.Mixed type gauge theories.
Let us first consider their general mathematical structure. We shall refrain from a terse
mathematical presentation of the principal fibre-bundle structure since this can be
done away with.Let uix, i  1,2, . . . ,n be a system of initial fields, called matter fields.
Here x is a space-time point on a base Lorentzian manifold M. To each point x of M is
attached a fibre space V whose elements are values of ui. This may be regarded as
an internal space. The functions uix are cross sections on the fibre-bundle M  V.
Further we assume that a space-time group P0 and an internal group G0 act on M and
V respectively.
 The group P0 could be, for example, the Poincaré group or one of its
sub-groups (translation, rotation,etc.).

 The group G0 could be another Lie group such as a rotation or a unitary group.
 The group actions are P0 : M → M and G0 : V → V. Thus both groups are
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continuous transformation groups. Both these groups are said to act globally,
i.e., their actions do not depend on x.

Let a matter field model be given by a Lagrangian ℒ0  ℒ0∂u,u which is invariant
with respect to P0 and G0. This global symmetry is a necessary prerequisite of any
gauge theory. The basic idea of gauging is to extend the global invariance group G0 or
P0 to a local gauge group G (or P) by allowing the transformations G  V → V and
P  M → M to be x dependent.The gauge theory based on G0 → G is of Yang-Mills
type and that based on P0 → P is of gravity type. A mixed type could be based on
gauging of both G0 → G and P0 → P. In order to ensure local invariance, the
Lagrangian must contain, in addition to fields ui, a set of connection fields or gauge
potentials Ax. these are a set of compensating fields coupled (minimally) to the
matter fields ui.The values of A belong to the Lie algebra ℒG0 of G0 (or P0).
These fields are called connections on the corresponding principal fibre bundles.
To obtain a closed system of equations for ui and A, the gauge approach prescribes
two recipes. Firstly, the derivatives ∂ are to be replaced by covariant derivatives
D  ∂  Ax.

Secondly, the new Lagrangian ℒ is supposed be given by ℒ  ℒ0Du,u  ℒ1F
(minimal coupling) where F  DA is the Yang-Mills field (curvature field associated
with the connection field). The piece ℒ1 is usually chosen as TrFF†.

VI.2. Charged Particles as Defects In Bimetric Lorentzian
Manifold

Kleinert [34],[48] demonstrates that a space with torsion and curvature can be
generated from a Minkowski space via singular coordinate transformations xi  xix
and is completely equivalent to a crystal which has undergone plastic deformation
being filled with dislocations and disclinations. Typycally canonical transformation
associated with dislocation can be described multivalued function [34]:

x 1̄  x1,

x 2̄  x2 − b
2

tan−1 x2

x1
,

6.2.1
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where the function tan−1 x2

x1
defined to be equal  for x1  0,x2  .

dx 1̄  dx1,

dx2̄ 
 dx2 −

b
2 

x2dx1 − x1dx2 1
x12  x22   

6.2.2

with the components of the Colombeau vielbein e,i  
∂xi
∂x 

e,i  

1 0

b
2

x2

x12  x22   

1 − b
2

x1

x12  x22  

6.2.3

S12
2̄  ∂1e 2

2̄ − ∂2e 1
2̄ 

6.2.4

The associated Cartan curvature tensor R
 :
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R
  ei

∂∂ − ∂∂ei 6.2.5

vanishes, making the connection affine-flat. The antisymmetric part of the connection

S
  1

2
Γ

 − Γ
 , 6.2.6

which is a tensor, is nonzero giving rise to a nonvanishing Riemann curvature tensor

R

≠ 0.The latter is formed by canonical manner from the Levi-Cevita connection

Γ, also called Christoffel symbol:

R

 ∂Γ


− ∂Γ


− Γ,Γ




,

Γ  1
2
∂g  ∂g − ∂g,

Γ,Γ



 Γ


Γ


− Γ


Γ


,

6.2.7

where

g  ei ei 6.2.8

is the Riemann metric in the space of anholonomic coordinates. The relation between
the two curvature tensors is
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R
 − R


 DK

 − DK
 − K,K 

,

K,K 
  K

K
 − K

K
 ,

K
  Γ − Γ


.

6.2.9

Where the symbols D denote the covariant derivatives formed with the Christoffel
symbol. From either of the two curvature tensors,i.e. Cartan curvature tensor R

 and

Riemann curvature tensor R

one can form the oncecontracted tensors of rank 2,

the Ricci tensors and the curvature scalars:

R  R
;R  gR,

R  R

;R  gR.

6.2.10

It is possible to map a flat x-space locally into a curved y-space with R

≠ 0 via an

infinitesimal anholonomic transformation

dxi  ei ydy 6.2.11

with coefficient functions ei y which are not integrable,i.e.

∂ei y − ∂ei y ≠ 0. 6.2.12
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VI.3.Gravity type gauge theories of accelerated comovin
frame formed by elastic media with defects.

Let’s consider infinite three dimensional elastic media with defects.A theory of
relativistic elastic media with defects based on gravity type gauge theories in three
dimensional case (two space plus one time) is considered by Katanaev and Volovich
[41].They introduce a metric affine space with a metric constructed from distortion ei

and a SO3 - connection 
ij. Here the index  is a general curvilinear coordinate label

of the material manifold and i labels the coordinate Xi of the current configuration
manifold. Using simple and physically reasonable assumptions they define a
two-parameter static Lagrangian which is the sum of the Hilbert-Einstein Lagrangian
for the distorsion and the square of the antisymmetric part of the Ricci tensor [42]:

1
e ℒ  −R  2RijARAij,

e  detei ,

6.3.1

which is the sum of the Hilbert–Einstein Lagrangian for the vielbein and the square of
the antisymmetric part of the Ricci tensor. The vielbein ei and SO3 connection

ij are basic and independent variables in the geometric approach.

