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We consider the properties and implications of three n > 4 multidimensional geometries. These are 
Descartes geometry [1], the properties and implications of which are enumerated in [2-6]. Both 
macroscopic and microscopic implications of these geometries are presented. We also develop several 
forms of complex Minkowski space in terms of a generalized metric containing terms derived from real 
and imaginary coordinates. The metric of the space is real and therefore physical [7-17]. This geometry 
is found to be one-to-one with Kaluza-Klein geometry [18-20] in which there has been much recent 
interest in developing M-Theory, in particular in the apparent relationship between the gravitational and 
electromagnetic fields often called Quantum Gravity. We have discussed the properties and 
implications of complex geometries in a number of works. The basic structure of the geometries is based 
on the construction of complexified dimensions, consisting of orthogonal real and imaginary parts. We 
examine the implication of a complex 8-space geometry in which we introduce imaginary components 
for each real spatial dimension, X = (x,y,z) and temporal dimension, t. 

 
 

1. Some Predictions of Complex Geometries  
 
The complexification of Minkowski space,  yields an 8D geometry, . The 8D space is 

the least number of dimensions to accommodate nonlocality and anticipatory incursion in complex 
symmetry. This 8-space is also Lorentz invariant. Additional dimensional spaces (XD) are also 
considered, such as 12D spaces that also yield an approach to a unification of macro and micro processes 
[7,11,18]. 
 We have solved the Schrödinger equation and Dirac equation in this complex 8D Minkowski space 
[16,17] and also formulated a field theoretical model that has implications for both MHD and BCS type 
phenomena [19]. For additional symmetry considerations, we have also introduced a 12D space in 
which we consider a 3-component time which is complexified [11,18]. Let us briefly list some of the 
implications of n > 4 geometries. 
 
 Remote connectedness properties exist between physical events and processes in spacetime. 
 Anticipatory or precognitive-like processes are allowed in temporal processes. 
 Superluminal ‘signals’ appear to exist in 4-space. 
 Tachyonic ‘particles’ are predicted. 
 Coherent nondispersive phenomena exist, such as plasma oscillations of individual particle states 

like ‘ball lightning’ or solar activity, possibly ‘sun spots’ [20,21]. 
 A mechanism for physical effects such as conductivity and dielectric properties of plasmas in 4-

space based on vacuum polarization properties in complex space [19,20]. 
 A model for unification of electromagnetic and gravitational phenomena [12,18] through the one-

to-one mapping of the spinor calculus and twister algebra of the complex space [22]. 
 A mechanism of formulating the so-called ‘collapse of the wave function’ in terms of the geometric 

structure of space and interpretation of the ‘observer effect’ [23].  
 Possible interpretation of nonlinear effects in multidimensional geometries as an interpretation of 

4M 4 4M  
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the mechanism of the collapse of the wave function to a particular state. One possible interpretation 
of such a model is that ‘consciousness’ generates ‘geometric reality’ (or constraints on reality) 
which relate to a particular ‘potentia’ (Heisenberg's term or de Broglie pilot wave) being actualized 
as a specific event, which is a possible mechanism of the physical effects or a manifestation of 
thought [14,22]. Such an interpretation is key to a model which may include psi phenomenon, since 
it now demonstrates a mechanism in which intention (goal) can be physically actualized [14]. 

 Application may be made to antenna theory [21]. 
 Formulation of certain processes in biological tissue is examined [24-27]. 
 

We list some examples of remote connectedness: 
 

 Bell's theorem [28], 
 Young's double slit experiment, 
 Aharanov-Bohm experiment [29] 
 Supercoherence phenomena, such as plasma coherent states and superfluidity [19,20], 
 Remote perception [30]. 
 

Some examples of coherent ‘non-dispersive’ phenomena in which dispersion is overcome by 
recoherence are: 

 
 Soliton-like phenomena of plasma-phonon-electron interactions [20]. 
 Solving the Dirac equation in complex 8-space and the Fermi-Dirac vacuum state model  
 Complexifying in 8-space, Non-Hertzian and Hertzian waves [12]. 

 Ball lightning is a coherent electrostatic soliton-like phenomenon. These phenomena are modeled 
after Prigogine [31] dissipative structures and catastrophe phenomena [32].  

 Vortices in helium II represent soliton-like structures [22]. 
 

 
 

Figure 1. Causality in HD space. Representing a lightcone schematic. 1a represents closed time-like loops in 4-
space where the vertical dimension is time, t and the horizontal dimension is X = x,y,z. 1b represents a non multiply 
connected world line in n > 4D where no CTL or multi-connected ‘nows’ exist. Figure 1c represents the view of 
Fig. 1b where the future time dimension comes out of the paper, X is in the plane of the paper and no multi-
connected world lines exist and only single valued ‘nows’ exist. 
 

Certain spacetime relationships that involve Closed Time-like Loops (CTL) paradoxes can be 
resolved utilizing formulations in terms of multidimensional geometries (Fig. 1). The issues involved 
are presented and extensively discussed in [3]. In the so-called twin paradox, only future time travel is 
possible in non-inertial frames because time dilation only occurs in the rapidly accelerating frame (Fig. 
2).  

For time machines of the relativistic Twin Paradox, time moves into the future. At each point along 
a world line in spacetime there are a number of potential states in which one is actualized with 

F
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preferential probability (or equal as in the Schrödinger cat paradox). Time machines that move into the 
past from the future represent CTLs (Fig.3). Figure 4 represents various spacetime connections in a 
subset of 3D spacetime of the X,ict Minkowski 4D spacetime. Figure 5 represents various world line 
connections on the Minkowski light cone including an unconnected past and future, a single valued 
world line and a multivalued CTL world line. See Fig. 5.  

