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Abstract

The derivation of the Lorentz transformation normally rests on two a priori demands, namely that revers-
ing the direction of the transformation’s constant-velocity boost inverts the transformation, and that the
transformation leaves light-speed invariant. It is notable, however, that the simple light-clock concept,
which is rooted entirely in light-speed invariance, immediately gives rise to special-relativistic reciprocal
time dilation, whose existence implies that of special-relativistic length contraction as a corollary. Recip-
rocal time dilation and length contraction are key consequences of the Lorentz transformation, so it would
seem that demanding only inertial transformation-invariance of light-speed already uniquely implies the
Lorentz transformation. We find that to indeed be so, but it can’t be shown by solving directly for
the undetermined parameters of a general x-direction inertial space-time transformation; one necessarily
must work with the corresponding velocity transformation (that has the same undetermined parameters),
which is pared down to equalities that refer as predominantly as is feasible to speed. In those equalities
both untransformed and transformed speed are replaced by the constant c, after which the undetermined
parameters of the inertial transformation are solved for, which shows it to be the Lorentz transformation.

Introduction

The Lorentz transformation is normally derived on the basis of two a priori demands, namely that reversal
of the direction of the transformation’s constant-velocity boost inverts the transformation, and that the
transformation leaves light-speed invariant. The Galilean transformation shares the “inversion by boost
reversal” property of the Lorentz transformation, but the Galilean transformation leaves time, rather than
light-speed, invariant.

The Galilean transformation which transforms the inertial frame of reference by the addition of the
x-direction constant-velocity boost (v, 0, 0) is,

(t′, x′, y′, z′) = (t, (x− vt), y, z). (1a)

It manifestly leaves time invariant, i.e., t′ = t. To grasp the “inversion by boost reversal” property which is
incorporated into the Galilean transformation of Eq. (1a), we must invert it, which clearly produces,

(t, x, y, z) = (t′, (x′ + vt′) , y′, z′) . (1b)

We can now see that this inverse of the Eq. (1a) Galilean transformation is also a Galilean transformation,
one which transforms the inertial frame of reference by the addition of the x-direction constant-velocity
boost (−v, 0, 0), which is equal in magnitude and opposite in direction to the original boost velocity (v, 0, 0).
Therefore, if the “inversion by boost reversal” property holds, an observer B, who himself is at rest in a frame
of reference that is moving at velocity (v, 0, 0) relative to observer A, can make the transformation of relative
velocity (−v, 0, 0) from his own (primed) space-time coordinates in order to understand what observer A
perceives in his (unprimed) space-time coordinates, while observer A of course can make the transformation
of relative velocity (v, 0, 0) from his own (unprimed) space-time coordinates in order to understand what
observer B perceives in his (primed) space-time coordinates.

Special relativity and Galilean relativity have the “inversion by boost reversal” property in common with
each other , but of course they part company with each other in that Galilean transformations leave time
invariant (i.e., t′ = t), whereas Lorentz transformations leave the speed of light invariant . The concept of
leaving time invariant under a transformation of the inertial frame of reference is expressed directly in terms
of the space-time coordinates as simply t′ = t, while the concept of leaving the speed of light invariant under
a transformation of the inertial frame of reference involves the magnitude of velocities instead of involving the
space and time coordinates directly . Therefore it is firstly necessary to deal with transformations of velocity
instead of the Eqs. (1a) and (1b) types of transformations of the space-time coordinates (t, x, y, z). But
that by itself isn’t sufficient, since one intends to deal with the transformation of the magnitude of velocity
rather than with the transformation of the components of velocity .
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Equalities involving the transformation of velocity components are pared down into equalities which pre-
dominantly involve the untransformed and transformed velocity magnitudes—to the extent feasible. Conse-
quences of demanding light-speed invariance are produced by substituting the constant c for each velocity
magnitude which occurs; the resulting equations can be solved for information of interest.

