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Abstract  

	
In	this	paper	we	define	and	study	the	new	model	for	quantum	mechanics	(QM)	–	the	hybrid	
epistemic	model.	We	describe	in	detail	its	axiomatic	definition	and	its	properties.	The	new	
feature	of	this	model	consists	in	the	fact	that	it	does	not	contain	the	formal	definition	of	the	
measurement	process	(as	it	is	standard	in	other	models)	but	the	measurement	process	is	
one	of	possible	processes	inside	of	QM.	
The	hybrid-epistemic	model	of	QM	is	based	on	two	concepts:	the	quantum	state	of	an	
ensemble	and	the	properties	of	individual	systems.	It	is	assumed	that	the	quantum	state	
(i.e.	the	wave	function)	can	be	attributed	only	to	ensembles	(with	some	exceptions)	and	not	
to	individual	systems.	On	the	other	hand,	the	properties	of	individual	systems	can	be	
described	by	properties	which	are	collected	into	classifications.	Properties	are	assumed	to	
be	exclusive,	i.e.	a	given	individual	system	having	certain	property	cannot	have	another	
property.		
We	shall	describe	the	internal	measurement	process	in	the	hybrid-epistemic	model	of	QM	
in	all	details.	This	description	substitutes	the	formal	definition	of	the	measurement	process	
in	the	standard	QM.	
We	show	the	local	nature	of	EPR	correlations	in	the	hybrid-epistemic	model	of	QM	in	all	
details.	We	show	that	the	anti-correlations	between	measurements	at	the	Alice’s	part	and	
the	Bob’s	part	is	completely	analogical	to	the	standard	classical	local	anti-correlations	
originated	in	the	correlation	in	the	past.	
We	define	precisely	the	epistemic	and	the	ontic	models	of	QM	for	the	goal	to	prove	that	
these	three	models	give	the	same	empirical	predictions,	i.e.	that	they	are	empirically	
equivalent.	This	theorem	on	the	empirical	equivalence	is	proved	in	all	details.	
We	show	that	the	no-go	theorems	(Bell’s	theorem,	the	Leggett-Garg’s	theorem	and	others	
theorems)	cannot	be	proved	in	the	hybrid-epistemic	model	of	QM.	This	is	one	of	the	main	
results	of	this	paper.	We	interpret	this	as	the	invalidity	of	no-go	theorems	in	QM.	This	
interpretation	is	sound	since	the	true	consequences	of	QM	must	be	provable	in	all	models	of	
QM.		
We	shall	consider	the	possible	inconsistences	of	the	ontic	model	of	QM.	We	show	that	there	
are	many	consequences	of	the	ontic	model	of	QM	which	are	dubious	or	controversial.	There	
are	many	such	controversial	consequences.	In	the	next	part	we	consider	the	internal	
inconsistency	of	the	ontic	model	which	is	more	serious	and	we	consider	this	argument	
against	the	ontic	model	as	the	most	serious.	
We	introduce	the	property-epistemic	model	of	QM	which	is	the	special	case	of	the	hybrid-
epistemic	model.	We	describe	this	model	in	all	details	and	we	show	that	this	model	of	QM	is	
the	most	suitable	and	most	elegant	model	of	QM.	In	this	model	many	proofs	are	extremely	
simplified	and	almost	trivial.		
Then	we	discussed	possible	arguments	in	this	field	and	our	answers	to	these	arguments.	
We	summarize	our	conclusions.	
At	the	end	there	are	three	appendices.	In	the	first	appendix	we	give	proofs	of	all	theorems.	
In	the	second	appendix	we	give	our	conjectures,	opinions	and	suggestions.	In	the	third	
appendix	we	describe	the	ontic	model	for	the	Brownian	motion.	We	think	that	this	model	
shows	clearly	(by	analogy)	the	absurdity	of	the	ontic	model	of	QM.	 	
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1. Introduction 

		
In	this	paper	we	shall	use	some	simplifications	which	we	would	like	to	declare	at	the	
beginning:	

 We	shall	consider	only	finite-dimensional	systems,	i.e.	systems	whose	Hilbert	space	
of	states	is	finite-dimensional	

 We	shall	consider	only	the	von	Neumann’s	measurement	schema	based	on	the	
projection-valued	measures	(we	shall	not	use	the	POV	measures)	

 We	shall	exclude	any	considerations	connected	with	the	idea	of	hidden	parameters	
 We	shall	assume	that	quantum	mechanics	(QM)	is	a	valid	theory.	

	
It	is	well-known	that	there	are	many	foundational	problems	in	quantum	mechanics	(QM).	
We	shall	consider	some	of	them.	The	main	model	for	QM	is	the	standard	Dirac	–	von	
Neumann’s	model	[5]	which	will	be	called	here	the	ontic	model.	It	is	based	on	the	
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assumption	that	each	wave	function	describes	a	possible	state	of	an	individual	quantum	
system	and	that	the	state	of	an	individual	system	is	described	by	some	wave	function.		
	
This	model	creates	many	problems	

 Bell’s	theorem	implying	the	non-locality	of	QM	–	this	creates	the	incompatibility	with	
the	relativity	theory	

 Leggett-Garg	‘s	theorem	implies	the	violation	of	the	macro-realism	–	and	this	creates	
the	incompatibility	with	the	classical	world	

 The	preceding	two	problems	imply	that	the	ontic	model	of	the	quantum	world	is	
incompatible	with	the	classical	world1 	

 The	measurement	problem		
 The	problem	of	definite	outcomes	of	a	measurement	
 The	problem	that	the	measurement	process	is	treated	on	the	axiomatic	level	but	not	

as	a	real	physical	process	
 The	instantaneous	collapse	of	the	state	of	an	individual	system	during	the	

measurement		is	un-physical	
	
The	general	idea	to	solve	these	problems	is	to	arrive	at	the	thin	film	compromise:	

 To	have	not	many	individual	states	(the	individual	state	=	the	state	of	an	individual	
system)	so	that	the	no-go	theorems	cannot	be	derived	

 To	have	an	enough	number	of	individual	states	to	be	able	to	realize	the	standard	
measurements.	

	
There	is	a	unique	possible	solution	to	this	problem:	only	one	base	of	individual	states	for	
one	system	-	and	this	is	exactly	the	hybrid	model	proposed	in	[1],	[3]	2.	The	hybrid-
epistemic	model	is	the	generalization	of	the	hybrid	model	[2].	The	property-epistemic	
model	is	a	special	case	of	a	hybrid-epistemic	model	which	is	completely	opposite	to	the	
ontic	model.	
	
This	is	our	solution	to	the	85-years	old	problem	of	the	meaning	of	quantum	state.	
	
Our	plan	how	to	procced	is	the	following.	
	
We	shall	construct	a	new	model	for	QM, the hybrid-epistemic model,	which	will	have	the	
following	properties	

 It	will	be	empirically	equivalent	to	the	standard	QM	model	
 In	this	model	it	will	be	impossible	to	derive	the	no-go	theorems	(Bell’s	theorem,	

Leggett-Garg’s	theorem	and	others)	
 In	this	model	the	measurement	process	will	be	treated	as	other	internal	processes	in	

QM	and	the	concept	of	a	measurement	will	not	be	mentioned	among	axioms	
 Not	only	that	the	non-locality	is	un-proved	and	un-provable	in	this	model	but	

moreover	the	explicit	local	mechanism	for	the	EPR	correlations	is	presented	

                                                           
1 The problem of the compatibility between the quantum world and the classical world must be solved before the 
possible solution of the unification of QM with the general relativity 
2 In [1] the hybrid model of QM was called the modified QM. 
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Our	proposal:		

 to	abandon	the	standard	Dirac	–	von	Neumann’s	model	[5]	
 to	use	instead	of	it	the	new	hybrid-epistemic	model	or	the	property-epistemic	

model.	
	
In	this	way	we	obtain	many	benefits	

 the	solution	of	all	above	mentioned	problems	
 the	model	which	is	empirically	equivalent	to	the	previous	one	so	that	the	empirical	

confirmation	of	the	new	model	is	the	same	as	the	confirmation	of	the	standard	
model	

 the	compatibility	between	quantum	world	and	the	classical	world		
 the	invalidity	of	no-go	theorems		

	
A	new,	hybrid-epistemic	model	combines	the	features	of	ontic	and	epistemic	models.	The	
special	case	of	this	model,	the	hybrid	model	was	introduced	in	[1],	while	the	more	general	
form	of	the	hybrid-epistemic	model	was	introduced	in	[2].	
	
A	new,	hybrid-epistemic	model	is	not	only	a	new	model	of	QM	but,	moreover,	a	completely	
new	type	of	a	model	of	QM.	The	novity	consists	in	the	main	property	of	this	new	model:	the	
concept	of	a	measurement	does	not	make	a	part	of	axioms	but	in	the	hybrid-epistemic	
model	the	measurement	process	is	considered	as	an	internal	process	in	QM	–	like	other	QM	
processes.	
	
The	general	question	studied	in	this	paper	is	whether	the	wave	function	can	describe	the	
state	of	an	individual	system	or	it	describes	the	state	of	an	ensemble.	Our	answer	is	that	the	
wave	function	describes	in	most	situations	the	state	of	an	ensemble	but	in	some	rather	very	
special	situations	the	wave	function	can	be	considered	as	the	state	of	the	individual	system.		
In	the	subclass	of	hybrid-epistemic	models,	the	property-epistemic	models,	the	wave	
function	cannot	be	considered	as	the	state	of	an	individual	system	and	it	can	describe	only	a	
state	of	an	ensemble.	
	
On	the	other	hand,	individual	systems	are	taken	into	account	since	they	are	able	to	have	
properties.	The	consideration	of	properties	of	individual	systems	is	a	new feature	of	our	
models.	Our	proposed	hybrid-epistemic	model	can	be	considered	as	a	compromise	between	
the	epistemic	view	of	quantum	state	(quantum	states	of	ensembles)	and	the	partially	ontic	
view	(properties	of	individual	systems).		
	
The	interplay	between	states	of	ensembles	and	properties	of	individual	systems	is	the	base	
of	the	hybrid-epistemic	model	of	QM.	
	
This	study	is	the	result	of	a	long	series	of	previous	papers	which	contain	some	of	the	

presented	ideas	in	the	rudimentary	form	(see	e.g.	[1],	[2],	[3]).	
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In	a	general	sense	this	paper	gives	a	possible	solution	to	the	question	what	is	a	quantum	

state	and	what	are	possible	properties	of	individual	quantum	objects.	Problems	created	by	

no-go	theorems	are	simply	solved	by	showing	that	these	theorems	cannot	be	proved	in	the	

hybrid-epistemic	model.	

	
The	text	is	divided	into	four	parts	

 In	the	first	part	we	introduce	and	study	the	new	hybrid-epistemic	model	of	QM	(sect.	
2	–	4)	

 In	the	second	part	we	compare	the	hybrid-epistemic	model	to	epistemic	and	ontic	
models	(sect.	5	–	7)	

 The	third	part	contains	the	proof	that	no-go	theorems	are	unprovable	in	QM	and		
possible	inconsistences	of	the	ontic	model	(sect.	8	–	10).	

 In	the	fourth	part	we	define	and	study	the	property-epistemic	models,	their	
properties	and	consequences	(sect.11).		Then	we	present	a	discussion,	conclusions	
and	appendices	(sect.	12	–	13).		

In	appendices	there	are	proofs	of	theorems	stated	in	the	text,	our	conjectures	and	the	ontic	
model	of	the	Brownian	motion.	
	
The	organization	of	the	text	is	the	following.		
	
In	the	first	part	we	give	in	the	sect.	1	the	introduction	and	in	the	sect.	2	the	axioms	for	the	
hybrid-epistemic	model	and	basic	properties	of	this	model.	Then	in	sect.	3	we	describe	the	
internal	model	of	a	measurement	in	full	details.	In	sect.	4	we	show	that	the	EPR	correlations	
are	explicitly	local	in	the	hybrid-epistemic	model	and	that	EPR	correlations	are	completely	
analogical	to	the	classical	local	correlations.		
	
In	the	second	part	we	describe	in	sect.	5	the	axioms	for	the	standard	epistemic	model	of	QM	
and	in	sect.	6	axioms	we	have	collected	axioms	for	the	ontic	model	for	QM.	Detailed	
axiomatic	formulations	are	necessary	for	the	comparison	of	these	models	with	the	hybrid-
epistemic	model.	In	sect.	7	we	give	a	proof	of	the	empirical	equivalence	of	the	hybrid-
epistemic	model	to	the	epistemic	model	and	to	the	ontic	model.		
	
In	the	third	part	in	the	sect.	8	we	show	that	the	no-go	theorems	cannot	be	proved	in	
epistemic	and	hybrid-epistemic	models.	In	sect.	9	we	present	arguments	for	the	
inconsistence	of	the	ontic	model	of	QM	and	the	incompatibility	of	the	ontic	model	of	QM	
with	the	classical	physics.		In	sect	10	we	present	the	internal	inconsistences	of	the	ontic	
model.		
	
Then	in	the	fourth	part	in	sect.	11	we	present	and	study	the	property-epistemic	model.	In	
sect.12	we	present	a	discussion	of	some	related	question	and	in	sect.	13	we	described	our	
conclusions.			
	