Remark.6.3.1.Note that R  Re and R  Re, are constructed from
differentmetrical connections and the identity (6.3.2) is valid in the Riemann–Cartan

geometry in an arbitrary number of dimensions:
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Re  Re,  1
4
TijkTijk −

− 1
2
TijkTkij − TiTi − 2

e ∂eT
,

e  detei .

6.3.2

One assume that equations of equilibrium must be covariant under general coordinate
transformations and local rotations, be at most of the second order, and follow from a
variational principle. The expression for the free energy leading to the equilibrium
equations must then be equal to a volume integral of the scalar function (the
Lagrangian) that is quadratic in torsion and curvature tensors. There are three
independent invariants quadratic in the torsion tensor and three independent
invariants quadratic in the curvature tensor in three dimensions [41]. It is possible to
add the scalar curvature and a “cosmological” constant . One thus obtain
a general eight-parameter Lagrangian [41]:

1
e

ℒ  −R 

1
4
T,ijk  1 T

ijk


 2 T

kij


 3 T

j


  ik 

 1
4
R,ijkl 1 R

ijkl


 2 R

klij


 3Rik  

jl − ,

e  dete,i ,

6.3.3

where ,1,2,3 and 1,2,3 are some constants, and we have introduced the trace of the
generalized torsion tensor T,j  T,ij

i  and the generalized Ricci tensor

R,ik  R,ijk
j


.

The particular feature of three dimensions is that the full curvature tensor is in a one to
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one correspondence with Ricci tensor R,ijkl and has three irreducible components.
Therefore, the Lagrangian contains only three independent invariants quadratic in
curvature tensor. We do not need to add the Hilbert–Einstein Lagrangian R, also
yielding second-order equations, to the free energy given by Eq.(6.3.3)
The Lagrangian (6.3.3) gives equations of the accelerated relativistic media [42]:
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1
e

ℒ
e,i 

 − R  e,i
  − 2R,i

  

1 ∇T,i
 −

1
4
T,jkl  T

jkl


 e,i

   T
jk


 T,ijk 

2 − 12 ∇ T,i
 − T,i

 − 1
4
T,jkl  T

ljk


 e,i

 

− 1
2
T
jk


 T,kij 

1
2
T
jk


 T,kij 

3 − 12 ∇ T  e,i
  − T

  e,i
 

− 1
4
T,j  T

j


 e,i

  
1
2
T  T,i 

1
2
T
j


 T,ij

  

1 − 14 R,jklm  R
jklm


 e,i

   R
jkl


 R,ijkl 

2 − 14 R,jklm  R
lmjk


 e,i

   R
klmj


 R,ijkl 

3 − 14 R,jk  R
jk


 e,i

  
1
2
R
j


 R,ij 

 1
2
R
jk


 R,jik

 




e,i
   T,ij,

6.3.4

where Tij
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e

ℒ
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ij





 1
2
T,ij




 T,i  e

, j



 1

1
2
T ,ji




2
1
4

T,i j



− T,ij






3
1
4
T,j  e

, i



 1 12

∇ R
, ij



 2 12

∇ R,ij





3 14
∇ R

, i



 e

, j



− R

, i



 e

, j



− i ↔ j  0,

6.3.5

where the covariant derivative acts with the SO3 connection on the Latin indices and
with the Christoffel symbols on the Greek ones.

Remark.6.3.2.The most general Lagrangian () depends on eight constants: ,1,
2,3,1,2,3, and leads to very complicated equations of accelerated relativistic
media. Note that these constants is not apriori fixed and we do not know precisely

what values of the constants describe this or that accelerated relativistic media and
corresponding comovin frame.
Therefore, we make physically reasonable assumptions to simplify matters at least for
the case R

ij  0.

Remark.6.3.3.Note that curvature R
ij of the comovin frame of the any accelerated

relativistic media in contrast with [42] satisfies the inequality R
ij ≠ 0.

Thus, one obtain that equations of the accelerated relativistic media must
admit the following three types of solutions:

 1.There are solutions describing the relativistic accelerated media with only
"dislocations":
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R,
ij


 0,

T,
i


≠ 0,

R,

≠ 0.

6.3.6

 2.There are solutions describing the relativistic accelerated media with only

"disclinations":

R
ij


≠ 0,

T
i


 0,

R

≠ 0.

6.3.7

 3.There are solutions describing the relativistic accelerated media almost
without "dislocations" and "disclinations":

R
ij ≃ 0,

T
i ≃ 0,

R ≠ 0.

6.3.8
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Substitution of the condition R
ij  0 into Eq.(6.3.4 ) for the SO3 connection gives

12  21 − 2 − 23Ti  0,

 − 1 − 2T∗  0,

4  21 − 2Wijk  0.

6.3.9

Here Ti,T∗, and Wijk are the irreducible components of the torsion tensor.In a general
case of dislocations all irreducible components of torsion tensor differ from
zero (Ti,T∗,Wijk ≠ 0) and Eqs. (6.3.9) have a unique solution

1  ,2  2,3  4. 6.3.10

For these coupling constants, the first four terms in Lagrangian (6.3.3) are equal to the
Hilbert–Einstein Lagrangian Re up to a total divergence due to identity(6.3.2).
Equation (6.3.2) then reduces to the Einstein equations with a cosmological constant

R − 1
2
gR − 

2
g  0 6.3.11

According to the second condition,the equations of accelerated equilibrium must allow
solutions with zero torsion T

i  0. In this case, the curvature tensor has additional
symmetry Rijkl  Rklij, and Eq.(6.3.5 ) becomes
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1  2 
3
4
∇ R i

S  e j
 − R i

S  e j
  R j

S  e i
 

 1
6
1  2  43 e i

 e j
 − e i

 e j
 ∇R ≃ 0,

6.3.12

where

Rij  RijS  RijA  1
3
R ij,

Rij
S  RjiS,R i

S  0,RijA  −RjiA.