Turning our attention now to less technical, more readily visualized consequences of light-speed invariance,
a salient one is the increase in the “tick” time interval of the conceptual light clock [1, 2] when that kind of
clock is in motion at constant velocity v. The effect is due to invariance of light-speed in conjunction with the
patently longer path which the clock’s light traverses between “ticks” when the clock is in motion; the light
path is lengthened by the celebrated special-relativistic time dilation factor (1− (|v|/c)2)−

1
2 . Furthermore,

if two observers A and B who travel at relative constant velocity v each have a light clock, it is obvious that
each one will perceive the other’s light clock “tick” more slowly by precisely this factor than his own light
clock which is stationary with respect to him. Thus it is obvious from the consideration of light clocks that
special-relativistic time dilation is reciprocal between inertial frames; this aspect of the “inversion by boost
reversal” property of inertial frames, namely that one simply takes v→ −v in order to switch between those
frames is part and parcel of the impact of light-speed invariance on the special-relativistic transformation of
time between inertial frames. In other words, the imposition of light-speed invariance between all inertial
frames seems to make it outright unnecessary to separately impose the “inversion by boost reversal” property
between inertial frames.

In fact, the implications of the light clock seem almost synonymous with those of the Lorentz transfor-
mation. In particular, it is very well known that special-relativistic time dilation is readily combined with
“time of flight” considerations to deduce special-relativistic length contraction [3]. The “other side of the
coin” relation of special-relativistic length contraction to special-relativistic time-dilation is made patent by
reflection on the range through the atmosphere before their decay of cosmic-ray secondary muons which
are created in the upper atmosphere with large values of (1 − (|v|/c)2)−

1
2 . Although the speed of such

muons is a smidgen less than c, they can have a range through the atmosphere much greater than c times
their natural lifetime at rest because of special-relativistic time dilation. From the standpoint of the muon,
however, there is no time dilation at all of its natural “at rest” lifetime; its enhanced range through the
atmosphere before decay is understood by special-relativistic length contraction of the atmosphere [3] by the
factor (1 − (|v|/c)2)

1
2 . Since special-relativistic length contraction can be regarded as merely an aspect of

special-relativistic time dilation, it is obviously just as reciprocal between inertial frames as special-relativistic
time dilation is; our observers A and B moving at relative constant velocity v will each perceive the other
one to be length-contracted by the aforementioned factor. Once again we see that the imposition of light-
speed invariance between all inertial frames appears to make it simply unnecessary to separately impose the
“inversion by boost reversal” property between inertial frames. Incidentally, the reciprocity of time dilation
and length contraction between inertial frames is counterintuitive not because of its nature but because ter-
restrial creatures have had no long-term ordinary experience of it . Distance/size reciprocity, namely each of
two observers perceives the other one to decrease in size with distance, isn’t counterintuitive simply because
it has for ages been part of the ordinary experience of terrestrial creatures. However, at 11.2 km/s (about
40,000 km/hour) an object could escape from the earth’s gravitational influence, yet at that extra-terrestrial
speed special-relativistic length contraction and time dilation are still only one part in a billion!

We have now seen, via informal consideration of the implications of the light clock, that light-speed
invariance all by itself accounts for special-relativistic time dilation and length contraction, and it also
accounts for the reciprocity of those effects. Such a catalog more or less summarizes the implications of the
Lorentz transformation, but that notwithstanding, we shall now show that light-speed invariance imposed
all by itself on the general x-direction homogeneously linear space-time counterpart of the Eq. (1a) Galilean
transformation compels that general transformation to uniquely be the x-direction Lorentz transformation.

The general x-direction homogeneously linear space-time transformation

The most general x-direction homogeneously linear space-time transformation that is nontrivial only for the
(t, x) pair has the four-parameter form,

(t′, x′, y′, z′) =
(
γ0
(
t−
(
v0/c

2
)
x
)
, γ(x− vt), y, z

)
, (2a)

where γ0 and γ are dimensionless parameters which are independent of the value of (t, x, y, z), while v0 and
v are parameters that have the dimension of velocity and are likewise independent of the value of (t, x, y, z).
The homogeneous linearity of Eq. (2a) ensures coincidence of the space-time coordinate origins, namely,

(t = 0, x = 0, y = 0, z = 0) transforms to (t′ = 0, x′ = 0, y′ = 0, z′ = 0). (2b)
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The transformation of velocity which corresponds to the four-parameter general x-direction homoge-
neously linear transformation of space-time given by Eq. (2a) is,

(dx′/dt′, dy′/dt′, dz′/dt′) =
(dx′/dt, dy′/dt, dz′/dt)

dt′/dt
=

(γ((dx/dt)− v), dy/dt, dz/dt)

γ0 (1− (v0/c2) (dx/dt))
. (3a)