   

 
 
Figure. 2. The relative velocities of two frames of reference,  , taken as the rest frame and, '  as the moving 
frame, having  a relative velocity, v. The x,z plane is represented as the abscissa and ordinate respectively in 2-
space. Not represented is the y coordinate extending out of the plane in this representation of two relative 3-space 
Euclidian coordinates (x,y,z) for   and (x’,y’z’) for ' . 

 
In order to describe processes involving apparent future-to-past lightcone connections, one has 

paradoxes involving CTL, multi-valued ‘nows’ and ‘accelerated times’ which involve the paradox of 
moving more slowly than a rest frame! These paradoxes cannot be resolved in the usual Minkowski 4-
space metric. In n > 4D spaces we have the possibility of the resolution of these paradoxes and the 
possibility of a more definitive formalism and description of some of the previously listed phenomena 
(Fig. 3). 
 

 
 
Figure 3. Possible versus actual. Several types of world lines are depicted. Figure 3a depicts a worldline with a 
single-valued “now”, but Figs. 3b and 3c depict a multi-valued present. There is a dual world: constancy and 
change, absolute versus relativistic and Mach’s Principle, and certainty versus uncertainty in terms of Einstein 
and Bohr ( , )x p    . 
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Figure 4. Our location is measured in space and time. In this figure we represent two dimensions of x,y,z as x1 
and x2 and of time, t on the ordinate. Causal connections in real space are such that A can cause B by passage of 
time; at one time,   and   are correlated as effects at a distance.   represents instantaneous connections. 

 
We have examined several forms of complex geometries. The complexification of Minkowski 4-

space, , gives rise to an 8D complex Minkowski space,  in which we take each of the 
8D as an independent orthogonal dimension and that the real and imaginary components can be 
considered as two independent 4-space lightcones,  and ; 4-space is then a slice 

through 8-space, rather than a subset or subspace formed by a projected geometry distorting the 
projection, causing variation in the defined variable length and vector orientation whereas orthogonal 
slices maintain uniformity (Fig. 4) [33,34].  

 

 
 

Figure 5. One can consider three classes of Minkowski diagrams with three types of causal connections of events 
along world lines. In Fig. 5a no connection exists between past and future. In Fig. 5b only one connection between 
past and future exists for a single valued now for the usual lightcone world line connection; and in Fig. 5c more 
than one connection of past and future exists as CTL. For example, one path to the future and another from the 
future hook into its point “B” past to point A.  
 

We have also examined other forms of the complex geometric model [11,12]. For symmetry 
considerations, we consider an extension of the temporal variable as the pseudoscalar 

 Then we complexify each of these three temporal dimensions as 

  We have handled the complexification of spatial dimensions 

similarly in [7-18]. We now have a complex form of Minkowski space which is a 12D space with the 

4M 4 4M̂  

Re Re( , )X t Im Im( , )X t

ˆ ˆ ˆ.x y zt t x t y t z  
 Re Im ,x x xt t it 

Re Im ,y y yt t it  Re Im .z z zt t it 
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12D listed respectively as:   

 

 
 

Figure. 6. The figure provides a relatively simple representation of real and imaginary components for a xRe, tRe, 
tIm space. We extend this picture to a real and imaginary vertical time plane. tRe, tIm and a real and imaginary space 
plane of xRe, xIm for a 5D complex plane. See Fig. 7.

  
In considering certain classes of transformations we examine the manner in which moving and rest 

frames, ( ) form and transform. We consider the fact that both these geometries appear to demand 

remote connectedness and superluminal signal propagation in the subset real 4-space, 4M . In Fig. 6 we 

represent various of events in real space and time. In Fig. 3a is represented the usual Minkowski 

spacetime metric, which is like a 4D Pythagorean theorem for a right triangle where 2 2 2h a b  , the 
sum of the square of the hypotenuse is equal to the sum of the other two sides. 

 
 
2. Multidimensional Geometric Models and Macroscopic Remote Connectedness  
 
It appears that a resolution of the problem of closed time-like loops (CTL) lies in developing a model 
in terms of a space of higher dimensionality, HD. What appears to be a closed loop in 4D spacetime 
may in fact not have an intersection in an HD space [8,11,18]. See Fig. 3. Normal macroscopic causality 
demands that no point in the forward lightcone is connected to another point outside the forward 
lightcone; that is, all signals are time-like [8,21]. Real events involve simultaneity which is defined by 
signals that do not exceed the velocity of light,  where v is the velocity of propagation and c is the 
velocity of light. Causality conditions for superluminal signals in constructing a Lorentz invariant 
quantum field theory are given in [7,8,12]. Tipler examines the problem of CTLs in general relativity 
for a rapidly rotating gravitational field [35]. The relationship of causality and locality conditions is 
discussed in [8].  

 
 First, the case in which there is no connection of past and future  

is represented, i.e., there is no causal connection.  
 

 Second, the usual Minkowski diagram for a single valued present. In quantum mechanical terms, 
the collapse of the wave function describing the system under consideration allows only one world 
line. 
 

 Third, the present or ‘now’ condition is not single valued. The event wave function no longer 
collapses to a point, localized region of spacetime, and more than one world line can represent the 
present.  

Re Re Re Im Im Im, , , , , ,x y z x y z Re Re Re, , ,x y zt t t Im Im Im, , .x y zt t t

,A 

v c



Richard L Amoroso & Elizabeth A Rauscher - Complex Minkowski Spaces 
 

7 
 

 

 
 

Figure 7. Spacetime of two intersecting complex planes in 8D described by the x components of space and time. 
Here x = xRe + ixIm and time, t is t = txRe + itxIm. Event P in this complex plane will be represented as: P(x + itx). 
This figure can be extended to 3D of space and time where P will be represented as: P(x + itx, y + ity, z + itz). 
 

In fact, for point-like events, one could conceivably have an infinite number of world lines passing 
through the present. Everett, Graham and Wheeler have examined the quantum mechanical implications 
of a multi-valued universe theory [36]. More information about a future event may then be traced back 
to the present via another world line and that actual time sequencing experienced is associated with the 
first world line or possibly a third world line. See Fig. 3.  