6.3.13

Note that for almost zero torsion, the Ricci tensor is symmetrical,i.e.RijA  0.

Contraction of Eq.(6.3.12) with e
j gives

1  2 
3
4
∇R 

S  

1
3
1  2  43∇R  0.

6.3.14

Note that in the general case of nonvanishing curvature, the covariant derivatives
∇R 

S  and ∇R differ from zero and are independent. Therefore, one obtain two
equations for the coupling constants,
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1  2 
3
4

 0,

1  2  43  0,

6.3.15

which have a unique solution

1  −2  ,3  0. 6.3.16

The last requirement for the noexistence of solutions with zero curvature and torsion is
satisfied only for the non zero cosmological constant

1
e ℒ  −R  2RijARAij  ,

 ≠ 0.

6.3.17

VII.Bimetrical interpretation some exact solutions of the
Einstein field equations.
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VII.1. General consideration.

Let us consider that in the Minkovsky space with the signature the continuum medium
moves in some force field, the motion law of this continuum in the Lagrange variables
has the form [70]:

x  xyk,0, 7.1.1

where x are the Euler coordinates, yk are the Lagrange coordinates constant along
each fixed world line of the medium particle, is the some time parameter. The greek
indexes are changed from zero to three, the latin indexes are changed from unit to
three. We consider that the medium particles do not interact with each other and they
interact only with the external field.

Similarly to electrodynamics the actions for the probe particle in the force field we
specify in the form

S  −mc 
a

b
ds  Adx,

  e
mc2

,

7.1.2

where for each medium particle the ds interval along the world lines is ds  Vdx, V

is the four dimensional velocity.From the action variation the motion equation follows
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DV
ds

 FV, 7.1.3

where the field tensor F is determined as

F  ∇A − ∇A  ∂A∂x
−
∂A
∂x

7.1.4

On the other hand one can to introduce the effective interval ds  ds  Adx

so (7.1.2) is represented in the form

S  −mc d s , 7.1.5

variation of this action results in the motion of the probe particle on the geodesic line in
some pseudo Riemannian space 

dU

ds
 Γ̃,UU  0. 7.1.6

Claim.7.1.1. Suppose that the dynamic equations (7.1.3) and (7.1.6) is equivalent,i.e.
7.1.3  7.1.6.
It follows from the expression for the effective interval ds along the geodesic line that
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ds  V  Adx ≡ Udx, U ≡ V  A,

U  dx
ds

 dx
ds

ds
ds

 PV, P ≡ 1  AV−1.
7.1.7

Besides the connection between covariant U and the contravariant U vectors of the
4-velocity in the pseudo Riemannian space has the form

U  gU  V  A. 7.1.8

Conditions (7.1.3), (7.1.4), (7.1.6), (7.1.7) and (7.1.8) will be is self consistent if and
only if the metric tensor g of the pseudo Riemannian space  will have the form:

g    
2AA  AV  AV, 7.1.9

Thus, one can consider the motion of the probe particle as motion in Rosen bimetric
space 2  g, i.e. from two points of view:
 The motion on the world line in the Minkovsky space in the force field (7.1.3)
with the metrics .

 The motion in the Riemannian space on the geodesic line with the metrics g
determined in accordance with (7.1.9).

The correlations between the 4-velocities in the different spaces are determined with
the formulas (7.1.7) and (7.1.8). Herewith in the two spaces the general coordination
has been selected. Unlike electrodynamics the tensor field Fstructure in (7.1.4) has
not been concreted, that is for the tensor field F equations are not specified.
Let the probe particles move in the Einstein gravitational field. Then the “charge”

112



e  m, and the metrics (7.1.9) has to satisfy to the Einstein equations with the dusty
stress energy tensor.

R − 1
2
gR  8

c4
UU. 7.1.10

If as a result of the solution of the equations (7.1.10) obtained g and Uwill provide
the equalities (7.1.8) and (7.1.9), then we can to find the field of 4-velocity V, the
potentials A and the field tensor Fin the Minkovsky space, that is the mapping of
the curvature field of the Riemannian space on the force field of the plane space- time
will be constructed.
Let us ascertain the connection between the congruencies of the world lines in the
Minkovsky space and the congruencies of the geodesic lines in the Riemannian space
which in the general coordination are determined with the Eq.(7.1.1). Because of the
Eq.(7.1.9) in the space-time two metric tensors g and  have been introduced, and,
consequently, two connections Γ̃  and Γ  exist, the first connection relates to the
pseudo Riemannian space , and the second one relates to the Minkovsky space M4.
In the Minkovsky space the curvature coordinates can be introduced. Thus, in the
general coordination two different covariant derivatives ∇̃ and ∇ arise.From the

Eq.(7.1.8) we have

∇̃U  −S U  ∇V  ∇A,

S   Γ̃  − Γ ,

7.1.11

where S  is the tensor of the affine connectivity deformation.From (7.1.11) we find

2∇̃U  2∇V − F, 7.1.12
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For geodesic congruensies without rotations the equalities take place