In	Appendix	A	we	have	collected	the	proofs	of	theorems	and	propositions	stated	in	the	text.		
In	Appendix	B	we	have	collected	our	conjectures,	hypotheses,	opinions	and	remarks	related	
to	the	given	problematic.		
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In	the	Appendix	C	we	describe	the	ontic	model	for	the	Brownian	motion	We	give	an	

argument	that	the	ontic	model	of	QM,	as	an	analogy	of	the	ontic	model	of	the	Brownian	

motion,	is	absurd.	

	

	

	

2. A new, hybrid-epistemic model for QM  

	
A	new	property	of	this	model	is	the	fact	that	the	description	of	the	measurement	process	is	
not	a	part	of	axioms.	This	make	this	model	different	from	previously	considered	models.	In	
the	hybrid-epistemic	model	the	measurement	process	is	described	entirely	inside	of	QM	
and	there	is	no	relict	of	this	process	among	axioms.		
	
In	this	sense,	this	proposed	model	is	of	a	completely	new	type	of	models	with	respect	to	
older	models	–	it	is	possible	to	say	that	this	is	the	first	model	of	this	new	type[4].	Thus	this	
is	not	only	a	new	model	but	this	is,	moreover,	a	new	type	of	a	model.	
	
The	other	new	feature	of	the	hybrid-epistemic	model	is	the	new	concept	of	a	quantum	state.	
	
In	general	we	assume	that	the	wave	function	is	associated	with	the	state	of	an	ensemble	
(but	in	certain	rather	very	special	situations	the	wave	function	can	be	also	connected	with	
the	state	of	an	individual	system	–	see	this	below	in	the	case	of	hybrid	systems).		
	
Individual	systems	cannot	be	characterized	by	the	state	but	they	will	be	characterized	by	
properties.	The	concept	of	a	property of a system	is	one	of	the	most	general	concepts	in	
logic	–	it	is,	of	course,	more	general	than	the	concept	of	a	state.		
	
Usually	properties	are	associated	with	the	position	of	the	system.	The	typical	situation	is	
the	position	of	a	particle.	
	
In	the	quantum	world	ensembles	have	states	while	in	the	classical	world	individual	systems	
have	properties	and	the	hybrid-epistemic	model	is	the	system	which	makes	compatible	
these	two	worlds.	
	
Definition.		

(i) A	property	is	a	map	v	which	to	each	individual	system		S		associates	an	element	
from	the	two-element	set		B	=	{1,	0},3	i.e.	v(S)	=	1	means	that	S	has	a	property	v	
while	v	=	0	means	that	S	does	not	have	a	property	v.		

(ii) Two	distinct	properties	v	and	w	are	mutually exclusive	if	for	each		S		v(S)	=	1	
implies	w(S)	=	0	and	vice	versa	(i.e.	the	situation	where	v(S)	=	w(S)	=	1	is	
impossible).		

(iii) A	set	C(S)	=	CS	,		|CS|≥2,		of	mutually	exclusive	properties	is	called	the	
classification	for S	if	there	exists		v	∊	CS	,	v(S)	=	1	.	

                                                           
3 B is the set of truth-values. 
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(iv) The	trivial	classification CS = 0	is	also	an	allowed	classification.		
	
Axiom HE1. (HE	=	hybrid-epistemic.) 
We	shall	assume	that	to	each	system	S	there	is	associated	a	complex	(at	least	two-
dimensional)	Hilbert space	H(S)	=	HS		and	the	classification		C(S)	=	CS.	
	
Example. For	the	typical	two	level	system	we	have	CS	=	{vspin	up,	vspin	down}	and	HS	is	a	finite	
dimensional	complex	Hilbert	space	and	dim	HS		may	be	very	large	(as	an	idea	let	us	imagine	
the	Stern-Gerlach	measuring	apparatus).	This	is	a	typical	hybrid-epistemic	system.	In	the	
case	of	a	hybrid	system	(its	definition	is	given	below)	with	the	same	CS	we	shall	have	dim	HS	
=	2.	
	
Definition.	An	ensemble	is	a	set	of	systems		E	=	{S1,	…,	SN}	which	are	created	by	some		
preparation	procedure	and	satisfy	the	following	conditions	

(i) H(S1)	=	…	=	H(SN)	=	H(E)	
(ii) C(S1)	=	…	=	C(SN)	=	C(E)	
(iii) Properties	of	systems	Si	and	Sj	,	are	independent	for	all	i	≠	j		(these	systems	are	

created	independently	and	they	do	not	interact	with	each	other).	
 
Axiom HE2.  

(i) For	each	system	S	there	exists	at	least	one	ensemble	E	containing	S	as	an	element	
(ii) The	state	of	each	ensemble	E	(in	a	given	moment	of	time)	is	described	by	some	

element	of	HE	–	more	precisely	by	a	ray	[ψ]	in	HE.4		
(iii) The	time	evolution	of	the	state	[ψ]	is	given	by	the	unitary	group	{Ut}	in	HE and	we	

have		[ψ](t)	=	[Ut(ψ)]	.	
	
Now	we	shall	consider	and	define	the	basic	(probabilistic)	relation	between	properties	of	
individual	systems	and	states	of	ensembles.	
	
Definition.	Let	E	=	{S1,	..	,	SN}	is	an	ensemble	in	the	state	[ψ].	Let	v	∊	CE	.	Then	by	observing	
S1,	..	,	SN	we	obtain	values		v(S1),	..	,	v(SN)	∊	{0,	1}.	We	shall	consider	the	sub-ensemble		

 
E(v)	=	{S	∊	E	|	v(S)	=	1}.	

	
By	the	definition	of	the	probability	we	have			

	
p	(	v	|	E	)	=	lim	N→∞	N-1	|	E(v)	|	,5	6	

 
Axiom HE3.  
We	shall	assume	that	p	(	v	|	E	)	will	depend	only	on	the	state	[ψ]	of	the	ensemble	E	,	so	that	

	
p	(	v	|	E	)	=	p	(	v	|	[ψ]	).	

                                                           
4 In this paper we do not consider the mixed states since they are not necessary. A ray [ψ] is defined by [ψ] = {αψ | 
|α| = 1}, where |ψ| = 1. 
5 Here |A| = the number of elements of A 
6 In this situation we shall assume the stabilization of relative frequencies. 
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The	relation		p	(	v	|	[ψ]	)		is	the	basic relation		in	our	axiomatization:	it	relates	properties	of	
individual	systems	to	states	of	ensembles.	
	
Having	this,	we	can	define	basic	concepts	of	QM	using	both	things:	states	of	ensembles	and	
properties	of	individual	systems	and	we	do not need	the	axiomatization	of	the	formal	
definition	of	a	measurement	process.		
	
To	every	ensemble	E	there	corresponds	a	probability distribution		p	(	.	|	[ψ]	)		on	the	set	C(E)	
which	depends	on	the	state	[ψ]	of	an	ensemble	E.	
	
Definition.  

(i) Let	v	∊	C(E)	.	The	state	[ψ]	∊	H(E)		is	a	v-homogeneous state		if			
	

p	(	v	|	[ψ]	)	=	1.	
	
The	state	[ψ]	is	homogeneous		if	[ψ]	is	v-homogeneous	for	some	v	∊	C(E).	The	set	
of	all	homogeneous	states	is	denoted	by	hom (E).	

	
(ii) For	each		v	∊	C(E)	we	define		the	set	

	
L(v)	=	{	λψ	∊	HE	|	[ψ]	is	a	v-homogeneous	state,	λ	is	a	complex	number}.	

	
We	shall	call	any	such	L(v)	,	v	∊	CE		a	homogeneous subspace	of	HE corresponding	to	
the	property	v.	The	set	of	all	homogeneous	subspaces	will	be	denoted	by	Hom 
(E).		
	

(iii) The	property		v		is	called	the	individual property	if		L(v)		is	one-dimensional	and		it	
is	called	the	collective property	if		L(v)			has	dimension	greater	then	1.	It	is	clear	
that	the	quantum	state		[ψ]	∊	HE 	can	be	attributed	to	the	individual	system		S		
having	the	property	v	only	if	v	is	the	individual	property.		
	

(iv) The	quantum	state		[ψ]	∊	HE  is	called	an	individual	state	(or	the	quantum	state	of	
an	individual	system	S)	if	and	only	if	there	exists	an	individual	property	v	such	
that	ψ	is	the	generator	of	the	(one-dimensional)	space		L(v)		and	the	system	S	has	
the	property	v	.	
 

Axiom HE4. The	set		L(v)		is	a	(complex)	linear	subspace	of	the	Hilbert	space	HE 	for	each	v	∊	
C(E)	
	
This	axiom	seems	to	be	less	intuitive	than	previous	axioms.	But	it	is	possible	to	give	to	it	a	
good	motivation	expressed	in	the	following	proposition.	
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Proposition 1. 	Let	us	assume	that	the	probability		p	(v	|	[ψ])		depends	quadratically7	on	
the	wave	function	.	Then	each		homogeneous	subspace		L(v)		is	a	linear	subspace	of		HE .	
 
The	proof	of	this	proposition	can	be	found	in	the	Appendix		A.	
	
Definition.   

(i) Let	the	operator		P(v)		be  an	orthogonal projection	from	HE onto L(v)	for	v	∊	C(E)	
(ii) The	ensemble	E	is	called	a	balanced ensemble	if	all	its	homogeneous	subspaces	

have	the	same	dimension	
	
Axiom HE5.  (The	existence	of	measuring	systems.)	
For	each	n≥2		there	exists	at	least	one	balanced	ensemble		E		of	measuring	systems	
satisfying	|C(E)|	=	n	.	
	
Remarks.		

(i) The	ensemble	E	is	in	a	v-homogeneous	state	if	v(S)	=	1	for	each	S	∊	E and,	
equivalently,	if	w(S)	=	0		for	each		w	≠	v		and		for	each		S	∊	E	8.		

(ii) The	ensemble	E	is	in	a	homogeneous	state	if	v(S1)	=	v(S2)	for	each	S1,	S2	∊	E and	
for	each	v.	This	means	that	elements	of	the	homogeneous	ensemble	have	the	
same	properties	(this	is	the	intuitive	meaning	of	homogeneity)	.	

(iii) For	each	homogeneous	ensemble	E	in	the	state	[ψ].	there	exists	a	unique	
property	v[ψ]	such	that	p	(v[ψ]	|	[ψ]	)	=1	and	p	(v[ψ]		|	[ϕ])	=	0	for	each	[ϕ]	≠	[ψ].	9	

(iv) It	is	clear	that	in	the	hybrid-epistemic	model	the	focus	is	moved	from	the	
measured	system	onto	the	measuring	system.	

	
Axiom HE6.  (The	existence	of	a	composition	of	two	systems.)	
Let	E	=	{S1,	…,	SN}		and		F	=	{T1,	…,	TN}			be	two	independent	ensembles.	

(i) The	composite	ensemble	is		E	⊕	F	=	{S1	⊕	T1,	..	,	SN	⊕	TN	}	10	
(ii) We	have		HE	⊕	F = HE	⊗	HF	
(iii) Let		v	∊	C(E)		and		w	∊	C(F)		are	properties	.	The	construction	of	C(E	⊕	F)	

depends	on	the	situation	
a. If		|C(E)|	≥	2	and		|C(F)|	≥	2		then	C(E	⊕	F)	=	C(E)	⨉		C(F)	.	Moreover,	we	have		

(v,w)	(Sk	⊕	Tk)	=	v(Sk)	.	w(Tk)	.	
b. If		|C(E)|	≥	2	and		|C(F)|	=	0		then	C(E	⊕	F)	=	C(E)	.	Moreover,	we	have		v(Sk)	

as	a	value	
c. If		|C(E)|	=	0	and		|C(F)|	≥	2		then	C(E	⊕	F)	=	C(F)	.	Moreover,	we	have		w(Tk)	

as	a	value	
d. If		|C(E)|	=	|C(F)|	=	0		then	C(E	⊕	F)	=	0	

                                                           
7 In quantum theory the probability depends, in general, linearly on the density operator and consequently 
quadratically on the wave function. 
8 We assume that events with the zero probability never happen. 
9 Let S0 ∊ E. There exists a property v[ψ]  such that v[ψ] (S0) = 1 and  then v[ψ] (S) = 1 for each S ∊ E since E is 
homogeneous. 
10 The order of sequence is not important since by changing the order in the ensemble does not change the ensemble 
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(iv) Let	us	assume	that	the	ensemble		E		is	in	the	state		[ψ]	and	the	ensemble		F		is	in	
the	state		[ϕ]		and	that	these	ensembles	are	independent.	Then	the	ensemble		E	
⊕	F 	will	be	in	the	state		[ψ	⊗	ϕ]	.	

(v) Let		P		be	a	projection	in	the	space		HE		and	Id(HF)	be	an	identity	map	in	the	space		
HF	.	Then	the	extension		P	⊗	Id(HF)	as	a	map	in	the	space		HE	⊗	HF  is	defined	by	

	
(P	⊗	Id(HF))	(ψ	⊗	ϕ)	=	P(ψ	)	⊗	ϕ	.			