 

 
 

Figure 8. Represents a 1D circumference and a chord across the circle in a 2D space. In a lower dimensional 
space the velocity of propagation appears superluminal, v > c and luminal in the hyperdimensional space, v c
. In analogy the velocity of propagation for Bell’s Theorem in 4-space is v > c or instantaneous, but in complex 
8-space signaling can be luminal, v = c. 
 

Of course, one of the major problems of a theory containing multivalue solutions is the difficulty in 
defining a reasonable and useful causal relationship. The 4-space description gives us CTL which yield 
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difficulties in describing prior and post event occurrences [27], Fig. 1. Intuitively, considering HD 
geometric models appears to reconcile the problem of CTL. For example, a helical world line in a 3-
space would be single valued but would appear to contain multiple intersections if viewed at a 45° angle 
to the vertical helical axis as represented in a 2D space. This representation would contain multiple 
intersections even with a large pitch of the angle to the perpendicular to axis radius and hence act like 
a CTL [29]. See Fig. 3. 

 
 

Figure 9. Complex time model of remote connectedness. We have the usual physical spatial separation of events 
on the x axis in the xRe, tRe plane which appears separated by a zero separation by ‘moving” to the xIm, tIm plane. 
The separation between event P1 and P2 appears contiguous or simultaneously nonlocally correlated from the 
perspective of P3. In an n > 4 space or an 8D space, nonlocal events can be correlated in such a manner as to not 
require standard signal propagation. 
 

A number of HD geometries have been examined, in terms of reconciling complex anticipation and 
precognition-like signaling and causality as well as their possible relationship to superluminal signals 
[8,37-39]. In particular we have examined some 5 and 6D geometries where the additional dimensions, 
XD are space-like and time-like. In [8], instead of hypothesizing a model which involves energy 
transmission and associated problems of energy conservation, we chose to develop a model in which 
remote information is accessed in 4-space as though it was not remote in a HD geometry.  
 

 
 
Figure 10. Four events in a complex plane. P1 is at the origin. Event P is marked by non-zero spatial and temporal 
separation from the origin. P1 and P2 are separated in space but synchronous in time. P1 and P3 are separated in 
time, but there is no spatial separation. Event P4 is located on the imaginary time axis; (b) Remote and normal 
connections of events P1 and P2 as viewed by an observer at P4 such that space-like separation, x(P2) – x(P1), 
between the events P1 and P2 is zero; (c) Remote and normal connections for zero time-like separation between 
the events P3 and P1 as viewed by an observer at P4, such that, t(P3) – t(P1) = 0. 
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Relativity theory formally describes the relationship of macroscopic events in spacetime and, in 
particular, their causal connection is well specified. HD geometries appear to reconcile anticipation or 
precognition and causality and define a formalism in which the spatial and temporal separation of events 
in 4-space appear to be in juxtaposition in the HD geometry. This model can well accommodate 
information and perhaps energy transmission conditions as we will discuss in more detail in this volume. 
See Fig. 9 which represents a subset of the geometry we use in the present approach. There appears to 
be a reasonable relationship between these complex spaces and real 4, 5 and 6D spaces. The generalized 
causal relations in the complex space are consistent with the usual causality conditions, and exclude the 
CTL paradox. Multidimensional models appear to reconcile Maxwell's equations with the structure of 
general relativity in the weak gravitational field limit having some quantum mechanical features such 
as quantum nonlocality.  

 
 

Figure 11. In the complex space multidimensional model, we introduce, in addition to the usual orthogonal 4-
space, four imaginary components, three spatial and one temporal. This is necessary in order to model remote 
connectedness and to retain the causality and symmetry conditions in physics. We consider the eight orthogonal 
dimensions to be constituents of two intersecting lightcones, one real (xRe, tRe) and the other (yIm, tIm) coordinates. 
 

We introduce a complex 8D matrix in which the real components comprise the usual 4-space of 
three real space components and a real-time component and four imaginary components composed of 
three imaginary space components and one imaginary time component. See Fig. 10. Hansen and 
Newman [33,34] and Rauscher [7-19] developed the properties of a complex Minkowski space and 
explored the properties of this geometry in detail. The formalism involves defining a complex space 

 where the metric of the space is obtained for the line element  

where indices  and  run 1 to 4. 
In defining conditions of causality for ds2 = 0 for the metrical form we have the usual 4-space 

Minkowski metric with signature (+++-) 
 

                                                (1a)  

 
using units c  =  1 and  and  where the indices  and  run 

Re ImZ X iX    2 *ds g dZ dZ 


 

2ds g dx dx 


1 2 3, ,dx dx dx dy dx dz   4dx cdt  
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1 to 4; where also  
 

                      (1b) 

 
which is a sixteen-element matrix where the trace, tr = 2.  
 
 

 
 
Figure 2.12. Tachyon and tardon signals are represented in the plot of energy versus velocity, as 

, .v c E   Perhaps tunneling through the velocity barrier from  v <  c  to  v > c  can occur so that .E    

 
 In complex 8D space, we have for our differential line element with coordinates labeled 

 (in which dZ is complex and  and are themselves real), with a 

complex matrix where  is analogous to such that 

 

                   
          (2) 

 

so that, for example,  where   is a 64-element matrix. We can write 

in general for real and imaginary space and time components: 
 

                                  (3) 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g

 
 
 
 
  

Re ImdZ dX idX    RedX ImdX

 g

2 *ds dZ dZ 


* 2 2
Re Im( ) ( )dZ dZ dX dX    

   
   

2 2 2 2 2
Re Im Re Im

2 2 2 2 2
Re Im Re Im

ds dx dx dy dy

dz dz c dt dt
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Figure 13. Real time separation between event E and event S on the real X axis can be made to appear contiguous 
by accessing the tIm axis in 5D space as a subset of 8D space. The apparent velocity, vRe is denoted as vxt = vxRetRe. 
Access to tIm through a velocity vtRetIm along the tIm axis run via this signal propagation can make vxRetRe appear 
instantaneous as vxRetRe goes to infinity. This figure corresponds to the remote connection points P1 and P2 via 
access to P3 in Fig. 9 and also 9b. 
 