∇̃U  0; 2∇V  F. 7.1.13

Convoluting (7.1.13) with V we once again obtain the equation (7.1.13). From the
equalities (7.1.13) and (7.1.7) we have

U  ∂
∂x

 V  A 7.1.14

that permits the representation of the (7.1.9) metrics in the form

g    ∂∂x
∂
∂x

− VV 7.1.15

For the contravariant components we have

g    P2VV 1   ∂
∂x

∂
∂x

−

7.1.16

where in accordance with (7.1.7)
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P  1  AV−1  7.1.17

It follows from the equalities (7.1.9), (7.1.14) and (7.1.15)

g − UU   − VV, 7.1.18

i.e. is the projection operators determining the space geometry of the hypersurfaces
orthogonal to the world lines in the Minkovsky space and the hupersurfaces
orthogonal to the geodesic lines in the Riemannian space are the invariants of the
correspondence.

VII.2. Bimetrical interpretation of the Shvartzshild solution.

Let us consider some particular cases of the general mapping considered above.Let in
the Minkovsky space the dust continuum moves on the radius to the centre. We
consider the case of the stationary motion that means time independence of the
velocity field in the Euler variables and the potentials A. In the GIFT language this
corresponds to the constant gravitational-inertional field.
In order to the metric tensor (7.1.15) does not obviously depend from the time and
pass at the infinity to the Galilean form it is necessary that the velocity at the infinity
becomes zero. Thus the next equalities have to be satisfied:

115



  x0  xk,

Va  −Vrna  −Vr xar

7.1.19

Using formulas (7.1.15) and (7.1.19) we find the expressions for three-dimensional
metric tensor: ̃kl  −gkl  g0kg0l/g00; three-dimensional vector: gl  g0l/g00  g0l/h;
three-dimensional antisymmetric tensor: fkl  ∂gl/∂xk − ∂gk/∂xl.As a result we have

g00  1 − V2, gl  nl
∂
∂r  V0V
h

, fkl  0, V0
2 − V2  1,

̃kl  kl  Drnknl,

D 
2V2  2V0V ∂∂r  V2 ∂

∂r
2

1 − V2

̃kl  −gkl  kl  Tnknl, nk  nk, V0  V0, ̃kl̃ln  nk ,

T 
2V2  2V0V ∂∂r  V2 ∂

∂r
2

V0  V ∂∂r
2 .

7.1.20

Einstein equations for the case of the constant gravitational field in the vacuum (we
consider that the dusty medium is strongly discharged and itself does not create the
field) will result to two independent expressions:
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∂
∂r

r2 ∂F∂r
1  D

 0, F  h  1 − V2 ,

D  r
2
∂D
∂r

1
1  D

 r
F
∂F
∂r

7.1.21

the solution of which has the form

D 
rg/r

1 − rg/r
,F  g00  1 −

rg
r , rg ≡ 2kM

c2
. 7.1.22

From correlations (7.1.20) and (7.1.22) we find zero and radial field components of the
4-velocity in the Minkovsky space in the Euler variables and also function  :

V0  V0  1 
rg
r

1/2
,V1  V  −

rg
r ,

V0  V ∂∂r
 V ∂

∂x
 ∂
∂s

 1.

7.1.23

Thus,/c    s/c coincides with the own time of the basis particles in the Minkovsky
and Riemann space.It follows from (7.1.23), (7.1.7) and (7.1.14) that
1  AV  P−1  1, this results in the equality of the contravariant components of
4-velocities U  V of the basis particles in the plane and curved space-time.
Covariant components U and V are connected with the equation (7.1.14). Integrating
equation (7.1.23) for  taking into account (7.1.19) we find
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  c  s  x0  2
3
rg r

rg  1
3/2
− 2
3
r3/2

rg 1/2
. 7.1.24

Using (7.1.20), (7.1.23) and (7.1.24) we obtain the expression for the interval element
of the “original” in the spherical Euler coordinates and time T of the Minkovsky space

ds̃2  c2dT2 1 −
rg
r −

dr2 2 r
rg

r
rg  1

1/2
− 2 rrg 

rg
r 

2cdTdr 1  r
rg

1/2
− r

rg
1/2
−
rg
r 1  r

rg
1/2

−

r2sin2Θd2  dΘ2.

7.1.25

Known the field of the 4-velocity in the Euler variables we find the motion law of the
continuum in the Lagrange variables (7.1.1) selecting as a time parameter 0 the own
time   /c  s/c. From (7.1.23) we have dr/ds  V  −rg/r1/2. Integrating we obtain
R − s  2/3r3/2/rg 1/2,where R is the constant of integration. Taking into account
(7.1.24) as a result we find
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r  3
2
R − c

2/3
rg 1/3,

x0  cT  R − 2
3
rg 3

2rg
R − c

2/3

 1
3/2

,

7.1.26

that determines the sought motion law in the Lagrange variables, substitution of this
law to the expression (7.1.25) results in the Lemetr interval element.Formulas (7.1.23),
(7.1.26) determine the kinematics of the dust medium moving with the acceleration on
the radius to the centre in the Minkovsky space in the gravitational field of the central
body. For the field of the three-dimensional velocity v, 4-acceleration g,
three-dimensional acceleration a and the three-dimensional force N we have:

dr
dT

 v  −c 1  r
rg

−1/2
, 1
c2
d2r
d2

 g  −
rg
2r2

,

a  d2r
dT2

 −
c2rg
2r2

1 
rg
r

−2
,

N  d
dT

mv

1 − v
2

c2
1/2

 −
mrgc2

2r21  rg/r1/2
.