	
Axiom HE7.  (The	Born	rule.) 
Let		E	=	M⊕S	=	{M1⊕S1,	..	,	MN⊕SN}		be	an	ensemble	of	independent	composite	systems	in	
the	state		[Ψ]	∊	PM⊕S	.		Let		Mk⊕Sk		be	an	individual	system	composed	from	a	measuring	
system		Mk		and	from	the	measured	system		Sk		and	let		P(v)		be	a	projection	in		HM		
corresponding	to	the	property		v	∊	C(M)	.		
	
Then	the	probability	of	observing	the	property		v		on	the	subsystem		Mk		is	given	by	the	
formula	
	

p	(	v	|	[Ψ]	)	=	‖	(P(v)	⊗	Id(HS))	(Ψ)	‖2		,				for	each		v	∊	C(M)	.	
	
Axiom HE8.  (The	up-dating	rule.) 
Let		E	=	M⊕S	=	{M1⊕S1,	..	,MN⊕SN}		be	an	ensemble	of	independent	composite	systems	in	
the	state		[Ψ]	∊	PM⊕S	.	Let	us	assume	that	the	individual	subsystem		Mk		from	the	composite	
system		Mk⊕Sk		has	been	observed	and	it	was	found	that	the	property		v		has	occurred,		
v(Mk)	=	1	.		Then	the	individual	system		Mk⊕Sk		will	be	an	element	of	an	up-dated	ensemble			

 
E(v)	=	{Mk⊕Sk	|	v(Mk)	=	1	}		

	
which	is	in	the	state	

	
‖	(P(v)	⊗	Id(HS))	(Ψ)	‖-1	.		(P(v)	⊗	Id(HS))	(Ψ)	.	

	
Definition .  
Axioms		HE1 – HE8	define	the	hybrid-epistemic model	of	QM.		
	
There	are	two	basic	theorems	in	the	hybrid-epistemic	model.	
	
Theorem 1. 	
Let		v,		w	∊	C(E)		and	let		v	≠	w	.	Then		homogeneous	subspaces		L(v)		and	L(w)		are	orthogonal.	
	
Theorem 2. 	
Let	us	assume	that		C(E)	≠	0	.	Then	the	set	Hom	(E)		of	all	homogeneous	subspaces	is	the	
complete	orthogonal	decomposition	of	the	state	space		HE	.	
	
Proofs	of	both	theorems	can	be	found	in	the	Appendix	A.		
	
	It	is	useful	to	introduce	certain	classification	into	the	set	of	possible	systems.	
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Definition.  

(i) The	system		S		is	an	epistemic system	if		C(S)	=	0	.	
(ii) The	system		S		is	the	hybrid-epistemic system	if		|C(S)|	≥	2	.	
(iii) The	system		S		is	hybrid	if	S	is	the	hybrid-epistemic	system	and	if	dim		L(v)	=	1	for	

each	v	∈	CS 	
(iv) The	system		S		is	property-epistemic system	if	it	is	hybrid-epistemic	system	and	if	

dim		L(v)	>	1	for	each	v	∈	CS 	
	
The	important	special	subclass	of	hybrid-epistemic	models	are	hybrid	models	of	QM.	
Originally	the	hybrid	model	was	called	the	modified	QM	(see	papers	[1],	[3]).	
	
Definition .  

(i) The	hybrid-epistemic	model	is	called	a	hybrid model	if	it	contains	only	hybrid	
systems.	.	

(ii) The	hybrid-epistemic	model	is	called	a	property-epistemic model	if	it	contains	
only	epistemic	systems	or	property	-epistemic	systems	.	

	
A	typical	ensemble	G	of	hybrid–epistemic	systems	{Sk}	is	the	composite	of	the	hybrid	

system	Mk	and	the	epistemic	system	Ek		where		Sk	=	Mk⊕Ek,	HG	=	HM	⊗	HE.	

	
As	a	consequence	we	obtain	the	following	simple	theorem	(its	proof	is	very	simple).	
	
Theorem 3.  

(i) In	the	hybrid-epistemic	model	only	hybrid-epistemic	or	epistemic	systems	can	
exist.	

(ii) Some	hybrid-epistemic	systems	must	exist	–	see	Axiom	HE5.	
(iii) The	situation	where	only	hybrid	systems	exist	is	possible	–	this	will	be	the	hybrid	

model	
(iv) Each	measuring	system	must	be	hybrid	or	hybrid-epistemic.	

	
Superposition	among	homogeneous	states	are	impossible	or	limited.	Superposition	of	
individual	states	are	impossible	in	the	hybrid-epistemic	model.	
	
Theorem 4. 

(i) In	the	hybrid-epistemic	model	the	non-trivial	superposition	of	two	homogeneous	

states	is	a	homogeneous	state	if	and	only	if	these	homogeneous	states	are	

elements	of	the	same	homogeneous	subspace.	

(ii) If		[ψ]		and		[φ]		are	two	different	individual	states	of	the	system		S	then		their	

non-trivial	superposition		[αψ	+	βφ]		is	not	an	individual	state.	This	means	that	in	

the	hybrid-epistemic	model	for	QM	the	individual	anti-superposition	principle	

holds	(see	[1]).	11	

                                                           
11 The more general form is the following.  If		[ψ]		and		[φ]		are	two	different	homogeneous	states	of	the	system		
S	then		their	non-trivial	superposition	[Ψ]	=	[αψ	+	βφ]		is	not	an	individual	state.	The	proof	is	simple.	If	[ψ]	
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(iii) A	v-homogenous	state	is	an	individual	state	only	if	the	corresponding	

homogenous	subspace		L(v)		is	one-dimensional.	

	

The	proof	of	this	theorem	can	be	found	in	Appendix	A.	

	
	
	
	
	

3. The internal description of the measurement process in the hybrid-

epistemic model of QM 

	
Now	we	shall	describe	the	general	schema	of	the	measurement process	as	an	internal	

process	inside	of	QM.	

	

Up	to	now,	our	axiomatization	was	occupied	only	with	the	concept	of	an	observation	of	

properties	of	a	measuring	system	and	the	concept	of	a	measurement	was	not	mentioned.		

	

Now	we	shall	show	that	the	process	of	a	measurement	can	be	defined	and	studied	as	an	

internal	phenomenon	of	QM.	Up	to	now	we	have	been	interested	only	in	the	“measuring	

systems”	but	not	in	“measured	systems”.	It	is	exactly	opposite	to	standard	QM	where	the	

main	interest	is	focused	on	measured	systems	and	the	measuring	systems	are	generally	not	

considered.	

	

The	true	measurement	process	needs	both	systems,	the	measured	system	and	the	

measuring	system	since	the	measurement	process	is	based	on	the	interaction	between	

these	two	systems.	

	

Let	us	assume	that	the	measuring	ensemble	M	=	{M1,	…	,	MN}			is	a	balanced	ensemble	and	

that	its	orthogonal	decomposition	into	homogeneous	subspaces	is		HM	=	L(1)	+	…	+L(n)	,		

where	these	homogeneous	subspaces	correspond	to		properties		v1,	…,	vn		(all	homogeneous	

subspaces	have	the	same	dimension).		Projections	onto	L(i)	is	denoted	by	P(i)	.	

	

Definition.  

(i) The	measurement is	parametrized		by	the	orthogonal	decomposition	HS	=	K1	+	…	

+	Kn		or	by	the	projectors	R1,	..	,	Rn	which	are	projectors	onto	these	subspaces		Ri	:	

HS		→		Ki	.	

                                                                                                                                                                                            
and	[φ]		are	not	elements	of	the	same	L(v)	then	[Ψ]	is	not	a	homogeneous	state,	thus	not	an	individual	state.	If	
[ψ]	and	[φ]		are	elements	of	the	same	L(v)	then	[Ψ]	is	also	element	of	L(v)	and			 	
L(v)		cannot	be	one-dimensional. 



14  
 

(ii) The	measurement	is	called	non-degenerate	if	all	subspaces		K1,	…	,	Kn		are	1-

dimensional.	

	

The	composite	ensemble	G	=	M	⊕	S	will	be	based	on	the	Hilbert	space	HG	=	HM	⊗	HS	.	

	

Definition.  

The	measuring transformation	is	a	unitary	transformation		U		in	the	space	HG	satisfying	the	

following	conditions	

(i) U	(	L(1)	⊗	Ki	)	=	L(i)	⊗	Ki	,			for	i	=	1,	…	,	n	.	 	

(ii) There	exist	unitary	maps	Vi		from		L(1)		onto		L(i)	,		for	i	=	1,	…	,	n	,	12	

such	that		U	(ϕ⊗ψ)	=	Vi	(ϕ)	⊗	ψ	for	each	ϕ	∊	L(1)	,	ψ	∊	Ki	,	i	=	1,	…	,	n	.	

	

The	input	part	of	the	measurement process	consists	in	the	following:	

(i) The	ensemble of measured systems	S	=	{S1,	…	,	SN}	in	the	state	ψ	∊	HS.		
	

(ii) The	measurement	defined	by	the	orthogonal	decomposition		HS	=	K1	+	…	+	Kn	and	
by	corresponding	projections		R1,	..	,	Rn	
	

(iii) The	ensemble of measuring systems		M	=	{M1,	…	,	MN}	in	the	state	ϕ	∊	L(1)		
together	with	the	decomposition		of	HF	into	homogeneous	subspaces	HF	=	L(1)	+	..	

+	L(n)		and	corresponding	projections		P(1),	..	,	P(n)	.	(This	decomposition	depends	

on	the	set	of	properties	C(F).)	

	
(iv) The	ensemble of composite systems  G	=	{M1⊕S1	,		…	,	MN⊕SN}		in	the	state		ϕ⊗ψ.	
	

Then	the	state	ψ	can	be	decomposed	with	respect	to	the	decomposition		HS	=	K1	+	…	+	Kn		
into		ψ	=	α1ψ1	+	…	+	αnψn		.			
	
Here	ψi	=	‖Ri	ψ‖-1	Ri	ψ	∊	Ki	,		αi	=	‖Ri	ψ‖,			if		‖Ri	ψ‖	>	0	,	while	for	‖Ri	ψ‖	=	0	we	take	any	unit	
vector	ψi	∊	Ki		and		αi	=	0	.	
	

The	output	part	of	the	measurement process	consists	in	the	following:	

(i) To	the	ensemble		G		in	the	state	ϕ⊗ψ		the	measuring	transformation		U		is	

applied	and	we	obtain	an	ensemble		G’ in	the		state		U(ϕ⊗ψ)	.		We	obtain		

	

U(ϕ⊗ψ)	=	α1	U(ϕ⊗ψ1)	+	…	+	αn	U(ϕ⊗ψn)	=	Σ	αi	Vi	(ϕ)	⊗	ψi	.	

	
(ii) Let	v	be	a	property	of	the	system	Mk	.	Then	the	sub-ensemble	

 

G’(v)	=		{	Mk⊕Sk	|	v	(Mk)	=	1	,	k	=	1,	…,	N	}	.	

                                                           
12 The unitary map F : H → H’ satisfies  (F(x) | F(y)) = (x | y)  for each x, y ∊	H 



15  
 

	

is	defined.	

	

Theorem 5. Let	us	assume	the	situation	described	above.	

(i) If		v	=	vj		then	the	relative	frequency	of		G’(v)		in	the	ensemble		G’		is			
	

N-1	|	G’(v)	|	=	p	(	vj	|	U(ϕ⊗ψ)	)	=	|	αj	|2	.	

	
(ii) Let	us	assume	that	after	the	measurement		the	individual	system		Mk		was	

observed	and	it	was	found	that	Mk	has	the	property		v	=	vj	,	v(Mk)	=	1,	Then	Mk	⊕	
Sk		is	an	element	of	the	ensemble	G’(v)		and	the	state	of		G’(v)		is	 	

 
Vj(ϕ)	⊗	ψj		where	ψj	=		‖Rj	ψ‖-1	Rj	ψ	∊	Kj		if		‖Rj	ψ‖	>	0	

	
while	if	‖Rj	ψ‖	=	0	then	the	probability	to	find		Mk		with	v(Mk)	=	1		is	zero	and		
G’(v)		is	empty.	This	means	that	after	the	measurement	the	sub-systems		{Sk}	from	
G’(v)	will	be	in		the	state	ψj		while	the	sub-systems		{Mk}	from	G’(v)	will	be	in		the	
state	Vj(ϕ)	. 
	

(iii) For	each	ensemble	of	measured	systems	S	=	{S1,	…	,	SN}	there	exist	an	ensemble	
of	 measuring	 systems	 	 M	 =	 {M1,	 …	 ,	 MN}	 and	 the	 measuring	 transformation	 U	
satisfying	all	required	properties.	

	

Proofs	can	be	found	in	Appendix	A.	

	

The	epistemic	or	ontic	model	of	QM	cannot	be	a	model	of	the	hybrid-epistemic	model	of	QM	

since	these	models	of	QM	require	the	measurement	concept	as	a	part	of	axioms.	We	have	

done	another	thing	–	we	have	represented	the	measurement	process	as	an	internal	process	

in	QM	and	we	shall	show	(in	the	next	section)	that	all	empirical	predictions	of	the	epistemic	

or	ontic	models	of	QM	are	contained	among	empirical	predictions	of	the	hybrid-epistemic	

model	of	QM.	