 
 
Figure 14. The separation of two events S and E along the real-time axis, tES. The anticipatory time separation 
does not violate CTL, if we have access to the imaginary space coordinates, XIm = xIm, yIm, zIm. The velocity of 
propagation on xIm, tRe space is vtRe, xIm.  Comparison with Fig. 9c the event P1 corresponds to S, and P3 to E, and 
S’ to E at a velocity of vtRe, xIm from S’ to P4. Then E is an anticipatory event from the S frame of reference. At 
the vantage point of E at the future time can appear present and past events S can be anticipated when having 
access to S’ is possible. The space comprises a 7D geometry. 

 

In [7] we represent the three real spatial components,    as dX and the three 

imaginary spatial components,  as  and similarly for the real-time component 

 and  We then introduce complex spacetime-like coordinates as a space-like part 

 and a time-like part  as imaginary parts of X and t [8].  

Now we have the invariant line elements as  

Re ,dx Re ,dy Re ,dz

Im ,dx Im ,dy Imdz ImdX

Redt dt Im .dt d

Imx  Imt 
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        (4) 

 

again where we choose units where   and 
 

          (5) 

and 
           (6) 

 
as our complex dimensional component [7,8]. We use 
 

      
         (7) 

and 

 
.          (8) 

 
Recalling that the square of a complex number is given as the modulus 
 

                     (9) 

 
for  and  real. The fundamental key to this set of calculations is that the modulus of the product 

of complex numbers is real. Therefore, we have the 8-space line element 
 

         (10) 

 
Causality is defined by remaining on the right cone, in real spacetime, as  
 

             (11) 

 
using the condition c = 1. Then generalized causality in complex spacetime is defined by 
 

      (12) 

 
in the generalized light cone 8D space. See Fig. 11. 

Let us calculate the interval separation between two events or occurrences Z1 and Z2 with 
real separation  and imaginary separation . Then the 

distance along the line element is and it must be true that the line 

interval is a real separation. Then  
 

       (13) 

or 

2 2 2 22 ' ' ' 's x c t x t   

2 1c c 

Re Im'x X iX 

Re Im't t it 

22 2 2
Re Im' 'x x X X  

22 2 2
Re Im' 't t t t  

  Re Im Re Im' ' '*x x x X iX X iX   

ReX ImX

2 2 2 2 2 2 2
Re Re Im Im

2 2 2 2
Re Re Im Im

s x c t x c t

x t x t

   

   

2 2 2 2 2 2
Re Re Re Res x c t x t   

2 2 2 2 2
Re Re Im Ims x t x t   

Re Re Im Im, , ,x t x t

Re 2Re 1Rex x x   Im 2Im 1Imx x x  
2 2 2 2 2

Re Im Re Im( )s x x t t     

2 2 2
2,Re 1,Re 2,Im 1,Im

2 2
2,Re 1,Re 2,Im 1,Im

( ) ( )

( ) ( )

s x x x x

t t t t
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Because of the relative signs of the real and imaginary space and time components and in order to 

achieve the causality connectedness condition between the two events, or , we must "mix" space 
and time. That is, we use the imaginary time component to effect a zero space separation. We identify

 with one spacetime event causally correlated with another spacetime event,  

[8]. See Fig. 9. By introducing the imaginary time component, one can achieve a condition in which the 
apparent separation in the real physical plane defined by xRe, tRe is zero, given access to the imaginary 
time, tim, or the xRe, tim plane yielding spatial nonlocality. 

The lightcone metric representation may imply superluminal signal propagation between an event 
A transmitter and even in the four-real subset space by the event B (receiver) or two simultaneously 
remotely connected events. Separation will not appear superluminal in the 8-space representation. The 
causality conditions, which do not contain closed time-like loops, are for the complex 8-space geometry, 
where 4-space is a cut through the 8-space [8]. Newton examines causality conditions in 4-space with 
superluminal signals [40] and the problem of closed time-like loops posed by Feinberg's classic 
"Tachyon" paper [41,42]. These problems appear to be resolved by considering spaces of higher (> 4D) 
dimensions and are consistent with subliminal and superluminal signals. See Fig. 12.  

 
 

3. The Lorentz Condition in Complex 8-Space Geometry and Tachyonic Signaling 
 
In order to examine as the consequences of the relativity hypothesis that time is the fourth dimension 
of space, and that we have a particular form of transformation called the Lorentz transformation, we 
must define velocity in the complex space. That is, the Lorentz transformation and its consequences, 
the Lorentz contradiction and mass dilation, etc., are a consequence of time as the fourth dimension of 
space and are observed in three spaces [43]. These attributes of 4-space in 3-space are expressed in 

terms of velocity, as in the form  for  where c is always taken as real. 

 If complex 8-space can be projected into 4-space, what are the con-sequences? We can also consider 
a 4D slice through the complex 8D space. Each approach has its advantages and disadvantages. In 
projective geometries information about the space is distorted or lost. What is the comparison of a subset 
geometry formed from a projected geometry or a subspace formed as a slice through an XD geometry? 
What does a generalized Lorentz transformation "look like"? We will define complex derivatives and 
therefore we can define velocity in a complex plane [8]. 
 Consider the generalized Lorentz transformation in the system of xRe and tIm for the real time remote 
connectedness case in the  plane. We define our substitutions from 4-to 8-space before us, 

 

                (15) 

 
and we represented the case for no imaginary component of  or  where the  plane 

comprises the ordinary 4-space plane. 
 