7.1.27

Movement of the Lemetr basis in the Minkovsky space is described with the functions
continuous in the region 0  r   not having the particularities at the gravitational
radius. Three-dimensional velocity v and three-dimensional acceleration a are
restricted at the origin of the coordinates,v0  −c,a0  −c2/2rg. . The value of the
three-dimensional force N (7.1.27) influencing on the probe mass from the side of the
central body is smaller then in the Newton gravitation theory
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N  − kmM

r2 1  2kM
c2r

1/2
.

7.1.28

It is evident that the space components of the 4-velocity cV1 (7.1.23) and
4-acceleration gc2 (7.1.27) exactly coincide with the usual velocity and acceleration in
the non-relativistic Newton mechanics, when the radial fall of the dust having zero
velocity at the infinity on the force centre is considered. From the formulas (7.1.23)
and (7.1.27) we find the time of the basis particles fall from the distance r1  r up to
r ≥ 0 in accordance with the clock of the falling particle and in accordance with the
Minkovsky space clock T

  2
3

r1
c

r1
rg

1/2
− rc

r
rg

1/2
, 7.1.29

T  2
3

1  r1rg
3/2
− 1  r

rg
3/2 rg

c . 7.1.30

Eqn. (7.1.29) coincides with the result of the Newton theory.It follows from the
formulas (7.1.29), (7.1.30) that the time of the particle fall is finite for any r from the
range 0 ≤ r ≤ r1,both in accordance with the clock of the fallen particle and in
accordance with the clock of the Minkovsky space.

Usually in GR the time coordinate t including in the Shvartzshild solution is
introduced as a time of the external observer. The connection between the t
coordinate and T time of the Minkovsky space is determined with the formula
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T  t − 1
c  1  r

rg
1/2

1 −
rg
r − r

rg
1/2

1 −
rg
r

−1
dr 

t −
rg
c

2
3

1  r
rg

3/2
− 2 r

rg
1/2

1  1
3
r
rg − ln

1 − r
rg

1/2

1  r
rg

1/2

7.1.31

Substitution of the formula to the interval (7.1.25) forms the Schwarzschild interval.
The velocity field dr/dt of the Lemetr basis in the Schwarzschild metrics is connected
with the velocity field dr/dT  v (7.1.7) in the Minkovsky space with the
equation

dr
dt

 dr
dT

dT
dt

 dr
dT

dT
dt

 dT
dr
dr
dt

7.1.32

Whence using (4.21.31) we find

dr
dt


dr
dT

dT
dt

1 − dr
dT

dT
dr

7.1.33

that coincides with the “coordinate” parabolic velocity of the free fall in the Shvartzshild
field obtained from the equations for the geodesic. If the “coordinate” velocity in the
Shvartsshild field goes to zero when approximation to the gravitational radius then the
velocities of the particles in the Minkovsky space in the force field (7.1.28) are always
smaller than the light velocity in the vacuum and their tend to the light velocity when
r → 0, and at the gravitational radius |v| c/ 2 .It follows from (4.21.33) that if the
external observer uses the time Shvartsshild coordinate as a time of the removed
observer then the approximation to the gravitational radius demands the infinite value t
[7, 60]. The later becomes clear from the form of the formula (4.21.31) when at
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r → rg, t →  at any finite T. From our view point T should be taken as the time of the
removed observer, T in accordance with the image construction is the time in the
Minkovsky space and interval (4.21.25) is written in the “primary” coordinate system
where the radial r,angle Θ, and time T coordinates have evident metric sense and
they determine the interval in the Minkovsky space in the form

ds2  c2dT2 − dr2 − r2sin2Θd2  dΘ2. 7.1.34

At rg/r  1 the interval element (7.1.25) passes to the interval of the plane space-time
(7.1.34). Naturally besides interval (7.1.25) one can to consider any other coordinate
systems but from our view point the coordinates entering to (7.1.25) coincide with the
STR Galilean coordinates and so they are stood out with their clarity from all other
coordinate systems.

As is well known when moving the particle in the constant field its energy is kept
W0, is the time component of the covariant 4-vector of the pulse. From (7.1.14),
(7.1.24) we have for the basis particles

W0  m0c2U0  m0c2  m0c2V0  A0. 7.1.35

whence using (7.1.23), (7.1.24), (7.1.35), (7.1.19) we find

A0  1 − 1 
rg
r

1/2
,

Ak  ∂∂xk
− Vk  1 

rg
r

1/2
− r

rg
1/2
−

rg
r

1/2
nk

7.1.36

It follows from (7.1.36) that AV  0, that is in agreement with (7.1.23).
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Thus, the solution of the Einstein equations determined the metric g (7.1.25) in the
coordinates of the Minkovsky space, field velocity V and vector-potential A.
From (7.1.36) we find the tensor of the constant gravitational field F in the Minkovsky
space

F 
∂A
∂x

−
∂A
∂x

, Fkl  0,

F0k  − ∂A0

∂xk
 −

rgnk

2r2 1  rg/r
.

7.1.37

Similarly to the electrodynamics one can see that the tensor F for the case of the
spherical symmetry does not contain the analogue of the “magnetic” field H . The
intensity of the gravitational field Ek taking into account (7.1.28) has the form

Ek  F0k  N
m0
nk  − kMnk

r2 1  2kM
c2r

1/2
.

7.1.38

Let us introduce the “induction” vector Dk  Ek, where

 ≡ − 1  2kM
c2r

1/2 1
k
, Dk  M

r2
nk. 7.1.39

Thus, for the case of the spherically-symmetrical gravistatic field outside of the
creating mass the expressions are valid
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∇  E  0, ∇  D  0, H  0. 7.1.40

Whence the energy density of the gravistatic field  in analogy with the electrostatics
is calculated in accordance with the formula

  ED
8

 − kM2

8r4 1  2kM
c2r

1/2
.