	
	
	
	

4. The local nature of EPR correlations in the hybrid-epistemic model 

	
Usually	it	is	supposed	that	the	well-known	EPR	anti-correlations	of	two	spin	½	particles	in	
the	entangled	state	is	the	phenomenon	showing	the	non-locality	of	QM.	This	is	true	in	the	
ontic	model	of	QM	but	we	shall	show	here	that	this	is	not true	in	the	hybrid-epistemic	
model.	We	shall	describe	the	local	mechanism	underlying	the	EPR	correlations	in	the	
hybrid-epistemic	model.	
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This	will	proceeds	in	steps.	
	

(i) We	shall	consider	two	ensembles	of	measured	systems		S1	and	S2,13	each	two	
dimensional,		dim	H(S1)	=	dim	H(S2)	=	2.	We	shall	assume	that		S1k	∊	S1	and	S2k	∊	

S2		are	epistemic	systems,	k	=	1,	..	,	N,	i.e.	C(S1)	=	C(S2)	=	0.		

Then	we	shall	consider	two	ensembles		M1	and	M2	of	measuring	systems		M1k	and	
M2k		which	are	hybrid-epistemic	satisfying		|C(M1)|	=	|C(M2)|	=	2.	The	system	M1	
“will	measure”	S1	and	M2	“will	measure”	S2.		
	

(ii) The	corresponding	classifications	of	measuring	systems	will	be		C(M1)	=	{v11,	v12}	
,	C(M2)	=	{v21,	v22}	.	The	dimensions		dim	H(M1),	dim	H(M2)		can	be	arbitrary	
(possibly	very	large).		Thus	we	shall	consider	the	ensemble	of	systems	

 
G	=	{M1k	⊕	S1k	⊕	S2k	⊕	M2k	|	k	=	1,	..	,	N}	.	

	
Let		the	base		{e11,	e12}		in	H(S1)		be	a	z-spin	base	for		S1k	,	k	=	1,	..	,	N		and		
analogously		{e2

1,	e2
2}		in	H(S2)		be	a	z-spin	base	for		S2

k
	,	k	=	1,	..	,	N	.		

	
(iii) The	starting	state	will	be	following	

	
Ψ	=	2-1/2		Φ1	⊗	(e11	⊗	e22	–	e12	⊗	e21)	⊗	Φ2	

	
where		Φ1	∊	L1(1)		and		Φ2	∊	L2(1)		are	arbitrarily	chosen		states	of	homogeneous	
subspaces	of	ensembles	M1		and		M2	.			
	
This	formula		can	be	written	more	compactly	using	the	totally	anti-symmetric	
tensor		ε  defined	by 	ε11	= ε22	=	0 , ε12	=	1 , ε21	=	-1 .	Then	we	can	write	

	
Ψ	=	(½)-1		Φ1	⊗	(Σ	εij	e1i	⊗	e2j)	⊗	Φ2	.	

	
(iv) Now	we	define	the	possible	measurement.		

The	measuring	apparatuses	will	be	oriented	at	Alice	and	at	Bob	in	the	same	
direction.	This	means	that	the	decompositions			H(S1)	=	K11	+	K12	,	H(S2)	=	K21	+	
K22		will	be	isomorphic.	We	can	choose	the	generating		vectors	of	these	1-
dimensional	subspaces:		ψij	∊	Kij	,	i,	j	=	1,	2	.	It	is	possible	to	choose	the	generating	
vectors		in	such	a	way	that		there	exists	a	unitary	map		U’		of		e’s	onto		ψ’s		
satisfying:		U’(eij)	=	ψij	,	i,	j	=	1,	2	.		
	
The	important	fact	is	that	this	map	is	the	same	for		S1	and	S2	–	this	means	that	the	
same	measurement	is	applied	to	S1	and	to	S2.	For	us	the	more	important	map	will	
be	the	inverse	map		U	=	U’-1	satisfying		U(ψij)	=	eij	.	In	detail	this	means	that	eij	=	Σn	
Ujn	ψin	,	i,	j	=	1,	2	.		
	
Inserting	this	into	the	formula	for		Ψ		we	obtain	

                                                           
13 Upper indexes will indicate systems 1, 2. 
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Σεij	e1i⊗e2j	=	ΣεijUinψ1j⊗Ujmψ2j	=	Σ(U⊤ni	εij	Ujm)ψ1n⊗ψ2m	=	Σ(U⊤ε	U)nm	ψ1n⊗ψ2m14.		

	
(v) Now	we	shall	use	the	simple	but	important	technical	lemma.		

	
Lemma 1. Let	A	be	any	2	by	2	matrix.	Then		A	ε A⊤	=	detA	ε 15.  
The	proof	can	be	done	by	calculation.	

	
(vi) Using	this	lemma	we	obtain	(U⊤ε	U)	=	ε since	det	U	=	1	and the	state of	the	

ensemble		G		will	be	
	

Ψ	=	2-1/2	Φ1	⊗	(Σ	εnm	ψ1n	⊗	ψ2m)	⊗	Φ2		.	
	
We	can	see	that	the	anti-symmetry	is	conserved	in	the	transition	from	the	base	of	
e’s	to	the	new	base	of		ψ’s.	This	means	that	the	choice	of	the	measurement	basis	
(the	 orientation	 of	 measurement	 apparatuses)	 does	 not	 change	 the	 anti-
symmetry	of	the	state.	
	

(vii) Let	us	now	assume	that	Alice	has	made	a	measurement	on	the	sub-system		
M1k⊕S1k	.	This	implies	the	application	of	the	measurement		transformation	on	
the	Alice’s	side		

	
Ψ	→	Ψ’	=	(½)-1	Σ	V1n(Φ1)⊗(	εnmψ1n⊗ψ2m)⊗Φ2)	.	

	
(viii) Let	us	now	assume	that	Alice	has	observed	the	subsystem	M1

k	of	the	system	
M1k⊕S1k⊕S2k⊕M2k,	k	=	1,	..	,	N	(in	the	k-th	round	of	an	experiment)	and	she	has	
found	that	this	system	has	a	property	(for	example)	v12	,	i.e.	that		v12(M1k)	=	1.		
	
Let	us	denote	v	=	v12	.	Following	the	Axiom	HE8	the	individual	system		
M1k⊕S1k⊕S2k⊕M2k		will	be	an	element	of	an	up-dated	ensemble			

 
G(v)	=	{	M1

k⊕S1
k⊕S2

k⊕M2
k	|	v(M1

k}	=	1}	
	
which	is	in	the	state		
	

Ψ’’	=	N-1	[P1(v)⊗Id(H(E1)⊗H(E2)⊗H(F2))]	(Ψ’)	,				
where	

N	=	‖[P1(v)⊗Id(H(E1)⊗H(E2)⊗H(F2))]	(Ψ’)‖	
	
Since		P(1v)		projects		H(F1)	onto	L1(2)	,	only	the	term	with	V1

n(Φ1)	,	n	=	2	from		Ψ’		
will	be	relevant	and	we	obtain	

	
Ψ’’	=	N-1	2-1/2	Σ	V12(Φ1)⊗(	ε2mψ12⊗ψ2m)⊗Φ2)	

                                                           
14	U⊤	denotes	the	transposed	matrix	of	U.	
15 A⊤ denotes the transposed matrix of A. 
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=	N-12-1/2	V1
2(Φ1)⊗ε21ψ1

2⊗ψ2
1⊗Φ2	=	-	V1

2(Φ1)⊗ψ1
2⊗ψ2

1⊗Φ2	.	
	

(ix) The	application	of	the	measurement		transformation	on	the	Bob’s	side	gives	the	
following	state	

	
Ψ’’’	=	-	V12(Φ1)⊗ψ12⊗ψ21⊗V21(Φ2)	.	

	
Let	us	denote		w	=	v21	.	Using	HE7,		the	probability	of	observing	the	property	v21	

on	the	subsystem		M2	will	be	given	by		
	

p	(v21	|	Ψ’’’)	=	‖(Id(H(F1)⊗H(E1)⊗H(E2))⊗ P2(w))	(Ψ’’’)	‖2	=	1			
	
since		P2(w)		projects		H(M2)	onto	L2(1)	we	obtain			P2(w)	(V21(Φ2))	=	V21(Φ2)	having	
‖V21(Φ2)‖	=	1	.		
	
Thus	the	probability		p	(v21	|	Ψ’’’)	=	1,	i.e.	certainty		and	this	means	that	Bob	will	
observe		v2

1	(M2
k)	=	1	with	certainty.		

	
We	have	obtain	that	values		of	properties		v1i(M1k)	and	v2j(M2k)		are	anti-
correlated	for	each	k.		
(The	situation	when	Alice	finds	v11(M1k)	=	1	is	analogical.)	
	

The	simple	explanation	is	the	following.	Once	we	obtained	the	formula	in	(v)	where	ψ1n	and	
ψ2m	are	anti-correlated,	then	the	anti-correlation	between		v1i(M1k)	and	v2j(M2k)		is	a	simple	
consequence	of	this	fact	since	(in	the	measurement	processes)	v1

i	is	correlated	with	ψ1
i	and	

v2j	is	correlated	with	ψ2j	.	The	main	step	is	Lemma	1,	since	this	allows	to	transfer	the	anti-
correlation	between		e1i	and	e2j	to	the	anti-correlation	between	ψ1i	and	ψ2j	.	
	
The	main	features	of	this	situation	in	the	hybrid-epistemic	model	is	following:	

 Individual	measuring	systems		are	anti-correlated	individually	(in	the	sense	of	
properties)	

 Measured	systems		S1k	and	S2k		are	anti-correlated	collectively,	i.e.	as	an	ensemble.		
They	cannot	be	correlated	individually	since	they	are	epistemic	systems	and	they	
have	no	individual	properties	and	no	individual	states.	

 Thus	the	individual	information	on	M1k,	say	v12(M1k)	=	1	is	transferred	to	Bob	as	
v21(M2k)	=	1	through	the	ensemble	of	measured	systems	which	is	in	the	anti-
correlated	state.	

 In	the	ontic	model	there	exist	also	individual	states	of		S1k	and	S2k		which	are	anti-
correlated,	so	that	the	explanation	of	the	anti-correlation	between	M1k	and	M2k	is	
trivial.	(But	the	price	for	the	simplicity	of	the	ontic	model	are	no-go	theorems!)	

 The	fact	that	in	the	hybrid-epistemic	model	we	have	the	individual	anti-correlation	
only	between	measuring	systems	while	in	the	ontic	model	there	exists	also	the	
individual	anti-correlation	between	measured	systems	creates	the	fundamental 
difference	between	these	two	models.	
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In	fact,	the	EPR	correlations	are	not	different	from	classical	correlations.	We	shall	show	an	
example	considering	pairs	of	gloves.	
	
Let	us	consider	the	ensemble	G0	=	{G1k⊕G2k	|	k	=	1,	..	,	N}	of	pairs	of	gloves.	Each	pair	is	
(randomly)	divided	into	two	parts	and	one	part	G1k	is	sent	to	Alice	and	second	part	G2k	is	
sent	to	Bob.	Alice	has	an	ensemble	of	measuring	systems		{MAk	|	k	=	1,	..	,	N}.	each	measuring	
system	is	able	to	decide	whether	the	glove		G1k		is	left-handed	or	right-handed.		Bob	has	the	
analogical	ensemble	{MBk	|	k	=	1,	..	,	N}.	We	can	considered	the	complete	ensemble	

 
G	=	{MAk⊕G1k⊕G2k⊕MBk	|	k	=	1,	..	,	N}.	

	
Let	us	assumed	that	MAk		has	found	that	the	glove	G1k	is	left-handed.	In	this	moment	Bob	
obtains	the	information	that	his	glove	MBk	is	right-handed.		
	
Can	this	process	be	considered	as	a	superluminal	transport	of	the	information?	We	are	sure	
that	there	is	no	super-luminal	transport	of	any	information.	It	is	clear	that	this	correlation	is	
created	by	the	preparation	of	the	ensemble		G0	based	on	the	interaction	in	the	past.		
	
In	the	classical	situation	gloves	are	individually	anti-correlated	but	in	the	hybrid-epistemic	
model	S1’s	and	S2’s	are	only	collectively	anti-correlated	and	this	is	the	basic	difference.	It	is	
clear	that	the	collective	(and	not	individual)	anti-correlation	between	S1’s	and	S2’s	makes	
the	no-go	theorems	un-provable.	
	
There	may	exist	an	impression	that	the	up-dating	axiom	HE8	is	global,	i.e.	it	is	non-local	and	
that	this	axiom	is	the	kernel	of	the	non-locality	of	QM.	But	the	same	situation	is	in	the	
example	of	pairs	of	gloves.	
	
All	this	can	be	seen	from	another	perspective.	We	can	always	define	the	sub-ensemble	

 
G(A,	left)	=	{	MAk⊕G1k⊕G2k⊕MBk	|	v(left)(	MAk)	=	1,	k	=	1,	..	,	N}	

	
This	definition	cannot	be	a	non-local	process	since	the	definition	of	a	new	ensemble	is	the	
mental	process	but	it	is	not	the	physical	process.		
	
For	each		MAk⊕G1k⊕G2k⊕MBk	∊	G(left)		we	have	clearly	that		v(B,	right)(	MBk)	=	1.	Thus	through	
this	ensemble	the	information	v(left)(	MAk)	=	1	is	transposed	to	Bob’s	information		
v(right)(MBk)	=	1.		
	