2s

1,Re 1,Re( , )x t 2,Re 2,Re( , )x t

  1/221 


  Re /v c 

Re Im,x t

Re

Re

'

'
im

im

x x x ix

t t t it

  

  

Rex Im 0x  Re Re,x t

(14) 
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 Let us recall that the usual Lorentz transformation conditions defined in four real space. Consider 
two frames of reference, , at rest and  moving at relative uniform velocity v. We call v the velocity 
of the origin of  moving relative to . A light signal along the x direction is transmitted by x = ct or 
x - ct = 0 and also in as x' = ct' or x'-ct' = 0, since the velocity of light in vacuo is constant in any 
frame of reference in 4-space. See Fig. 2. For the usual 4D Lorentz transformation, we have as shown 
in Eq. (6) and (8), .   

There is a relationship between subliminal, time-like, and superluminal, space-like, interpretation of 
the remote connectedness phenomena, such as the nonlocality test of Bell's theorem. 
 

                  (16) 

 

for     and    Here x and t stand for xRe and tRe and v is the real velocity. 

 We consider the  plane and write the expression for the Lorentz conditions for this plane. 

Since again  like  is orthogonal to  and  is orthogonal to we can write 
 

                     (17) 

 
where  represents the definition of  in terms of the velocity v; also  where c is always 

taken as real [7] where v can be real or imaginary. 

 In Eq. 17 for simplicity we let  denote  and we denote script 

. For velocity,  and Im Im Im/v v ix it   where the i drops out so that 

 is a real value function. In all cases the velocity of light c is c. We use this alternative 

notation here for simplicity in the complex Lorentz transformation. The symmetry properties of the 
topology of the complex 8-space gives us the properties that allow Lorentz conditions in 4D, 8D and 
ultimately 12D space. The example we consider here is a subspace of the 8-space of 

 In some cases we let  and just consider temporal remote connectedness 

and anticipation; but likewise, we can formulate remote, nonlocal connectedness solutions for  

and  The anticipatory case for  is a 5D space as the space for 

 is a 7D space and for as well as the other real and imaginary spacetime 

dimensions, we have our complex 8D space. See Fig. 11. 

 '
' 

'

Re Re Re Re Re, and /x x t t v x t  

 

 

2 2

2

22 2

'
1 /

'

'

/
'

1 /

x vt
x x vt

v c
y y

z z

t v c x v
t t x

cv c






  





        
  

2 1/2(1 )    / .v c 

Re Im,x t

Imt Ret Imx '
Imt '

Imx

 

 

Im
Im2 2

2

22 2

'
1 /

'

'

/
'

1 /

v

v

x ivt
x x vt

v c
y y

z z

t v c x v
t t x

cv c






  





        
  

v  Im Im /v v c 

', , ' andx x t t ' '
Re Re Re Re, , andx x t t

Imasv v Re Re Reis /v v x t

Im Im Im/v v x t 

Re Re Im Im, , and .x t x t Im 0x 

Im 0x 

Im Im0 or 0.t t  Im 0x 

Im Im0 0x and t  Im 0t 
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 It is important to define the complex derivative so that we can define velocity, vIm. In the xRetIm plane 
then, we define a velocity of vIm = dx/ditIm. In the Section 4 we detail the velocity expression for vIm and 
define the derivative of a complex function in detail [38]. For  for 

 as a real quantity, we substitute into our  plane Lorentz transformation conditions as  

 

                           (18) 

 
These conditions will be valid for any velocity, vRe = - v. 
 Let us examine the way this form of the Lorentz transformation relates to the properties of mass 
dilation. We will compare this case to the ordinary mass dilation formula and the tachyonic mass 
formula of Feinberg [41] which nicely results from the complex 8-space. See Fig. 7. In the ordinary xRe 

tRe plane then, we have the usual Einstein mass relationship of 
 

                 for         (19) 

 
and we can compare this to the tachyonic mass relationship in the xIm, tIm plane 
 

                    (20) 

 
for  and where m* or mIm stands for m* = im and we define m as mRe, 

 

                  (21) 

 
For m real (mRe), we examine two cases on v as v < c or v > c, so we let v be any value from  

where the velocity, v, is taken as real, or  

 Consider the case of v as imaginary (or vIm) and examine the consequences of this assumption. Also 
we examine the consequences for both v and m imaginary and compare to the above cases. If we choose 

v imaginary or v* = iv (which we can term vIm) the  and  becomes 

 or 

                         (22) 
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 If both v and m are imaginary, as v* = iv  and m* = im, then we have 
 

                 (23) 

 
or the tachyonic condition. 
 If' we go "off" into xRe  tRe  tim planes, then we have to define a velocity "cutting across" these planes, 
and it is much more complicated to define the complex derivative for the velocities. For subliminal 
relative systems  and  we can use vector addition such as  for Rev c ,  

 and W < c. In general, there will be four complex velocities. The relationship of these four 

velocities is given by the Cauchy-Riemann relations in the next section. These two are equivalent. The 

actual magnitude of v may be expressed as  (where  is the unit vector velocity) which can 
be formed using either of the Cauchy-Riemann equations. It is important that a detailed analysis not 
predict any extraneous consequences of the theory. Any possibly new phenomenon that is hypothesized 
should be formulated in such a manner as to be easily experimentally testable. 
 Feinberg suggests several experiments to test for the existence of tachyons [8,41,42]. He describes 
the following experiment. Consider in the laboratory, atom A, at time, t0 is in an excited state at rest at 
x1 and atom B is in its ground state at x2. At time t1 atom A descends to the ground state and emits a 
tachyon in the direction of B. Let E1 be this event at t1, x1. Subsequently, at  atom B absorbs the 

tachyon and ascends to an excited state; this is event E2, at t2, x2. Then at  atom B is excited and 