7.1.41

Note that energy density has no a particularity at the gravitational radius.Field energy
W outside of the sphere with the radius r0 is determined with the equation

W  
r0



4r2dr  − Mc
2

2
1 

rg
r0

1/2
− 1 , 7.1.42

which passes to the Newton expression W  −kM2/2r0 at rg/r  1.
Calculation of the known GR effects in accordance with the metrics (7.1.25) connected
with the path form results in the same result as in the Shvartsshild field. The difference
reveals in the expressions depending on the time and on the time derivatives. For the
light beams from (7.1.25) spreading on the radius at ds̃2  0 we have:

dr
dT 1

 c1r  c 1 − r
rg

1/2

1  r
rg

1/2 r
rg

1/2
− 1 − r

rg

−1
,

7.1.43
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dr
dT 2

 c2r  c 1  r
rg

1/2

r
rg − 1  r

rg
1/2 r

rg
1/2
 1

−1
,

7.1.44

where (7.1.43) corresponds to the velocity of the spreading beams, and (7.1.44)
corresponds to the velocity of the converging ones. At r  rg the expressions (7.1.43),
(7.1.44) are negative that is the beams spread only in one direction inside.
Note that c1rg  0.So the time of the light signal spreading from r  rg to r0  rg
tends to infinity.

c1|rrg  0; |c1|≤ c equal sign takes place at r → 0; r → .
c1|rrg  0; |c1|≥ c equal sign takes place at r → 0; r → .
|c2| has a maximum at the r  3rg,c23rg  c 7  3 /11.

For converging beams the time of the signal spreading between any 0 ≤ r1   and
0 ≤ r2   is finite. If rg/r  1, then

c1 ≃ 1 − 0.5rg/r1/2 − rg/r c,

c2 ≃ − 1 − 0.5rg/r1/2 − rg/r c.

VIII.The Mössbauer experiment in a rotating system
and the extraenergy shift between emission and

absorption lines using Bimetric theory of
gravitational-inertial field in Riemannian

approximation explained
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VIII.1.The Mössbauer experiment in a rotating system
and the extraenergy shift between emission and

absorption lines.
 In a series of papers published during the past decade with respect to
Mössbauer experiments in a rotating system [71]-[75],it has been
experimentally shown that the relative energy shift ΔE/E between the source of
resonant radiation (situated at the center of the rotating system) and the
resonant absorber (located on the rotor rim) is described by the relationship

ΔE/E  −ku2/c2, 8.1.1

where u is the tangential velocity of the absorber, c the velocity of light in vacuum, and
k some coefficient, which – contrary to what had been classically predicted equal 1/2
(see for example [35]) – turns out to be substantially larger than 1/2.
It cannot be stressed enough that the equality k  1/2 had been predicted by general
theory of relativity (GTR) on account of the special relativistic time dilation effect
delineated by the tangential displacement of the rotating absorber, where the “clock
hypothesis” by Einstein (i.e., the non-reliance of the time rate of any clock on its
acceleration [35]) was straightly adopted. Hence, the revealed inequality k  1/2
indicates the presence of some additional energy shift (next to the usual time dilation
effect arising from tangential displacement alone) between the emitted and absorbed
resonant radiation.

Fig.1.General scheme of Mössbauer experiment sinrotating

systems.A source of resonant radiation is located on the

rotational axis;an absorber is located on the rotor rim,

while a detector of gamma-quanta is placed outside the

rotor system,and it counts gamma-quanta at the time moment,

when source,absorber and detector are aligned in a straight line.

Adapted from [75].
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VIII.2.The inertional field equation in Riemannian
approximation

We write the inertional field equations in Riemannian approximation in the form

Ri
ac k 

ac

c2
Ti
ac k − 1

2
Tac , 8.2.1

where ac is dimensional constant with absolute value equal to 1.
We intoduce now 4-potential U,  0,1,2,3 in 4-D Minkovski space-time

U  U0,U1,U2,U3 8.2.2

We define a tensor of the accelerations by a  ∂U,,  0,1,2,3

a 

∂U0

∂x0
∂U0

∂x1
∂U0

∂x2
∂U0

∂x3
∂U1

∂x0
∂U1

∂x1
∂U1

∂x2
∂U1

∂x3
∂U2

∂x0
∂U2

∂x1
∂U2

∂x2
∂U2

∂x3
∂U3

∂x0
∂U3

∂x1
∂U3

∂x2
∂U3

∂x3

8.2.3

In 3-D we obtain a  ∂U,,  0,1,2

a 

∂U0

∂x0
∂U0

∂x1
∂U0

∂x2
∂U1

∂x0
∂U1

∂x1
∂U1

∂x2
∂U2

∂x0
∂U2

∂x1
∂U2

∂x2

8.2.4

In polar coordinates we obtain

a 

∂U0

∂x0
∂U0

∂r
∂U0

∂
∂U1

∂x0
∂U1

∂r
∂U1

∂
∂U2

∂x0
∂U2

∂r
∂U2

∂

8.2.5

We assume now that U0  0,U1  U1r,U2  U2.From Eq.(8.2.5) we obtain
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a 

0 0 0

0 ∂U1

∂r
0

0 0 ∂U2

∂

8.2.6

We assume now that U2  const

a 

0 0 0

0 ∂U1

∂r
0

0 0 0

8.2.7

VIII.3.The Mössbauer experiment in a rotating system
explained

In the inertional field equations (8.2.1) we now carry out the transition to the limit of
nonrelativistic mechanics.This is, for instance, the case in the nonrelativistic rotating
system considered above in subsection VIII.1.Thus the acceleration of a particle of
zero velocity lies in the direction of increasing r and is equal to

a  2r. 8.3.1

Fig.2.