But	there	is	nothing	non-local	in	this	classical	example:	the	state	of	an	ensemble	is	based	on	
the	correlation	in	the	past	and	this	does	not	create	any	problems.	
	
We	have	shown	that	in	the	situation	in	QM	after	applying	Lemma	1	is	completely	analogous	
to	the	classical	case	and	thus	the	EPR	correlations	can	be	considered	as	a	consequence	of	
the	correlation	in	past	and	as	such	they	are	local.	
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We	have	shown	that	the	EPR	correlations	are	completely	analogical	to	the	standard	local	
classical	correlations.	

	
	
	
	
	

5. The standard epistemic model for QM 

		

We	have	to	give	the	axiomatic	definition	of	the	epistemic	and	of	the	ontic	models	since	only	

then	it	will	be	possible	to	prove	the	theorem	that	all	three	models	considered	here	are	

empirically	equivalent.		

	

The	basic	idea	of	the	epistemic	model	is	an	idea	of	a	particle	stream	which	can	be	also	

considered	as	an	ensemble.	We	shall	be	interested	only	in	ensembles	and	their	states.	In	

the	epistemic	model	the	individual	system	has	no	state	and	no	properties,	so	that	individual	

systems	cannot	be	directly	considered.		

	

Axiom SE1.		

(i) To	each	ensemble	E	of	systems	there	is	associated	a	complex	Hilbert	space	HE 

and	rays	[ψ]	in	this space	are	the	possible	pure	states	of		E .16	The	mixed	states		of		

E		are	described	by	density	operators	in		HE .	At	each	given	time	t	to	each	

ensemble		E		there	corresponds	a	density	operator	St(E;	t)		in		HE  as	a	state	of	E	.	

(ii) Each	ensemble	is	a	result	of	certain	preparation	procedure.	In	a	given	time	a	

given	system	can	participate	in	only	one	preparation	procedure.	

(iii) In	a	given	time	ensembles	are	mutually	disjoint.	This	is	a	consequence	of	(ii).	

(iv) Each	system	is	an	element	of	some	ensemble	in	a	pure	state.	

(v) For	each	density	operator		ρ		in		HE	and	for	each	time	t	there	exists	an	ensemble	E	

such	that		St(E;	t)	=	ρ	.	

 

Axiom SE2. Let		F	=	{M1,	..	,	MN},	E	=	{S1,	..	,	SN}	be	two	ensembles.	Then	their	composite		

F⊕E	is	given	by		F⊕E	=	{M1⊕S1,	..	,	MN⊕SN	}		and		HF	⊕	E =HF ⊗	HE .	

	

Axiom SE3. For	each	ensemble	E	there	is	given	a	unitary	group		{Ut}t∊R	in	HE  which 

describes the	evolution	of	the	state	of	an	ensemble	E	by	

	

state	(E	;	t)	=	Ut	(	state	(E	;	0)	)	,				i.e.	ψ(t) = Ut ψ(0)	.	

 

For	mixed	states		ρ		we	have		ρ(t)	=	Ut	ρ(0)	Ut*.	

                                                           
16 A ray [ψ] is defined by [ψ] = {αψ | |α| = 1}, where |ψ| = 1. 
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Axiom SE4. To	each	observable		A		of	the	system		there	exists	a	bounded	self-adjoint		

operator		A		in	the	space	HE		such	that	its	spectral	decomposition	is	

	

A	=	Σλ	∊	Λ	λ	Pλ		,			Λ	⊂	(0,	∞)	,			

	

where	Λ	is	the	spectrum	of	A	and	Pλ		is	the	projection	onto	an	eigenspace	corresponding	to	

the	eigenvalue	λ.		

		

Definition	(Born’s	formula).		

For	a	given	ensemble	E	in	the	state	[ψ]	∊	HE   and	a	given	eigenvalue	λ	of	A	we	define	

	

p	(	λ	|	[ψ]	;	A	)	=	tr	Pλ	(ψ	⊗	ψ*)	=	(ψ	|	Pλψ)	=	‖Pλψ	‖2		.	

 

Definition (The	transformation	map).		
The	transformation	map	corresponding	to	an	eigenvalue	 λ		is	defined	by			

	
Tλ	([ψ])	=	[‖	Pλ	ψ	‖-1	Pλ	ψ	]		for	each	ψ	∊	HE , ‖	Pλ	ψ	‖	>	0	.	

	
Axiom SE5. 		
The	measurement	of	the	observable	A		is	an	operation	transforming	the	ensemble	E		in	a	
state	[ψ]	onto	a	set	of	new	ensembles			

	
{ Eλ	|		λ	∊	Λ0	(ψ)	}	,			where		Λ0	(ψ)	=	{	λ	∊	Λ	|	Pλ	ψ	≠	0	}	

	
where	Eλ			and		Eμ			are	disjoint		for		λ	≠	μ			and	E	=	⋃	{ Eλ	|		λ	∊	Λ0	(ψ)	}	,	
The	state	of		Eλ		is		Tλ	([ψ])	.	
	
This	operation	can	be	considered	as	a	filtration	FA	:	from	an	ensemble		E		it	creates	a	set	of	
ensembles	

FA	:		E		→	{ Eλ	|		λ	∊	Λ0	(ψ)	}		.	
	
What	is	interesting	is	the	fact	that	there	are	fixed	points	of	this	map.	
	
Definition.  An	ensemble	E	in	the	state	[ψ]	is	called			λ-homogeneous	if		FA	(E)	=	{Eλ}	,	Eλ	=	E	
and	 Λ0(ψ)	=	{	λ	∊	Λ	|	Pλ	ψ	≠	0	}	=	{λ}		(i.e.	Pμψ	=	0		for	each		μ	≠	λ	,	or	equivalently		Pλψ	=	ψ)	.	
	
Definition. The	output	map		o	:	E	→	Λ		is	defined	by	
	

o(S)	=	λ		if	and	only	if		S	∊	Eλ	.	
	
Then		the	sub-ensembles		Eλ		can	also	be	defined	by		Eλ	=	{	S	∊	E	|	o(S)	=	λ	}		for	each		λ	∊	Λ	.		
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Clearly,	the	filtration		FA		is	equivalent	to	the	output	map	o	:	E	→	Λ	.	The	ensemble		E		is	λ-

homogeneous		if	and	only	if		o	(S)	=	λ		for	each		S	∊	E	.	

	
Axiom SE6. 	(Born’s	rule.)	The	relative	frequency	of		λ		given	by		f	(λ)	=	N-1	|	Eλ	|		is	equal	to		

	
f	(λ)		=	p	(λ	|	[ψ]	;	A)	.	

	
Axiom SE7.  After	the	measurement		the	ensemble		E		is	replaced		by	Eλ			in	the	situation	
when	a	value		λ		is	obtained	as	a	result	of	the	measurement.		
The	ensemble		Eλ			will	be	in	the	state		Tλ	([ψ])	.	
	
Axiom SE8. For	each	system	S	and	for	each		ψ	∊	HS		there	exists	an	ensemble		E		in	the	state	
[ψ]		such	that		S	∊	E	.	
	
This	axiom	is	necessary	for	the	comparison	between	epistemic	and	ontic	models	of	QM.	It	is	
also	quite	natural.	This	means	that	the	system	S	can	be,	in	the	sense	S	∊	E , for	any	state [ψ]	.		
	
The	disadvantages	of	the	standard	epistemic	model:	
	

(i) In	the	standard	epistemic	model	individual	systems	have	no	role,	they	have	no	
states	and	no	properties.	The	unique	relation	concerning	the	individual	system	is	
the	fact	that	the	individual	system	may	be	an	element	of	a	given	ensemble.	

(ii) If	QM		wants	to	describe	the	measurement	process,	the	consideration	of	the	
individual	systems	is	necessary	since	the	basic	step	in	this	process	consists	in	the	
observation	of	an	individual	measuring	system.	

(iii) The	complete	neglecting	of	individual	systems	is	the	main	reason	why	the	
standard	epistemic	model	is	considered	as	insufficient	and	unacceptable.	

	
	
	
	
	

6. The standard ontic model for QM  

 

This	is	the	standard	Dirac-von	Neumann’s	model	of	QM	[5].	We	describe	its	axiomatization	

in	details	since	we	make	later	the	detailed	comparison	with	other	models.	The	main	idea	of	

this	model	is	the	requirement	that	each	wave function describes a possible state of an 

individual system (and	a	state	of	each	individual	system	is	described	by	some	wave	

function).	

					

Axiom SO1. To	each	system		S		there	corresponds	a	complex	(finite	dimensional)	Hilbert	

space	H(S)	=	HS,		dim	HS	≥	2	of	states		of	the	system		S	.		In	fact,	the	true	states	are	rays		[ψ]	=	

{αψ	|	|α|	=	1}	,	||ψ||	=	1,	PS	=	{[ψ]	|	ψ∈	HS}.	At	a	given	time	t	the	system	S	is	in	a	state		St	(S;	t)	

∊	PS .	
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Axiom SO2.  If		M	and	S		are	two	systems,	their	composite	system		M	⊕	S	satisfies		HM⊕S	=	

HM	⊗	HS	.		If	the	system	M	is	in	the	state	[ϕ]	and	the	system	S	is	in	the	state	[ψ],	and	

systems	M	and	S	are	independent,	then	the	system	M	⊕	S	will	be	in	the	state	[ϕ	⊗	ψ]	.		

	

Axiom SO3.	For	each	system	S	there	exists	an	unitary	group	of	transformations		{Ut}	in	the	

space	HS	such	that	the	evolution	of	the	state	of	S	is	given	by	[ψ(t)]	=	[Ut	ψ(0)].		

	

Axiom SO4. To	each	observable	A	of	the	system	S	there	exists	a	bounded	self-adjoint		

operator	A		in	the	space	HS		such	that	its	spectral	decomposition	is	

	

A	=	Σλ	∊	Λ	λ	Pλ		,			Λ	⊂	(0,	∞)	,			

	

where	Λ	is	the	spectrum	of	A	and	Pλ		is	the	projection	onto	eigenspace	corresponding	to	the	

eigenvalue	λ.		

	

Below	we	shall	consider	the		fixed	observable	A.	

	

Definition	(Born’s	formula).	For	a	given	system	S	in	the	state	[ψ]	and	a	given	eigenvalue	

λ∊Λ		we	denote	

	

p	(	λ	|	[ψ]	;	A	)	=	tr	Pλ	(ψ	⊗	ψ*)	=		(ψ	|	Pλ	ψ)	=	‖	Pλ	ψ	‖2		.	

 

Definition (the	transformation	map).	The	transformation	map	corresponding	to	 λ	∊	Λ	is	

defined	by			

	

Tλ	([ψ])	=	[	‖	Pλψ	‖-1	Pλψ	]		for	each	ψ	∊	HS	,	‖	Pλψ	‖	>	0	.	

	

Definition . The	ensemble	E	in	the	state	[ψ]	(at	a	given	time	t)	is	defined	as	a	set	of		

independent	systems		E	=	{S1,	..	,	SN}		satisfying.	

(i) H(S1)	=	..	=	H(SN)	=	HE	

(ii) Each		system		S	from	E		is	in	the	state	[ψ]		

	

Such	an	ensemble	is	called	the	homogeneous	ensemble	since	all	its	elements	are	in	the	same	

state.17	

	

Axiom SO5. 	(The	measurement	schema.)		

                                                           
17 The concept of a homogeneous ensemble was introduced by von Neumann who postulated that each 
ensemble in the pure state is homogeneous. 
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Let	us	consider	an	ensemble	E		in	the	state	[ψ]	and	let	us	consider	a	measurement	of	an	

observable	A.			

As	a	result	of	a	measurement	we	obtain	the		“output”	map		o	:	E	→	Λ		which	means	that	in	

the	measurement	of	a	system	S	∊	E		we	obtain	the	output	value	o(S)	∊	Λ	.		

	

Then	we	can	define		a	new	ensemble	

 

Eλ	=	{	S	∊	E	|	o(S)	=	λ	}		for	each		λ	∊	Λ	.	

	

The	relative	frequency	of	the		output	value	λ	in	the	sequence		o(S1)	,	..	,	o(SN)	is	given	by			

	

f	(λ)	=	N-1	|	Eλ	|	

 

Axiom SO6. 	(Born’s	rule.)	The	Born’s	rule	holds	

	

f	(λ)	=	p	(λ	|	[ψ]	;	A)	.	

	

Axiom SO7.  (The	collapse	postulate.)		After	the	measurement		where		the	output	value	was		

λ	,	the	state	of	the	individual	system		S			will	be	(immediately)	changed			

	

from		[ψ]		to		Tλ	([ψ]).	

	

Axiom SO8. For	each	system		S		and	for	each		ψ	∊	HS		there	exists	an	ensemble		E		in	the	

state		[ψ]		such	that		S	∊	E	.18	

	

This	axiom	is	necessary	for	the	comparison	of	epistemic	and	ontic	models.	It	is	also	quite	

natural.	It	says	that	the	ensemble		E		can	be	constructed	as	a	set	of	systems	in	the	individual	

state		[ψ]	.	