A is in its ground state. For an observer traveling at an appropriate velocity, v < c relative to the 
laboratory frame, the events E1 and E2 appear to occur in the opposite order in time. Feinberg describes 

the experiment by stating that at  atom B spontaneously ascends from the ground state to an excited 

state, emitting a tachyon which travels toward A. Subsequently, at  atom A absorbs the tachyon and 

drops to the ground state.  
 It is clear from this that what is absorption for one observer is spontaneous emission for another. But 
if quantum mechanics is to remain intact so that we are able to detect such particles, then there must be 
an observable difference between them: The first depends on a controllable density of tachyons, the 
second does not. In order to elucidate this point, we should repeat the above experiment many times 
over. The possibility of reversing the temporal order of causality, sometimes termed ‘sending a signal 
backwards in time’ must be addresses [8,41,42]. Is this cause-effect statistical in nature? In the case of 
Bell’s Theorem, these correlations are extremely strong whether explained by v > c  or  v = c  signaling.  
 In [44], Bilaniuk, et al formulated the interpretation of the association of negative energy states with 
tachyonic signaling. From the different frames of reference, thus to one observer absorption is observed 
and to another emission is observed. These states do not violate special relativity. Acausal experiments 
in particle physics, such as for the S-Matrix, have been suggested by a number of researchers [45]. 
Another approach is through the detection of Cerenkov radiation, which is emitted by charged particles 
moving through a substance traveling at a velocity, v > c.  For a tachyon traveling in free space with 
velocity, v > c.  Cerenkov radiation may occur in a vacuum cause the tachyon to lose energy and become 
a tardon [4]. See Figs. 8 and 12. 
 
 
4. Velocity of Propagation in Complex 8-Space 
 
In this section we utilize the Cauchy-Riemann relations to formulate the hyperdimensional velocities of 
propagation in the complex plane in various slices through the hyperdimensional complex 8-space. In 
this model finite limit velocities, v > c can be considered. In some Lorentz frames of reference, 
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instantaneous signaling can be considered. In Fig. 13 is displayed the velocity connection between 
remote nonlocal events, and in Fig. 14 is displayed temporal separated events or anticipatory and real-
time event relations.  
 It is important to define the complex derivative so that we can define the velocity, Imv v . In the xit 

or Re Imx ix  plane then, we define a velocity of Im/ ( )v dx d it  We now examine in some detail the 

velocity of this expression, here x = xRe. In defining the derivative of a complex function we have two 
cases in terms of a choice in terms of the differential increment considered. Consider the orthogonal 
coordinates x and ; then we have the generalized function,  for  and 

f(z) =  where  and  are real functions of the rectangular 

coordinates x and  of a point in space, . Choose a case such as the origin  

and consider two cases , one for real increments  and imaginary increments . For the 

real increments  we form the derivative  which is evaluated at z0 as 
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for  then 
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             (26) 

 
and assuming all principle derivations are definable on the manifold and letting  we can 

use 

           0 0
0 0

0

' lim
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f z h f z df z
f z
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            (27a) 

and  

               (27b) 

 
with  with the derivative form of the charge of the real space 

increment with complex time, we can define a complex velocity as,  
 

                  (28a) 

 
we can have  where xRe is a function of tIm and f(z) and using , then 

 

           .       (28b) 

 
Then we can define a velocity where the differential increment is in terms of . Using the first 

case as   and obtaining  (with i’s) we take the inverse. If ux which is vx in 

the  case have both ux  and  vx , one can be zero.  

 In the next section, we present a brief discussion of n > 4D geometries. Like the complex 
8D space, the 5D Kaluza-Klein geometries are subsets of the supersymmetry models. The 
complex 8-space deals in extended dimensions, but like the TOE models, Kaluza-Klein models 
also treat n > 4D as compactified on the scale of the Planck length, 10-33 cm [1-6].  
 In 4D space (Fig. 9) event point, P1 and P2 are spatially separated on the real space axis as 
x0Re at point P1 and x1Re at point P2 with separation  From the event point P3 

on the tIm axis we move in complex space from event P1 to event P3. From the origin, t0Im we 
move to an imaginary temporal separation of t1Im to t2Im of Im 2Im 0Im .t t t    The distance in 

real space and imaginary time can be set so that measurement along the tIm axis yields an 
imaginary temporal separation Imt  subtracts out, from the spacetime metric, the temporal 

separation Re .x  In this case occurrence of events P1 and P2 can occur simultaneous, that is, 

the apparent velocity of propagation is instantaneous.  
For the example of Bell’s Theorem, the two photons leave a source nearly simultaneously 

at time, t0Re and their spin states are correlated at two real spatially separated locations, x1Re and 
x2Re separated by Re 2Re 1Re .x x x    This space-like separation, is forbidden by special 

relativity; however, in the complex space, the points x1Re and x2Re appear to be contiguous for 
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the proper path ‘traveled’ to point at t1Im along the imaginary axis. Because of the possibility 
of proper spacetime adjustment or transformation which is possible in the complex plane, 
separate spacetime locations can appear contiguous in the hyperdimensional 8-space. Hence 
the upper limit of velocity propagation is instantaneous. See Table 1 and Figs. 13, and 14. By 
adjusting our imaginary spatial and temporal advantage, vRe and vIm can be variously adjusted 
and effect apparent causal conditions from the 8D space to the 4D space [14].   

 

 
 

Figure 15. Representation of the usual 4-Space lightcone and four other multidimensional geometries. In the upper 
right is a representation of the 10D real Descartes geometry. Below and to the left of the usual 4D space is the 
complexified 8D space. To the lower right is the 5D and 6D Kaluza-Klein geometry and in the lower left is the 
complexified 10D Descartes space as a 20D complex Descartes space. Note that X represents x,y,z and P represents 
Px, Py, Pz in the upper right. The relationships of all these geometries are represented in this figure.   
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Table 1 
Multidimensional Models: Macrocosm and Consciousness 

 
 Einstein-Minkowski 4D space expressed as three spatial and one temporal dimension. This is 

the usual observed 3-space modeled on the Minkowski lightcone diagram [7,8]. 
 4-space can be expanded to a multidimensional quantum gravity space of 11D; spacetime, 

momentum, mass-energy, force, velocity, acceleration, power, pressure, and rotation which 
comprise Descartes 10D space [4,5].  