U1  2r2/2. 8.3.2

This formula (8.3.2) is in accordance with the usual expression for the centrifugal
force. We remind that the expression for the component g00

ac of the metric tensor (the
only one which we need) was found, for the limiting case which we are considering, in
subsection II

g00
acr  1 

2acr
c2

. 8.3.3
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Further, we can use for the components of the inertion tensor the expression (8.2.7),

where U1  2r2/2.Of all the components Ti
ac k, there thus remains only

T1
ac 1  1

2
2r. 8.3.4

The scalar Tac  Ti
ac i will be equal to the value T1

ac 1  ∂U1/∂r  2r.
We write the field equations in the form (8.2.1). For i  k  0 we get

R0
ac 0  − 1

2c2
2r 8.3.5

and i  k  1 we get

R1
ac 1  1

2c2
2r. 8.3.6

Remark 8.3.1.Note that in the approximation we are considering all the other
equations vanish identically.

Remark 8.3.2.For the calculation of R0
ac 0 from the canonical general formula, we note

that terms containing derivatives of the quantities Γkii are in every case quantities of
the second order. Terms containing derivatives with respect to x0  ct are small
(compared with terms with derivatives with respect to the coordinates x,  1,2,3)
since they contain extra powers of 1/c. As a result, there remains

R00
ac  R0

ac 0  ∂Γ00
 /∂x, 8.3.7

where

Γ00
 ≃ − 1

2
gac 

∂g00ac

∂x
. 8.3.8

Substituting (8.3.8) into (8.3.7) we get

R0
ac 0 ≃ 1

c2
Δacr  − 1

2c2
2r. 8.3.9

Finally we obtain radial Poisson equation
dracr

dr
 − 1

2c2
2r. 8.3.10

By integration one obtains

acr  − 1
8c2

2r2. 8.3.11

Substituting (8.3.11) into (8.3.3) we get

g00
acr  1 

2acr
c2

 1 − 1
4c2

2r2. 8.3.12

Suppose that light flashes are emitted from a point r  r1 at an interval Δt. The field
being static, the flashes will reach the observer at r  r2 after the same interval Δt.
The ratio of the proper time intervals at these two points is

Δ1
Δ2


g00
acr1
g00
acr2

. 8.3.13

Hence, the ratio of frequences is
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1
2

 Δ2
Δ1


g00
acr2
g00
acr1


1 − 1

4c2
2r2

2

1 − 1
4c2

2r1
2
. 8.3.14

Substituting r1  0 into (8.3.14) we get

1
2

 Δ2
Δ1


g00
acr2
g00
ac0

 1 − 1
4c2

2r2
2  1 − 1

8c2
2r2

2  1 − u2

8c2
. 8.3.15

Therefore

ΔE/E  − 1
2
u2

c2
− u2

8c2
 − 1

2
 1
8

u2

c2
 −0.625 . 8.3.16
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 [32] Trzȩsowski A.,Effective dislocation lines in continuously dislocated
crystals.Part. III. Kinematics, Journal of Technical Physics, 49,
79-99, 2008.

 [33] Kleinert H.,Gauge fields in condensed matter, Vol. II,Part III.
Stresses and defects,World Scientific, Singapore, 1989.

 [34] Kleinert H., Gauge fields in condensed matter, Vol. II,Part
IV.Differential geometry of defects and gravity with torsion,
World Scientific, Singapore,1989.

 [35] Möller C., The Theory of Relativity, Clarendon Press, 1955,
Science. 386 pages.
http://www.archive.org/details/theoryofrelativi029229mbp

 [36] Will C.M.,1993, Theory and Experiment in Gravitational Physics.
Cambridge University Press, Cambridge, 375 pages.

 [37] Will C. M., Gravitational radiation from binary systems in
alternative metric theories of gravity - Dipole radiation and the
binary pulsarAstrophysical Journal, Part 1, vol. 214, June 15,
1977, p. 826-839.

 [38] Dobrescu I., Ionescu-Pallas N.,Variational and Conservative
Principles in Rosen’s Theory of Gravitation, Balkan Journal of

132



Geometry and Its Applications, Vol. 4, No. 1, 1999
 [39] Ashby N.,Bertotti B.,1984, Phys. Rev. Lett., 52, 485.
 [40] Bertotti B., Grishchuk L.P., 1990, Class. Quantum Grav., 7, 1733.
 [41] Katanaev M.O., Volovich I.V., Theory of defects in solids and

three-dimensional gravity, Ann.Phys:216(1992) 1.
 [42] Katanaev M.O., Gometric theory of defects,

cond-mat/0407469 (2004).
 [43] Hildebrant S.R, Senovilla M.M, About congruences of reference.

"Some topics on general relativity and gravitational radiation".
Proceedings of the "Spanish Relativity Meeting’96" Valencia
(Spain), Sep.10-13,1996, 312 pages. Editor Sáez D., Publisher:
Atlantica Séguier Frontiéres,1997.ISBN 2863322184.

 [44] Mitśkevich N.V., Relativistic physics in arbitrary reference frames.
Nova Science Publishers (February 7,2005),166 pages.