	

The	disadvantages	of	the	standard	ontic	model:		

	

(i) The	main	object	of	the	criticism	is	the	well-known	Collapse	postulate	SO719.	This	

immediate	change	of	the	state	of	the	individual	system	S	is	completely un-

physical.	There	were	proposed	solutions	to	this	problem,	namely	the	so-called	

collapse	theories	20	which	have	the	main	drawback	of	being	non-linear	and	

different	from	QM.	But	nevertheless	the	collapse	postulate	(as	defined	by	von	

Neumann)	is	a	purely mathematical operation	without	any	physical	meaning.	

                                                           
18 This axiom is the same as axiom SE8. 
19 The collapse postulate was formulated by von Neumann in his famous book on QM [5]. 
20 See e.g. [11]. 
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(ii) The	quantum	state	[ψ]	is	attributed	to	the	individual	system	S,	but	there	is	no	

empirical	procedure	by	which	we	could	find	what	is	a	quantum	state	of	a	given	

individual	system	S.	To	find	the	quantum	state	[ψ]	it	is	necessary	to	make	(in	fact	

more	than	one)	tests	on	an	ensemble	of	systems	in	the	state	[ψ]	–	to	have	only	

one	copy	of	S	is	clearly	insufficient.21		This	implies	that	empirically	the	state		[ψ]		

can	be	attributed	only	to	an	ensemble	of	systems.		

Thus	the	quantum	state	of	an	individual	system	is	empirically	un-defined.		

(iii) In	probability	theory	usually	the	state	is	an	attribute	of	an	ensemble22.	In	the	

standard	ontic	model	the	probability	distribution	(a	wave	function)	is	attributed	

to	the	individual	system	and	this	is,	at	least,	very	strange.23		

	

	
	
	
	
	

7. The empirical equivalence of these three models 

	
Here	we	shall	show	relations	among	empirical	predictions	of	these	three	models.	The	
experiments	and	the	empirical	predictions	of	QM	corresponding	to	the	experiment	have	in	
general	the	following	structure:	

	
Exp:		preparation	→	evolution	→	measurement	→	registration	→	statistics.	

	
Here	the	registration	is	a	pair:	
	
(the	output	value	,	the	new	state	of	the	ensemble	of	measured	systems)	
	
and	the	statistics	is	a	set	of	triplets:	
	
{(the	output	value,	the	probability	of	the	output	value	,	the	new	state	of	the	ensemble	of	
measured	systems)}	.	
	
Empirical	predictions	of	QM	can	be	tested	only	on	an	ensemble.	(Also	in	the	case	where	the	
prediction	is	sure,	i.e.	with	probability	one,	it	must	be	tested	on	an	ensemble!)		
	

                                                           
21 This is same as for Brownian particle. Having only one copy of the Brownian particle it is impossible to find its 
probability distribution. To find the probability distribution it is necessary to have an ensemble of Brownian 
particles, to measure their positions and to calculate the relative frequencies. Only in this situation the probability 
distribution of the Brownian particle can be found. In fact, for the Brownian particle case one test is sufficient while 
in the quantum case more than one test is necessary. 
22 See for example the Brownian particle. An individual particle has a unique property – its position. The probability 
distribution is an attribute of an ensemble. 
23 This indicates the idea of the ”individual probability theory” which, up to now, does not exist. 
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Thus	the	empirical	predictions	of	QM	are	always	related	to	ensembles.24		This	means	that	
also	in	the	ontic	model	we	have	to	consider	ensembles	(which	were	defined	in	the	section	
devoted	to	the	ontic	model	of	QM).	
	
Let	us	assume	that	the	set	of	possible	outputs	of	an	experiment	is		O	=	{o1,	..	,	on}	.	
	
Definition.  
The	standard	QM prediction	is	a	set	of	triplets		(which	depend	on	the	prepared	state	[ψ])	

 
pred	=	{(o1,	p1,	ψ1),	..	,	(on,	pn,	ψn)}	,	

	
where	to	each	possible	output		oi		there	corresponds		the	probability	of	this	output		pi	=	p	(oi	
|	[ψ])		and	the	state	of	a	new	up-dated	ensemble		ψi	=	Ti	([ψ])	,		I	=	1,	..	,	n	.	
	
Definition.  
The	standard QM experiment	is	the	process	where	

(i) The	ensemble	is	prepared	in	the	state	[ψ]	
(ii) The	resulting	standard	QM	prediction	pred	is	tested	

	
It	is	simple	to	recognize	that	the	first	two	steps	(preparation	→	evolution)	are	the	same	in	
all	three	models.	The	differences	are	only	in	the	measurement	part.		
	
So	we	can	assume	that	we	have	an	ensemble		E	=	{S1,	…	,	SN}		prepared	in	the	state		ψ	∊	HE	.	
	
Theorem 6. The	empirical	predictions	of	the	epistemic	model	of	QM	and	the	hybrid-
epistemic	model	of	QM	are	the	same.	
	
The	proof	can	be	found	in	Appendix	A.	
	
Theorem 7. The	empirical	predictions	of	the	epistemic	model	of	QM	and	of	the	ontic	model	
of	QM	are	the	same.	
	
The	proof	can	be	found	in	Appendix	A.	
				
This	is	an	interesting	situation:	we	have	a	theory	which	has	at	least	three	different	models	
with	the	same	empirical	content.25		What	means	a	truth	in	such	a	theory?	
	
In	mathematics,	this	is	a	quite	common	situation:	we	have	non-standard	models	of	Peano’s	
arithmetic,	of	Zermelo-Fraenkel’s	set	theory	etc.	The	truth	in	these	theories	means	
statements	which	are	true	in	all	models.		
	

                                                           
24 We exclude in this paper the existence of something like “individual probability theory”. 
25 Here we do not consider so-called Bohm mechanics since it is rather different in its structure from the standard 
QM. 
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In	general,	there	may	exist	theorems	which	are	provable	in	one	model,	but	un-provable	in	
another	model.	This	is	the	case	of	QM:	Bell’s	theorem	and	other	no-go	theorems	can	be	
proved	in	the	ontic	model	but	they	cannot	be	proved	in	epistemic	and	hybrid-epistemic	
models	(see	sect.	8).	
	
To	find	the	true	content	of	the	Bell’s	theorem	requires	the	more	careful	considerations.	
Bell’s	theorem	asserts	that	the	locality	implies	the	Bell’s	inequality,	and	since	Bell’s	
inequality	contradicts	to	QM	the	Bell’s	theorem	asserts	the	non-locality	of	QM.	This	theorem	
can	be	proved	only	in	the	ontic	model.	In	fact,	in all correct proofs	of	the	Bell’s	theorem	
the	main	(hidden)	assumption	is	so-called	“local	realism”	–	and	the	realism	means	the	
assumption	of	the	ontic	model.	
	
There	is	an	apparent	paradox	that	certain	theorems	can	be	proved	in	one	model	and	not	in	
other	models.	This	seems	to	contradict	to	empirical	equivalence	of	all	three	presented	
models	of	QM.		
	
But	there	is	no	paradox:	the	point	consists	in	the	fact	that	Bell’s	theorem	is	not	an	empirical	
prediction	–	it	has	no empirical content.	The	experimental	results	on	the	empirical	
invalidity	of	Bell’s	inequality	means	only	that	the	attempt	to	falsify	QM	was	unsuccessful	
(i.e.	the	confirmation	of	QM).	There	are	no	known	properties	of	this	“non-locality”	outside	
of	the	Bell’s	theorem.26	
	
The	distinction	among	these	three	models	cannot	be	found	on	the	base	of	the	standard	QM	
empirical	predictions	(and	on	the	standard	QM	experiments).	But	there	may	exist	
statements	(provable	in	some	models)	which	do	not	have	the	form	of	a	QM	prediction	and	
which	cannot	be	tested	in	the	standard	QM	experiment.	The	typical	statement	of	this	sort	is	
the	non-locality	or	the	violation	of	the	macro-realism	discussed	at	length	in	the	next	section.	
	
In	each	case,	if	we	consider	the	principle	that	the	correct	consequences	of	QM	are	only	such	
statements	which	are	proved	in	all	models	of	QM	then	all known no-go theorems	in	QM	
are	not	the	correct consequences of QM.	
	
The	experimental	test	of	the	validity	of	Bell’s	inequality	results	in	a	negative	answer	and	
this	is	the	standard	QM	experiment	containing	the	standard	QM	prediction.		
	
But	the	Bell’s	theorem	(QM	plus	locality	plus the ontic model	implies	the	Bell’s	inequality)	
asserts	that	among	assumptions	{axioms	of	QM,	the	locality,	the	ontic	model}	some	
assumption	must	be	false.		But	what	is	in	the	case	of	Bell’s	theorem	the	testable	QM	
prediction?	There	does	not	exists	any	reasonable	QM	prediction	and	this	show	that	Bell’s	
theorem	does	not	create	any	standard	QM	prediction	and	any	standard	QM	experiment.	The	
standard	QM	experiment	on	Bell’s	inequality	tests	the	validity	of	QM	and	shows	that	Bell’s	
inequality	is	false	in	the	complete	agreement	with	QM.	
	

                                                           
26 In the section 4 it was proved that the famous EPR correlations ate perfectly local in the hybrid-epistemic model. 



28  
 

Assuming	a	priori	validity	of	QM	and	the	ontic	model	of	QM	we	obtain	as	a	result	the	non-
locality	of	QM	(the	proof	is	done	by	contradiction,	i.e.	only	non-constructive	version	is	
available).		But	what	is	the	experimental	proof	of	non-locality?	Only	one	proof	is	available:	
the	invalidity	of	Bell’s	inequality.	In	fact,	there	is	no	experimental	confirmation	of	the	non-
locality	outside	of	the	negative	test	of	Bell’s	inequality.		
	
This	is	a	serious	problem.	There	is	no direct experimental manifestation	of	so-called	
nonlocality	of	QM.	
	
This	shows	that	Bell’s	theorem	does	not	give	the	standard	QM	prediction	and	that	Bell’s	
theorem	belong	to	a	new	class	of	possible	consequences	of	QM	different	from	the	standard	
QM	predictions.	
	
The	question	if	in	QM	there	can	exist	some	consequences	which	cannot	be	represented	in	
the	form	of	the	standard	QM	prediction	is	very	important.	At	present,	it	seems	that	in	the	
ontic	model	there	exist	such	consequences		and	that	they	are	the	no-go	theorems.	Similar	
consequences	are	not	known	in	epistemic	and	hybrid-epistemic	models	of	QM.		
	
We	think	that	the	explanations	given	here	can	explain	the	apparent	contradiction	between	
the	empirical	equivalence	of	the	three	proposed	models	and	the	different	sets	of	theorems	
provable	in	these	models.	
	
This	argument	does	not	want	to	say	that	there	is	no	content	of	Bell’s	theorem	but	that	its	
content	is	different	from	the	standard	QM	predictions27.	
	
	
	
	
	
	

8. The invalidity of no-go theorems in epistemic and hybrid-epistemic 

models 

	
At	first	we	shall	consider	the	possible	proof	of	Bell’s	theorem	[6]	in	the	epistemic	model.	
	
Let	us	state	what	we	mean	under	Bell’s	theorem	.	This	is	the	assertion			

	
locality		+	ontic	model		⇒		Bell’s	inequality.	

	
The	Bell’s	inequality	contradicts	to	QM	and	since	we	assume	the	validity	of	QM,	so	that	

	

                                                           
27 Our position is clear: the Bell’s theorem is not a QM theorem but a meta-theorem proving the inner contradiction 
of the ontic model of QM. I.e. the proof of the inner inconsistency of the ontic model. It is possible to escape from 
this conclusion by assuming the non-locality of QM but an equally possible is to escape from this situation by using 
other model of QM different from the ontic model. 
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ontic	model		⇒		non-locality	of	QM	.	
and	equivalently	

the	locality	of	QM	⇒	the	ontic	model	is	invalid.	
	
Let	us	immediately	note	that	the	assumption	of	the	ontic	model	is	necessary	since	we	shall	
show	below	that	in	other	two	models	of	QM	the	Bell’s	theorem	is	not	proved	(and	probably	
cannot	be	proved).	
	
This	means	that	sometimes	used	statements:		QM	+	locality	⇒	Bell’s	inequality		and		QM	⇒	
non-locality		are	false.		
	
The	right	assumption	is	the	local	realism	where	realism	means	the	assumption	of	the	ontic	
model.	
	
Each	proof	of	Bell’s	theorem	is	based	on	the	analysis	of	individual	states	(i.e.	states	
attributable	to	individual	systems).	Already	the	principle	of	the	proof	of	any	Bell’s	theorem	
is	to	consider	the	Alice’s	system	in	some	bases	and	the	Bob’s	system	in	some	bases.	Then	
using	the	analysis	of	a	certain	inequality	for	individual	systems	this	inequality	can	be	
integrated	over	the	ensemble	of	such	systems	and	the	final	Bell’s	inequality	is	obtained.	
	
The	origin	of	the	proof	is	always	based	on	the	properties	of	states	of	individual	systems.	It	is	
automatically	supposed	that	each	possible	state	of	an	individual	system	is	described	by	a	
wave	function.	
	
Since	in	the	epistemic	model	individual	systems	have	no	states	and	no	properties,	this	proof	
cannot	go	through.	
	