Eq. (3a) shows that the transformation of velocity is in general a rational transformation rather than a linear
one. In order to ensure that the rational velocity transformation given by Eq. (3a) is well-defined , we impose
the following two restrictions,

γ0 6= 0, (3b)

and,
|dx/dt| <

(
c2/|v0|

)
. (3c)

We now take note of a key property of the Eq. (3a) transformation of velocity (which of course corresponds
to the Eq. (2a) transformation of space-time), namely,

(dx/dt, dy/dt, dz/dt) = (v, 0, 0) implies that (dx′/dt′, dy′/dt′, dz′/dt′) = (0, 0, 0). (3d)

The result given by Eq. (3d) shows that the four-parameter general x-direction transformation described by
Eq. (2a) or (3a) expressly compensates for the x-direction constant velocity (v, 0, 0). Therefore, as long as,

|v| <
(
c2/|v0|

)
, (3e)

in accord with the Eq. (3c) restriction, the x-direction constant velocity (v, 0, 0) ought to be identifiable
as the intrinsic Eq. (2a) or (3a) transformation “boost” to the inertial frame of reference. There is one
additional caveat, however: a zero-velocity “boost” to the inertial frame of reference ought not to transform
the the space-time coordinates nor the velocities at all . Therefore the general x-direction transformation must
be the identity transformation when its intrinsic x-direction velocity parameter v equals zero. We readily see
that this reduction to the identity transformation when v = 0 will be the case for both the Eq. (2a) general
x-direction homogeneously linear space-time transformation and for its Eq. (3a) velocity counterpart if and
only if,

γ0(v = 0) = 1, v0(v = 0) = 0 and γ(v = 0) = 1. (4)

The Eq. (1a) Galilean transformation manifestly obeys the rule set out in Eq. (4). In fact, the Eq. (4) rule
compels any physically legitimate x-direction homogeneously linear space-time transformation whose γ0, v0
and γ parameters have completely fixed numerical values to be precisely the Galilean transformation.

The transformation imposed by light-speed invariance

We can’t manage to extract comprehensive consequences of light-speed invariance directly from Eq. (3a); we
need to change it to a form which involves the magnitudes of the untransformed and transformed velocities
as predominantly as is feasible. It is completely straightforward to obtain from Eq. (3a) a relation which
involves only the square of the magnitude of the transformed velocity , namely,

(dx′/dt′)
2

+ (dy′/dt′)
2

+ (dz′/dt′)
2

=
γ2((dx/dt)− v)2 + (dy/dt)2 + (dz/dt)2

(γ0)
2

(1− (v0/c2) (dx/dt))
2 . (5a)

The requirement of transformation-invariance of light-speed, which is to be imposed on Eq. (5a), is stated
in a precise manner as follows,

if (dx/dt)2 + (dy/dt)2 + (dz/dt)2 = c2, then (dx′/dt′)
2

+ (dy′/dt′)
2

+ (dz′/dt′)
2

= c2. (5b)

The imposition of the Eq. (5b) requirement on Eq. (5a) implies the particular consequence that ,

c2 (γ0)
2 (

1−
(
v0/c

2
)

(dx/dt)
)2

= γ2((dx/dt)− v)2 + (c2 − (dx/dt)2), (5c)

What we want to obtain from Eq. (5c) are the constraints which it imposes on the three parameters γ0, v0
and γ that determine x-direction transformations which are of the general form set out in Eqs. (2a) and
(3a). Eq. (5c) can obviously be restated as the vanishing of a second-order polynomial in the variable-value
entity (dx/dt). Therefore the three coefficients of that second order polynomial in (dx/dt) must vanish, so
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Eq. (5c) produces three equalities that involve c2, (γ0)
2
, v0, γ2 and v. The restatement of Eq. (5c) as a

vanishing second-order polynomial in (dx/dt), organized into uniquely-presented powers of (dx/dt) and their
coefficients is,(

(γ0)
2

(v0/c)
2 − γ2 + 1

)
(dx/dt)2 − 2

(
(γ0)

2
v0 − γ2v

)
(dx/dt) +

(
(γ0)

2 − γ2(v/c)2 − 1
)
c2 = 0. (5d)