 [45] Liosa J.,Soler D., Connections associated with inertial forces.
"Some topics on general relativity and gravitational radiation".
Proceedings of the "Spanish Relativity Meeting’96" Valencia
(Spain), Sep.10-13,1996, 312 pages.Editor Sáez D., Publisher:
Atlantica Séguier Frontiéres,1997.ISBN 2863322184.

 [46] Barreda M.,Olivert J., L-Rigidity In The Post-Newtonial
Approximation. "Some topics on general relativity and
gravitational radiation".Proceedings of the "Spanish Relativity
Meeting’96" Valencia (Spain), Sep.10-13,1996, 312 pages.
Editor Sáez D., Publisher: Atlantica Séguier Frontiéres,
1997.ISBN 2863322184.

 [47] Formiga J. B.,Romero C.,On the differential geometry of curves
in Minkowski space.American Journal of Physics – November
2006 – Volume 74, Issue 11, pp.1012-1016.
http://arxiv.org/abs/gr-qc/0601002v1

 [48] Kleinert H.,Nonabelian Bosonization as a Nonholonomic
Transformations from Flat to Curved Field Space.
http://arxiv.org/abs/hep-th/9606065v1

 [49] Fiziev P.,Kleinert H., New Action Principle for Classical Particle
Trajectories In Spaces with Torsion, (hep-th/9503074).

 [50] Fiziev P.,Kleinert H.,Euler Equations for Rigid-Body - A Case for
Autoparallel Trajectories in Spaces with Torsion,(hep-th/9503075).

 [51] Deser S.,Jackiw R.,’t Hooft G.,Three-Dimensional Einstein Gravity:
Dynamics of Flat Space.Annals of physics 152. 220-235 (1984).

 [52] Liebscher D.-E.,Yourgrau W.,Classical Spontaneous Breakdown of
Symmetry and Induction of Inertia. Annalen der Physik.Volume 491
Issue 1, Pages 20 - 24.

133



 [53] Haisch B.,Rueda A.,Puthoff H. E.,"Inertia as a zero-point Field
Lorentz Force," Phys. Rev. A 49, 678 (1994).

 [54] Bini D.,Cherubini C., Chicone C.,Mashhoon B.,Gravitational
induction.Class. Quantum Grav. 25 (2008) 225014,14pp.

 [55] Sciama D.W., On the origin of inertia.Monthly Notices of the
Royal Astronomical Society, Vol. 113, p.34.

 [56] William D. McGlinn, Introduction to relativity.JHU Press, 2003,
205 pages.

 [57] Kleyn A., Lorentz Transformation and General Covariance Principle
 [58] Ortin T.,Gravity and Strings.
 [59] Eckehard W. Mielke, Affine generalization of the Komar complex of

general relativity, Phys. Rev. D 63, 044018 (2001)
 [60] Yu. N. Obukhov and J. G. Pereira, Metric-affine approach to teleparallel

gravity, Phys. Rev. D 67, 044016 (2003), eprint arXiv:gr-qc/0212080
(2002)

 [61] Giovanni Giachetta, Gennadi Sardanashvily, Dirac Equation in Gauge
and Affine-Metric Gravitation Theories, eprint arXiv:gr-qc/9511035 (1995)

 [62] Frank Gronwald and FriedrichW. Hehl, On the Gauge Aspects of
Gravity,eprint arXiv:gr-qc/9602013 (1996)

 [63] Yuval Neeman, Friedrich W. Hehl, Test Matter in a Spacetime with
Nonmetricity,eprint arXiv:gr-qc/9604047 (1996)

 [64] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, General
relativity with spin and torsion: Foundations and prospects,

 [65] Landau L.D., Lifshits E.M.,The classical theory of fields. Fourth Edition:
Volume 2. Course of Theoretical Physics Series.

 [66] Jones P.,Munoz G.,Ragsdale M., Singleton D.,The general relativistic
infinite plane.http://arxiv.org/abs/0708.2906v1

 [67] Kluber H.,The determination of Einstein’s light-deflection in the
gravitational field of the sun.Vistas in Astronomy,Volume 3, 1960,
Pages 47-77.

 [68] Vargashkin V.Ya., LIGHT BEAM PRECESSION EFFECT IN
CIRCUMSOLAR SPACE, Gravitation & Cosmology, Vol. 2
(1996), No. 2 (6), pp.161–166.

 [69] Nieuwenhuizen T. M., Einstein vs Maxwell: Is gravitation a
curvature of space, a field in flat space, or both?
EPL (Europhysics Letters) Volume 78, Number 1.
http://arxiv.org/abs/0704.0228v1

 [70] Podosenov S. A., Space-Time and Classical Fields of Bound
Structures (Sputnikpu blishers, Moscow,2000).

 [71] A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Phys. Scr. 77 (2008)
035302.

134



 [72] A.L. Kholmetskii, T. Yarman, O.V. Missevitch and B.I. Rogozev, Phys. Scr.
79 (2009) 065007.

 [73] A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Int. J. Phys. Sci.6 (2011)
84.

 [74] A.L. Kholmetskii, T. Yarman, M. Arik and O.V. Missevitch, AIP Conf. Proc.
1648 (2015) 510011.

 [75] T. Yarman, A.L. Kholmetskii, M. Arik, B. Akkuş, Y. Öktem, L. A. Susam and
O. V.Missevitch, “Novel Mössbauer experiment in a rotating system and the
extra-energy shift between emission and absorption lines”, Can. J. Phys.
(2016).

 [76] J.Foukzon, S.A.Podosenov, A.A.Potapov, E.Menkova,Bimetric Theory of
Gravitational-Inertial Field in Riemannian and in Finsler-Lagrange
Approximation,arXiv:1007.3290 [physics.gen-ph]

135