 Complex 8D space is generated by complexifying the usual 4-space using 1 , and has 
nonlocality and remote interconnectedness that can relate a twistor algebra to the spinor 
calculus of Kaluza-Klein 5D geometry and complexified Maxwell’s equations and non-
Hertzian phenomena. 

 Kaluza-Klein geometry relates the Einstein-Minkowski 4-space of relativity to electromagnetic 
phenomena and complex 8-space. 

 The Einstein-Minkowski 4-space, Kaluza-Klein 5-space, Rauscher 8-space, M-Theory 11-
space and Amoroso 12-space relate topological geometries of modern particle physics to 
quantum theory and general and special relativity. 

 These multidimensional models allow a domain to exist in the physical world for the action of 
local and nonlocal aspects of the reality of the observer. 

 
 
5. Kaluza-Klein Geometries: A Possible Unification of Electromagnetic and Gravitational 
Phenomena 
 
We will present a brief discussion of other multidimensional models and examine the manner in which 
they may relate to the complex 8D model which was presented in previous sections and in references 
[1-8]. In the last several decades there has been a great deal of interest in some specific types of 5D and 
6D geometries. This revived interest is based on the work of two colleagues of Einstein, who received 
encouragement from him in the 1930's, Kaluza and Klein, who introduced a 5D covariant geometry 
which appears to have properties which suggest a method of unifying the electromagnetic, gauge-
invariant field theories (Maxwell's equations) and the gravitational field [21,22] (gravitational 
potential). This particular multidimensional model appears to be useful to examine further because it 
not only demonstrates the relationship between electromagnetic phenomena and gravitational 
relativistic phenomena, but it appears to be consistent with the main body of physics [8,18]. The spinor 
calculus is an excellent framework for accounting for the coupling of the electromagnetic field to the 
gravitational field in a natural way rather than the usual phenomenological manner [8,37-39]. This 
approach is automatically accomplished by requiring periodicity of 5D spinor fields. The theory of 
spinors is used in unifying electromagnetic and gravitational phenomena based on the homomorphism 
between the group of Lorentz transformations in relativity and the group of unimodular linear 
transformations in Maxwell's theory [12]. It should be noted that this homomorphism is valid only in 
the weak Wey1 field approximation 
for the gravitational field [46,47]. 
 In addition to the general coordinate transformations of the four coordinates, , the preferred 
coordinate system permutation group is 
 

          '5 5 1 2 3 4, , ,x x f x x x x          (29) 

 

Using this condition and the 5D cylindrical metric or  yields the form 
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                    (30) 

 
where the second term is the usual 4-space metric. Greek indices  run 1 to 4 and Latin indices i, k 

run 1 to 5. 
 The quantity  in the above equation transforms like a gauge, ds 

 

                     (31) 

 
where the function f is introduced as an arbitrary function. Returning to our 5D metric form in its five-
compact form and 4D and 5D form gives 
 
         5 5.g              (32) 

 

Starting from the metric form in a five "cylindrical" space  where indices i,k run 1 to 

5, we introduce the condition of cylindricity that can be described in a coordinate system in which the 
are independent of x5, that is  

     

                           (33) 

 
 Also, Kaluza-Klein assumed  or the positive sign,  for the condition of the fifth 

dimension for a 5D space, to ensure that the fifth dimension is metrically space-like [8]. We can also 
construct a 6D space for 66 551 and 0.     Geometrically one can interpret x5 as an angle variable 

so that all values of x5 differ by an integral multiple of  corresponding to the same point of the 5D 

space, if the values of the - are the same. For this specific case, each point of the 5D spaces passes 
exactly one geodesic curve which returns to the same point. In this case, there always exists a 
perpendicular coordinate system in which  and, 

 

                              (34) 

 
Other properties follow in which  and  are analogous and  and 
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The gauge-like form alone is analogous to the gauge group, which suggests the identification of 

with the electromagnetic potential . We can write an expression for an antisymmetric tensor 
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which is an invariant with respect to the gauge transformation. 

 Using the independence of  of x5 or , the geodesics of the metric in five space can 

be interpreted by the expression 
 

              
5

5

dx dx
C

ds ds



             (37) 

 
where C is a constant and s is a distance parameter. If we consider a generalized 5D curvature tensor, 
and using the form for  we can express it in terms of , the electromagnetic field strength 

 

                     (38a) 

and then we can write 
 

                     (38b) 

 
The integration constant above can be identified as proportional to the ratio e/m of charge to mass of a 
particle traveling geodesics in the Kaluza-Klein space [37-39]; c is the velocity of light and G is the 

universal gravitational constant. The force term, 4 /F C G  is found in Einstein’s field equations in 
the stress energy tensor term and is identified as having cosmological significance by Rauscher [1]. 
 Under specific conditions of the conformal mappings in the complex Minkowski space, one can 
represent twistors in terms of spinors. The spinor(s) will be said to "represent" the twistor. The twistor 
is described as a complex two-plane in the-complex Minkowski space. References on twister theory and 
the spinor calculus are cited in [8,48]. Twistors and spinors can easily be related by the general Lorentz 
conditions in such a manner as to retain the condition that all signals are luminal in the complex space. 
The conformal invariance of tensor fields (which can be Hermitian) can be defined in terms of twistors 
and these fields can be identified with particles. See Chap. 11. 

 We can represent twistors in terms of a pair of spinors,  and which are said to represent the 

twistor,  . Conditions for this representation are 
 

 The null infinity condition for a zero-spin field, 0
   , 

 Conformal invariance, and 
 Independence of the origin. 

 
Twistors and spinors are related by the general Lorentz conditions in such a manner as to retain the fact 
that all signals are luminal in the real 4-space, which does not preclude superluminal signals in an XD 
space [18]. 