At	the	second	step	we	shall	consider	(for	the	simplicity)	the	case	of	a	hybrid	model.	In	the	
hybrid	model	to	each	system	there	corresponds	one	orthogonal	base	of	homogeneous	
states	–	other	states	are	not	homogeneous.	
	
We	can	simply	see	that	any	proof	of	Bell’s	theorem	requires	either	at	least	two	different	
individual	bases	on	the	Alice’s	side	or	at	least	two	individual	bases	on	the	Bob’s	side.	Under	
the	notion	“individual	base”	we	mean	the	base	composed	exclusively	from	individual	states.	
The	lowest	number	of	bases	is	required	in	the	original	Bell’s	proof,	where	there	must	exist	
two	individual	bases	at	the	Alice’s	side	(A,	A’)	and	one	individual	base	at	the	Bob’s	side	(B).		
	
In	the	standard	proof	of	the	CHSH	inequality	there	are	required	two	individual	bases	at	
Alice	(A,	A’)	and	two	individual	bases	at	Bob	(B,	B’).		
	
In	the	well-known	Mermin’s	proof	there	are	required	three	different	bases	at	Alice’s	side	
and	three	different	bases	at	Bob’s	side.	
	
The	spirit	of	the	Bell’s	proof	consists	in	the	fact	that	more	than	one	individual	base	is	used	
for	some	system.	But	exactly	this	is	impossible	in	the	hybrid	model	of	QM	where	only	one	
individual	base	is	available	on	the	Alice’s	side	and	only	one	individual	base	on	the	
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Bob’s	side.	Thus	in	the	hybrid	model	of	QM	the	standard	proof	of	Bell’s	theorem	cannot	be	
proved.	
	
Now	we	shall	consider	the	case	of	a	hybrid-epistemic	model	of	QM.	In	some	sense,	the	
hybrid-epistemic	model	lies	between	hybrid	model	and	the	epistemic	model	and	one	could	
expect	that	the	conclusion	obtained	for	both	hybrid	and	epistemic	models	will	be	true	also	
for	hybrid-epistemic	model.	But	we	shall	consider	the	situation	in	more	details.	
	
For	the	hybrid-epistemic	system	there	is	nothing	like	a	state	of	an	individual	system	–	in	
this	sense	the	hybrid-epistemic	system	is	similar	to	the	epistemic	system.	Nevertheless	for	
the	hybrid-epistemic	system	there	exist	properties		v1,	..	,	vn		which	have	a	value	defined	on	
the	individual	system.	But	the	corresponding	states	can	came	only	from	the	homogeneous	
subspaces	which	create	the	orthogonal	decomposition		L(1)	+	..	+	L(n)	of	the	state	space	and	
there	is	only	one	such	decomposition.	Thus	the	previous	argument	used	for	the	hybrid	
system	can	be	applied	also	to	the	hybrid-epistemic	system.	
	
We	have	proved	the	following	theorem	
	
Theorem 8.  
In	the	epistemic	and	the	hybrid-epistemic	models	the	standard	proof	of	Bell’s	theorem	
cannot	be	applied.	Thus	the	Bell’s	theorem	is	not	proved	in	these	models.	
	
Remark.  
Bell’s	proof	depends	crucially	on	the	concept	of	a	state	of	an	individual	system.	The	
calculation	is	at	first	done	in	the	situation	concerning	an	individual	system	and	their	
possible	states.	This	can	be	done	only	in	the	ontic	model.	(More	exactly,	more	than	one	
individual	base	must	exist.)	Usually	this	requirement	is	taken	into	account	in	the	terms	of	
so-called	realism	(realism	=	ontic	model)	but	this	is	sometimes	hidden	in	the	term	“local	
realism”.		
	
For	example	in	the	following	formulation:	“the	local	realism	implies	the	non-locality	of	QM”.	
This	argument	is	not	true.	The	falsity	of	local	realism	implies	either	that	locality	is	false	or	
that	realism	(	=	ontic	model	of	QM)	is	false.	
	
The	assumption	of	realism	is	often	hidden	in	this	formulation	but	it	means	that	the	ontic	
model	is	assumed.	
	
We	have	shown	that	the	standard	proof	of	Bell’s	theorem	cannot	be	used	in	the	hybrid-
epistemic	(or	epistemic)	model.		
	
This	does	not	exclude	that	some	other	proof	could	be	possible.	But	this	is	extremely	
improbable	since	the	basic	idea	of	the	Bell’s	proof	is	to	make	the	calculation	with	individual	
systems	and	this	is	in	principle	impossible	in	the	hybrid-epistemic	model.	
	
We	can	make	the	conclusion	that	Bell’s	theorem	is	proved	in	the	ontic	model	but	it	is	not 
proved	in	the	epistemic	and	hybrid-epistemic	models.	
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Now	we	shall	consider	the	Leggett-Garg	theorem	[8]	which	is	the	“time”	analog	of	the	Bell’s	
theorem.		
	
The	Leggett-Garg		theorem	says:		macro-realism	+	ontic	model	⇒	Leggett-Garg	inequality.	
But	this	inequality	is	in	contradiction	with	QM	.	Thus	we	obtain	

	
ontic	model	⇒	the	falsity	of	the	macro-realism	.	

	
The	sometimes	used	simplified	formulation:	QM	⇒	the	macro-realism	is	invalid	since	we	
shall	show	below	that	the	assumption	of	the	ontic	model	is	necessary.	
	
In	the	Leggett-Garg	inequality	there	is	considered	an	quantity	Q	at	three	different	times		t1	<	

t2	<	t3	.	

	

Let	us	consider	the	hybrid	system	S	with	the	individual	base	{ψ1,	..	,	ψn}	given	by	the	

eigenvectors	of		Q(t1)		and	let	us	assume	that	{ϕ1,	..	,	ϕn}	is	the	base	of	eigenvectors	for	Q(t2).	

Let	U	be	an	evolution	map	from	t1	to	t2.	We	have	ontic	states	ψ1,	..	,	ψn		at	t1	and	ϕ1,	..	,	ϕn	at	

t2.	Using	U	we	can	obtain	ontic	states	U(ψ1),	..	,	U(ψn),	ϕ1,	..	,	ϕn		at	the	time	t2.		

	

But	in	the	hybrid	system	all	individual	(=homogeneous)	states	must	be	orthogonal.	

	

This	implies	that	ϕ1	=	U(ψπ(1))	,	..	,	ϕn	=	U(ψ	π(n))	where		π	is	a	permutation.	Thus	the	map	U	

must	be	identity	(after	possible	renaming	of	ψ1,	..	,	ψn)	and	we	obtain	that	Q(t2)	=	Q(t1)	and	

similarly	Q(t3)	=	Q(t2).	Then	the	Leggett-Garg	inequality	becomes	trivial.	

	

Thus	the	argument	is	very	similar	to	the	argument	from	the	invalidity	of	the	Bell’s	theorem	

in	the	hybrid	model:	at		a	given	time	only	one	orthogonal	individual	base	can	exist	for	the	

hybrid	system	so	that	the	evolution	map	must	transform	the	individual	base	at	t1	onto	the	

individual	base	at	t2	etc.	and	this	makes	the	Leggett-Garg	theorem	trivial.	

	

In	the	case	of	the	hybrid-epistemic	systems	the	situation	is	analogical.		

 

The	Leggett-Garg	theorem	(which	can	be	proved	only	in	the	ontic	model)	asserts	that	the	
macro-realism	implies	the	Leggett-Garg	inequality	(which	contradicts	to	QM	for	some	
evolution	operator	U).		
	
Thus	the	consequence	of	the	Leggett-Garg	theorem	is	the	statement	that	the	macro-realism	
is	not	valid.																																																																																																																																																																																																																																																																							
	
We	have	arrived	at	the	following	theorem	
	
Theorem 9.  
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In	the	epistemic	and	the	hybrid-epistemic	models	the	standard	proof	of	Leggett-Garg	
theorem	cannot	be	applied.	Thus	the	Leggett-Garg	theorem	is	not proved	in	these	models.	
	
Since	all	no-go	theorems	are	based	on	the	investigation	of	states	of	individual	system	(for	
example	GHZ	tests	and	similar	tests)	we	can	expect	that	the	situation	with	other	no-go	
theorems	will	be	similar:	that	they	are	proved	in	the	ontic	model	of	QM	but	that	they	are	no	
provable	in	epistemic	and	hybrid-epistemic	models.	
	
Quite	recently	there	were	discovered	new	no-go	theorems	([10],	[11]).	In	both	papers	
authors	assume	that	QM	is	a	valid	theory	but,	in	fact,	they	consider	the	ontic	model	of	QM	
(they	use	the	concept	of	quantum	states	of	individual	systems).		Thus	these	no-go	theorems	
can	be	proved	only	in	the	ontic	model	of	QM.	
	
Theorem 10.  
The	no-go	theorems	are	proved	in	the	ontic	model	of	QM	but	they	are	not	proved	(and	
probably	not	provable)	in	both	epistemic	and	hybrid-epistemic	models.	
	
	
	
	
	

9. The possible inconsistences of the ontic model of QM 

	
We	shall	collect	here	arguments	against	the	consistency	of	the	ontic	model	of	QM.	We	shall	
present	a	number	of	arguments:	

 The	incompatibility	of	the	ontic	model	with	the	macro-realism	of	the	classical	world	
 The		Schrodinger	cat	paradox	
 The	incompatibility	of	the	ontic	model	with	the	special	and	general	relativity	
 The	collapse	postulate		(Axiom		SO7)	
 The	postulate	of	definite	outcomes	

	
We	shall	consider	these	arguments	step	by	step.	
	

(i) The incompatibility of the ontic model with the macro-realism of the 
classical world – i.e. the incompatibility of the quantum world with the 
classical world.	

	
In	the	ontic	model	it	is	possible	to	prove	the	Leggett-Garg	theorem	asserting	that	macro-
realism	is	false.	But	in	the	classical	world	the	macro-realism	is	true.	Up	to	now	there	was	no	
experiment	proving	the	falsity	of	macro-realism	in	the	classical	world.	(The	proof	of	the	
falsity	of	the	Leggett-Garg	inequality	does	not	imply	the	falsity	of	macro-realism	since	there	
is	a	hidden assumption	of	the	ontic	model	–	the	possible	proof	of	the	falsity	of	the	macro-
realism	cannot	be	based	on	the	use	of	the	Leggett-Garg	theorem.)	
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The	question	of	the	compatibility	of	the	quantum	world	with	the	classical	world	is	of	
extreme	importance.	(This	was	the	first	Bohr’s	requirement	that	it	is	necessary	to	make	
quantum	mechanics	compatible	with	the	classical	world.)	The	well-known	problem	of	the	
compatibility	between	General	relativity	and	Quantum	mechanics	has	a	necessary	
prerequisite	in	the	compatibility	between	QM	and	the	classical	world	view.		

	
Thus	we	consider	the	necessity	of	the	compatibility	between	QM	and	the	classical	world	
view	as	a	fundamental	requirement	of	the	consistency	of	physics	(and	a	necessary	condition	
for	the	possible	unification	of	general	relativity	with	QM).	

	
In	general,	the	compatibility	between	the	quantum	world	and	the	classical	world	is	
principal	requirement	of	the	consistency	in	physics.	Without	this	compatibility	any	
interpretation	of	the	world	is	impossible.	This	compatibility	is	more	important	than	the	
standard	requirement	of	the	compatibility	between	General	relativity	and	QM.		

	
This	compatibility	(between	QM	and	the	classical	world)	is	completely	necessary.	This	
requirement	implies	the	rejection	of	the	ontic	model	of	QM	as	incompatible	with	the	rest	of	
physics.	
	

(ii) The  Schrodinger cat paradox 
	
We	can	consider	the	individual	state	of	a	cat	or	the	state	of	an	ensemble	of	cats.	We	shall	
consider	only	the	ensemble	of	cats	in	the	Schrodinger	cat	state			

	
ψcat	=	(2-1/2)	(ψalive	+	ψdead).	28	

	
As	a	state	of	an	ensemble	this	can	be	considered	as	a	possible	state	–	there	is	an	open	
question	if	an	ensemble	in	such	a	state	can	exist.	But	in	all	of	our	three	models	we	suppose	
that	the	ensemble	in	such	a	state	exists.	In	fact,	experimentally	this	seems	to	be	an	open	
question	whether	the	ensemble	in	such	“cat	state”	can	be	really	created.	
	
In	an	ontic		model	there	is	a	problem.	If	there	exists	an	ensemble		E 	which	is	in	the	state	
ψcat,	then	it	is	necessary	that	any	cat		S	∈	E		is	in	an	individual	state		ψcat	.	But	the	situation	
when	the	individual cat	is	in	a	state		ψcat		is	considered	as	absurd,	at	least	by	Schrodinger.		
	
In	this	way	the	Schrodinger	cat	paradox	rejects	the	possibility	of	the	ontic	model	of	QM.		
	
For	other	models,	epistemic	and	hybrid-epistemic	there	is	no	problem:	the	individual	cat	in	
the	Schrodinger	cat	state	need	not	exist.	In	fact,	in	epistemic	model	no	individual	states	
exist	in	general	and	in	the	hybrid-epistemic	model	there	could	exist	individual	states	but	as	
a	maximum	one	orthogonal	base	for	a	system	and	it	is	insufficient	for	the	Schrodinger	cat	
paradox.	
	