Eq. (5d) implies that (γ0)
2

satisfies the following three equalities,

(γ0)
2

= (γ2 − 1)/ (v0/c)
2

= γ2 (v/v0) = γ2(v/c)2 + 1, (5e)

which, in turn, imply that γ2 satisfies the following two equalities,

γ2 =
(
1−

(
v0v/c

2
))−1

=
(
(v/v0)− (v/c)2

)−1
, (5f)

which yield the following quadratic equation for the transformation parameter v0 in terms of v and c,

(v0)
2 − v0

(
v +

(
c2/v

))
+ c2 = 0, (5g)

whose left-hand side is readily factored as follows,

(v0 − v)
(
v0 −

(
c2/v

))
= 0, (5h)

revealing the equation’s two roots,
v0 = v and v0 =

(
c2/v

)
. (5i)

Inserting the root v0 =
(
c2/v

)
into Eq. (5f) makes γ2 equal to the undefined inverse of zero. Therefore the

only applicable root of Eq. (5h) is,
v0 = v, (5j)

which obeys the Eq. (4) rule that v0(v = 0) = 0. Inserted into Eq. (3e), v0 = v yields the restriction,

|v| < c, (5k)

and inserted into Eq. (3c) it yields |dx/dt| < (c2/|v|), which together with Eq. (5k) implies the restriction,

|dx/dt| ≤ c. (5l)

Inserted into Eq. (5f), v0 = v yields,

γ2 =
(
1− (v/c)2

)−1
, (5m)

for which the Eq. (5k) restriction is needed to ensure that the parameter γ is a real-valued finite number .
Inserting Eq. (5m) and v0 = v into Eq. (5e) yields,

(γ0)
2

=
(
1− (v/c)2

)−1
. (5n)

Although Eq. (5n) is compatible with,

γ0 = ±
(
1− (v/c)2

)− 1
2 , (5o)

the Eq. (4) rule that γ0(v = 0) = 1, selects ± = + in Eq. (5o). Likewise, although Eq. (5m) is compatible
with,

γ = ±
(
1− (v/c)2

)− 1
2 , (5p)

Eq. (4), which requires that γ(v = 0) = 1, selects ± = + in Eq. (5p).
We thus see that the transformation-invariance of light-speed, together with the Eq. (4) rule that an

inertial-frame constant-velocity “boost” transformation must be the identity transformation when that
“boost” velocity vanishes altogether, yields the three completely-determined transformation parameter val-
ues,

γ0 =
(
1− (v/c)2

)− 1
2 , v0 = v and γ =

(
1− (v/c)2

)− 1
2 , (6a)
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which, on insertion into the Eq. (2a) general x-direction homogeneously linear space-time transformation
yield,

(t′, x′, y′, z′) =
(
γ
(
t−
(
v/c2

)
x
)
, γ(x− vt), y, z

)
where γ =

(
1− (v/c)2

)− 1
2 . (6b)

Eq. (6b) is precisely the x-direction space-time Lorentz transformation [4]. Its inverse transformation is
readily verified to be,

(t, x, y, z) =
(
γ
(
t′ +

(
v/c2

)
x′
)
, γ(x′ + vt′), y′, z′

)
, (6c)

which differs from the direct Lorentz transformation of Eq. (6b) only in that v → −v. Thus the Lorentz
transformation indeed conforms with the “inversion by boost reversal” property that was pointed out below
Eq. (1b) in connection with the Galilean transformation.

The above derivation of the Lorentz transformation manifestly doesn’t assume that “inversion by boost
reversal” holds; it assumes only the Eq. (5b) transformation-invariance of light-speed, which it imposes on
the Eq. (5a) specialized consequence of the Eq. (3a) general x-direction velocity transformation.

An important characteristic of the Eq. (6b) special-relativistic Lorentz space-time transformation is that
it preserves the Minkowski quadratic form (ct)2 − x2 − y2 − z2, namely,

(ct′)
2 − (x′)

2 − (y′)
2 − (z′)

2
= γ2

[
(ct− (v/c)x)2 − (x− vt)2

]
− y2 − z2 =

γ2
[
(ct)2

(
1− (v/c)2

)
− x2

(
1− (v/c)2

)]
− y2 − z2 =

γ2
[
(ct)2γ−2 − x2γ−2

]
− y2 − z2 = (ct)2 − x2 − y2 − z2.