 The twistor is described as a 2-plane in complex Minkowski space, M4. Twistors define the 
conformal invariance of the tensor field which can be identified with spin or spinless particles. For 

particles with spin s we have 2 .s
    The twistor is derived from the imaginary part of the spinor 

field. The Kerr theorem comes out naturally. It is through the representation of spinors as twistors in 
complex Minkowski space that we can relate the complex 8-space model to the Kaluza-Klein 
geometries. In the 5D Kaluza-Klein geometries, the extra dimension, XD was considered to be a spatial 
rotational dimension in terms of  

 The Hanson-Newman [33,34] and Rauscher [7-18] complex Minkowski space has introduced with 
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it as an angular momentum, or helix or spiral dimension, called a twistor which is expressed in terms 
of spinors. We suggest that the problem of closed time-like loops may be resolved in terms of an 
additional dimension or dimensions which may, in one model, be represented by a helical world line in 
5D and 6D space in such a manner that the world line does not collapse on itself and become multi-
valued at a single spacetime point [39,44]. Note the twistor relates to the complex Schwarzschild metric 
yielding the Kerr (rotational) metric [32,45]. The Schwarzschild solution is seen as a "real slice" of a 
complex Minkowski space [32]. The complex Weyl tensor is viewed as a single complex field on the 
complex Minkowski space. 
 Some directions for further exploration of the relationship of our 8D model and the main body of 
physics may be made through the work of Hansen and Newman [33,34] and Kaluza and Klein [37-39]. 
Use of the Weyl weak field approximation may be used to examine the complex 8-space and 
electromagnetic phenomena [40] such as complex electric and magnetic fields which we explore further 
in the next section. Figure 12 presents a schematic of the relationship of some multidimensional 
geometries. 
 Basic to the Kaluza-Klein geometry is the series of papers published by Weyl [46,47] in which he 
forms a generalization of Riemannian geometry claiming to interpret all physical events in terms of 
gravitation and electromagnetism in terms of a "world metric" (note that this statement is much stronger 
than the Kaluza-Klein unification scheme, since it excludes strong and weak interactions). See Fig. 15. 
On Fig. 16 we present a comparison of some of the multi-dimensional n > 4D geometries and 
complexification theories and their interconnectedness to each other. 
 The gauge transformation of the Weyl space is formulated in terms of a quantity, , rather than 

 where  is the four-vector potential. rather than strict gauge-invariance of  

(usually where ). In Weyl's theory uses complex wave mechanics for electrically charged matter 

for the wave function, . Then for a gauge transformation we have 

 

                          (39) 

 

where  and where he considers the invariance conditions on the imaginary exponent in  

instead of the real exponent in . Weyl modified certain inconsistencies that occurred with relativity 

[46]. The Weyl theory most likely set up the considerations for the Kaluza-Klein model in their attempt 

to unify gravity and electromagnetism by relating  and . 

 P.A.M. Dirac [49] generalized the complex scalar field to a complex two-component field  in 

order to express the Schrödinger wave equation in a relativistic invariant form The complex two 
component field is called a spinor because it relates to the spin degrees of freedom that were needed 
because of the Zeeman spectral splitting in atoms. The question arises; does the spinor field result from 
the conditions in quantum physics or relativity theory? Using the irreducible representation of the 
underlying groups in relativity theory, Einstein and Mayer discovered that the real 4D representation in 
relativity reduces to the direct product of two 2D complex representations. The complex two component 
functions that are the basis of these representations are the spinor variables that Dirac discovered earlier 
to describe the electron and anti-electron or positron. Therefore, the spinor variable is the most 
fundamental expression of the theory of relativistic invariance. In this form then, relativity theory can 
be quantized as formulated by Dirac. 
 The hypergeometric Schrödinger equation is second order in space and first order in time. The Klein-
Gordon equation is second order in both space and time; whereas the Dirac equation is first order in 
space and time, which is like a square root of the Klein-Gordon equation that has two solutions. That 
is, the Dirac equation has both a positive and a negative solution. For other multidimensional 
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perspectives see Fig. 13.  
 Since the spinor invariant is complex, it corresponds to two invariance conditions; one real and the 
other the imaginary part of the two components of the spinor. We have seen that by introducing a 
complex Minkowski space we may be able to achieve a reasonable interpretation of some of the 
apparent paradoxes in quantum physics, relativity theory and electromagnetism. Non-locality and 
superluminal signal propagation are precisely formulated. We will examine the implications of complex 
geometries for electromagnetic phenomena, Bell's theorem, and other remote connectedness 
phenomena in Chap. 4. Also in Chap. 11 we address the relationship of 5R and 6D geometries with 
spinors, twistors and quaternions. 
 
 
6. Additional Thoughts on Current Physical Theory 
 
The formalism of the complex 8D space and the 5D Kaluza-Klein space are incorporated into the current 
grand unification theories (GUT), supersymmetry models, with gravity, and string theory (M-Theory 
where matter is considered to be made of vibrating strings and branes instead of paint like particles), 
that describes the unifications of the four force fields in particle physics and current models of the 
universe. The four fundamental forces are the strong nuclear force mediated by quarks, electromagnetic 
force, weak nuclear decay force and the gravitational force of General Relativity. 
 The Kaluza Klein model relates the electromagnetic and gravitational fields in which the photon 
(spin 1) mediates the electromagnetic field and the graviton (spin 2) mediates the gravitational field. 

This is why tensor analysis works. The electroweak force of the GUT model is mediated by  
which are massive bosons for the electromagnetic and weak interactions. The mediators of the strong 
force are quarks and gluons. It becomes possible to relate the GUT theories (which only related the 
strong, electromagnetic and weak forces) to gravity via the use of the Kaluza-Klein geometry. These 
theories attempt to reduce “everything" to quarks and leptons mediated by the exchange of gauge 
bosons. This is currently termed the standard model. 
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