(7a)

Setting the Minkowski quadratic form (ct)2−x2−y2−z2 to zero of course describes the space-time locus
of the spherical shell of light, centered on the origin (x = 0, y = 0, z = 0), whose radius expands at the speed
c, starting at the radius-value zero at time t = 0. That expanding spherical light shell is the consequence of
releasing a light pulse of infinitesimal duration and extent at the space-time point (t = 0, x = 0, y = 0, z = 0);
its space-time locus (ct)2 − x2 − y2 − z2 = 0 is called the light cone. The transformation-invariance of light-
speed implies, inter alia, that,

if (ct)2 − x2 − y2 − z2 = 0, then (ct′)
2 − (x′)

2 − (y′)
2 − (z′)

2
= 0, (7b)

namely the transformation-invariance of the light cone. The Eq. (7a) transformation-invariance of the
Minkowski quadratic form is of course a stronger condition than is the Eq. (7b) transformation-invariance
of only the light-cone space-time locus.

An attempt to obtain the Lorentz transformation from imposition of the Eq. (7b) transformation-
invariance of the light cone on Eq. (2a) will come up short. An additional imposition on Eq. (2a) is needed;
it traditionally is the imposition on Eq. (2a) of the “inversion by boost reversal” property.

Inversion by boost reversal + light-cone invariance = Lorentz transformation

For amusement, let’s derive the Lorentz transformation again, this time following a far more traditional path.
First we impose the “inversion by boost reversal” property on the Eq. (2a) general x-direction homogeneously
linear space-time transformation, constrained by Eq. (4), and then we combine the consequence thereof with
Eq. (2a) and the imposition of the Eq. (7b) transformation-invariance of the light cone.

To impose the “inversion by boost reversal” property on the Eq. (2a) general x-direction homogeneously
linear space-time transformation, we must first invert that transformation, with the result,

(t, x, y, z) =

((
t′ + (γ0/γ)

(
v0/c

2
)
x′
)

(γ0 (1− (vv0/c2)))
,

(x′ + (γ/γ0) vt′)

(γ (1− (vv0/c2)))
, y′, z′

)
. (8a)

For the Eq. (8a) inversion of Eq. (2a) to be accomplished by the sign reversal v → −v, it is necessary that,

γ0 = γ = ±
(
1−

(
vv0/c

2
))− 1

2 , and also that v0 be an odd function of v. (8b)

The ± sign ambiguity which appears in Eq. (8b) for γ and γ0 must be resolved in favor of ± = + in order
to satisfy the Eq. (4) rule that γ0(v = 0) = 1 = γ(v = 0). Note that the Eq. (8b) upshot of imposing the
“inversion by boost reversal” property is fully compatible with the Galilean transformation: with ± = +, the
parameter choice v0 = 0, which makes v0 a (trivial) odd function of v, causes Eq. (8b) to in addition yield
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the two parameter values γ0 = γ = 1, which completes the entire parameter-value description of the Galilean
transformation.

Now use Eq. (2a) and γ0 = γ from Eq. (8b) to evaluate ct′, x′, y′ and z′ in Eq. (7b). After that is done,
Eq. (7b) becomes,

if (ct)2 − x2 − y2 − z2 = 0, then γ2
(
(ct− (v0/c)x)2 − (x− vt)2

)
− y2 − z2 = 0. (8c)

Now specialize Eq. (8c) to the case that x 6= 0 and y = z = 0. The upshot of these assumptions is for
Eq. (8c) to become,

if t = ±x/c, then γ2
(
2tx(v − v0) + (v0/c)

2x2 − v2t2
)

= 0, (8d)

whose consequence is the two equations,

γ2x2
(
±2((v/c)− (v0/c)) + (v0/c)

2 − (v/c)2
)

= ((v0/c)− (v/c))γ2x2(∓2 + (v0/c) + (v/c)) = 0, (8e)

which are both satisfied by,
v0 = v. (8f)

With the sign ± = + in Eq. (8b), Eqs. (8f) and (8b) imply that,

γ0 = γ =
(
1− (v/c)2

)− 1
2 . (8g)

The results given by Eqs. (8f) and (8g) are exactly the same as those given by Eq. (6a), namely the three
parameters of the Lorentz transformation. Thus this far more traditional path of imposition of the “inversion
by boost reversal” property and the Eq. (7b) transformation-invariance of the light cone yields the same
Lorentz-transformation result as the path of imposition of comprehensive transformation-invariance of light-
speed that is described in detail by Eqs. (2a), (3a), (5a) and (5b), with Eq. (5c) being its consequence.
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