                                                           
28 The ψcat		state	was	meant	by	Schrodinger	ironically,	of	course. 
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This	shows	the	absurdity	of	the	individual	Schrodinger	cat	state,	and	as	a	consequence,	the	
absurdity	of	the	ontic	model	of	QM.	

	
(iii)  The incompatibility of the ontic model with the special and general 

relativity.  
	
The	ontic	model	implies	the	non-locality	of	QM.	This	is	in	the	clear	contradiction	with	the	
theory	of	relativity	and	this	is	serious.		
	
But	this	clear	contradiction	has	no	concrete	consequences	since	the	non-locality	of	QM	has	
no	concrete	manifestations.	
But	in	principle	this	incompatibility	cannot	be	accepted.		

	
(iv) The collapse postulate	(in	the	ontic	model	-	Axiom		SO7)	

	
The	von	Neumann’s	collapse	postulate	(for	the	state	of	an	individual	system!)	is	a	pure	non-
sense	from	the	physical	point	of	view.	Any	physical	effect	must	have	a	clear	physical	origin.	
29	
	
This	was	noticed	by	most	physicists	(notably	this	was	the	starting	point	of	so-called	many	
world	interpretation	of	QM).	The	basic	principles	of	QM	are	clearly	the	linearity	and	the	
unitarity	and	both	these	principles	are	violated	in	the	process	of	collapse.		
	
The	collapse	postulate	as	stated	by	von	Neumann	is	a	mathematical	rule	which	is	physically	
unacceptable.	The	von	Neumann’s	postulate	of	collapse	cannot	be	explained	as	a	physical	
process.	This	indicates	that	the	ontic	model	of	QM	(in	the	form	of	the	von	Neumann’s	
axiomatization)	is	inconsistent	or	at	least	incompatible	with	the	rest	of	world.	

	
(v) The postulate of definite outcomes.		

	
This	postulate	says	that	each	(individual)	experiment	must	have	a	uniquely	defined	and	
identifiable	output.	(This	requirement	is	often	related	to	the	measurement	problem.)	This	
postulate	is	contained	in	our	axiomatization	of	the	hybrid-epistemic	model	of	QM	in	the	
form	of	the	definition	what	is	a	property:	we	required	that	the	property		v		is	a	function	
which	associated	to	each	system		S		a	number		v(S)		which	can	have	one	of	only	two	possible	
values	1	or	0.	In	Axiom	HE1	it	is	required	that	to	each	system	there	is	associated	a	
classification		CS		which	is	a	set	of	exclusive	properties	(but	the	requirement	of	exclusivity	
does	not	create	any	serious	limitations).		

	
	
	
	
	

                                                           
29 They are so-called collapse theories which explain the collapse of the state of an individual system but these 
theories are non-linear and thus cannot be interpreted inside QM. 
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10. The internal inconsistence of the ontic model of QM 

	
In	the	ontic	model		the	set	of	pure	states	is	considered	as	the	set	of	elementary	states	in	the	
meaning	of	the	probability	theory.	These	states	are	considered	as	states	of	individual	
systems.	
	
Thus	the	set	PS	=	{	[ψ]	|	‖ψ‖	=	1	}30		is	the	analog	of	the	set	of	possible	positions	of	a	
Brownian	particle	(i.e.	R3).		
	
Each	statistical	mixture		A		can	be	defined	as	a	pair		A	=	{sptA	,	wA}		where		sptA	is	a	finite	(or	
countably	infinite)		subset	of		PS		and	the	weight	function	wA	is	a	function		from		sptA	into	
positive	numbers		satisfying		Σ	{	wA([ψ])	|	[ψ]	∈	sptA	}	=	1	.	
	
Two	mixtures		A		and		B		are	equal	if	and	only	if		sptA	=	sptB		and		wA	=	wB	–	this	is	a	
consequence	of	the	concept	of		wave	functions		(i.e.	PS)	as	elementary	events.		This	is	a	basic	
principle	of	the	probability	theory.		
	
We	can	consider	a	simplest	case		A	=	{sptA	,	wA}	,	where	sptA	=		{[ψ]}	,	wA	≡	1	,	B	=	{sptB	,	wB},	
where	sptB	=		{[ϕ]}	,	wB	≡	1	,	[ψ]	≠	[ϕ]	.	Then	clearly	A	≠	B	.	
	
The	next	most	simple	case	is	the	following		A	=	{sptA	,	wA}	,	sptA	=		{[ψ1],	[ψ2]}	,	wA	≡	½		,	B	=	
{sptB	,	wB}	,	sptB	=		{[ϕ1],	[ϕ2]}	,	wB	≡	½			,	where		[ψ1]	≠	[ψ2]	,	[ϕ1]	≠	[ϕ2]	,	sptA	∩	sptB	=	0	.		
Then	also	clearly	A	≠	B	.	These	two	mixtures	must	be	different	since	they	are	constructed	
from	completely	different	elementary	states.	
	
But	in	the	ontic	model	the	concept	of	a	statistical	mixture	is	treated	in	a	completely	
different	way.	Each	pure	state	[ψ]	can	be	represented		by	its	density		operator		ψ⊗ψ*		.		To	
each	statistical	mixture		A		there	is	associated	the	density	operator	defined	as		ρA	=	Σ	{	
w([ψ])	ψ⊗ψ*	|	[ψ]	∈	sptA	}	.	
	
Then	it	is	postulated	that	mixtures		A	and	B		are	in	the	same	state	if		ρA	=	ρB	(i.e.	that	all	
physical	properties	of	a	mixture	A	depend	only	on	ρA)31.		
	
Now	we	shall	show	that	there	are	infinitely	many	situations	where	different	mixtures	have	
the	same	density	operator.32		We	shall	consider	the	2-dimensional	Hilbert	space	with	the	
orthogonal	base	{e1,	e2}	.	Let	φ	and	θ	be	two	free	parameters	and	we	shall	assume	that		a2	+	
b2	=	1	.		We	define	two	vectors	

	
u	=	α-1	(a.cosφ,	-b.sinφ.eiθ)	,	v	=	β-1	(a.sinφ.e-iθ,	b.cosφ.)	,	

	
where	α	=	(a2	cos2φ	+	b2	sin2φ)½			,	β	=	(a2	sin2φ	+	b2	cos2φ)½	.	
	

                                                           
30 [ψ] = {eiα ψ | α ∈ R} 
31 QM predicts only probabilities and they depend (Born’s rule) only on the density operator. 
32 This paradox of a duplicity of mixtures is generally known for a long time. 
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Then	we	obtain	(by	the	numerical	calculation)	that	
	

α2	u⊗u*	+	β2	v⊗v*	=	a2	e1⊗e1*	+	b2	e2⊗e2*	=	diag(a2,	b2)	.	
	
Then	we	can	define	two	mixtures		A	and	B	by	
	
sptA	=	{[e1],	[e2]}	,	wA	([e1])	=	a2	,	wA	([e2])	=	b2	,	
sptB	=	{[u],	[v]}	,	wB	([u])	=	α2	,	wB	([v])	=	β2	,		
	
For	the	corresponding	density	operators	we	have		ρA	=	ρB	.	For	the	mixture		A		
(parametrized	by	a,	b	satisfying	a2	+	b2	=	1)		we	have	infinitely	many	(with	free	parameters	
φ	and	θ)	mixtures		B’s		which	give	the	same	density	matrix	as	the	density	matrix	ρA	.	
	
In	fact,	such	multiplicity	exists	for	each	density	operator		ρ	.	Each		ρ		can	be	written	in	the	
form		ρ	=	a2	e1⊗e1*	+	b2	e2⊗e2*		with	some	orthogonal	base		{e1,	e2}33	.	Then		the	
construction	of		B		can	be	applied	as	well.			
	
Thus	for	each		mixture		A		we	have	at	least	a	2-dimensional	variety		of	mixtures		B		such	that		
ρA	=	ρB	.	Thus	we	can	assert	that	the	phenomenon	of	the	infinite	multiplicity	of	mixtures	
having	the	same	density	operator	as	a	given	mixture		A		is		completely	general.	
	
Now	we	shal	consider	the	particular	case	of	this	phenomenon	of	multiplicity.		
Let	us	set		a2	=	b2	=	½		and		θ	=	0	.	Then	we	have	

	
u	=	(cosφ	,	-	sinφ)	,	v	=	(sinφ	,	cosφ)	,	e1	=	(1,	0)	,	e1	=	(1,	0)		and	

ρB	=	½(u⊗u*	+	v⊗v*)	=	ρA	=	½(e1⊗e1*	+	e2⊗e2*)	.	
	
We	can	obtain	that	for	any	orthogonal	base		(u,	v)	the	corresponding	mixture	with	the	
weight	function		w	≡	½		we	obtain	the	same	density	operator		ρ	=	diag(½,½)	.	
	
But	these	mixtures	are	constructed	from	completely	different	individual	states.	The	
supports		sptA	=	{e1,	e2}		and		sptB	=	{u,	v}		have	nothing	in	common.		
	
This	situation	is	very	strange	and	contradicts	to	the	spirit	of	probability	theory.		
In	the	probability	theory		if		sptA	∩	sptB	=	0	the	mixtures		A		and		B		are	surely		physically	
different		while	in	QM		they	can	be	equal.	This	implies	that	not	all	pure	states	can	be	
considered	as	an	individual	states	and	this	means	that	the	ontic	model	of	QM	is	not	
consistent.	
	
This	can	be	expressed	in	the	form	that	the	system	of	elementary	states	in	the	ontic	model	of	
QM	is	over-determined.	
	

                                                           
33	We	assume	that	ρ	is	a	non-pure	state.	
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In	our	hybrid	model	of	QM	for	each	system	there	exists	exactly	one	orthogonal	base	
composed	from	individual	states.		In	the	property	-epistemic	model	there	are	no	individual	
states	for	any	system.	
	
The	one	proposed	solution	is	to	consider	mixtures	A	and	B		with		ρA	=	ρB		as	physically	equal.	
But	such	an	assumption	clearly	contradicts	to	the	principles	of	the	ontic	model.	e1,	e2.	u,	v	
are	different	individual	states.	The	ensemble		EA	=	{S1,	..	,	S2N}		is	such	that		systems		S1,	..	,	SN	
are	in	the	individual	states		[e1]			and	systems		SN+1,	..	,	S2N		are	in	the	individual	state		[e2]		
(the	order	of	systems	Si	is	not	important).	The	ensemble		EB	=	{T1,	..	,	T2N}		is	such	that		
systems		T1,	..	,	TN	are	in	the	individual	states		[u]			and	systems		TN+1,	..	,	T2N		are	in	the	
individual	state		[v]	.	It	is	evident	that	these	two	ensembles	are	physically	different	and	thus	
they	are	in	different	states.	And	this	contradicts	to	the	ontic	model. 
	
In	this	situation	we	can	conclude	that	this inconsistence consisting in the multiplicity of 
mixtures is the internal inconsistence of the ontic model of QM. 
 
Quite	recently,	in	papers	[10]	and	[11]	there	were	proved	new	no-go	theorems	where	the	
consistency	of	QM	is	questioned.	Authors	use	in	these	papers	the	ontic	model	of	QM	(to	
each	system	at	a	given	time	there	is	associated	a	wave	function	as	its	state).	We	interpret	
the	results	of	these	two	papers	as	the	strong	indication	that	the	ontic	model	of	QM	is	
internally	inconsistent.	

	
	
	
	

11. The property-epistemic model of QM 

	
The	property-epistemic	model	was	defined	at	the	end	of	the	Sect.	2	by	the	assumption	that	
each	system	S	in	the	model		M		is	property-epistemic	or	epistemic.	The	property-epistemic	
system	is	defined	by	the	condition	that	each	homogeneous	subspace		L(v)		for	each		S		is	at	
least	two-dimensional	for	each	condition		v	∈	CS.	
	
This	conditions	can	be	expressed	in	a	very	simple	and	expressive	way.		
	
We	shall	call	this	condition	the	Einstein’s QM principle	since	in	[9]	he	advocated	that	“…	
the ψ-function is to be understood as the description not of a single system but of an 
ensemble of systems.”	This	means	that	the	wave	function	cannot	be	associated	with	an	
individual	system.	
	
Axiom PE1.	The	hybrid-epistemic	model	of	QM	is	the	property-epistemic	model	of	QM	if	
the	quantum	state	(i.e.	wave	function)	can	be	attributed	only	to	ensembles	and	cannot	be	
attributed	to	individual	systems.	
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In	fact,	in	the	hybrid-epistemic	model	the	quantum	state	can	be	attributed	to	the	state	of	an	
individual	system	only	in	the	situation	where	for	some	property	v	∈	CS	the	corresponding	
homogeneous	subspace	L(v)	is	one-dimensional.		
	
Axiom	PE1	means	that	in	the	property-epistemic	model	there	can	exist	only	collective	
properties.	
	
Thus	in	the	property-epistemic	model	the	situation	is	very	clear:	the	quantum	state	(wave	
function	or	density	operator)	can	be	attributed	only	to	ensembles,	while	properties	can	be	
attributed	only	to	individual	systems.		
	
The	Einstein’s	principle	gives	the	simple	and	very	clear	solution	to	the	famous	Bohr – 
Einstein debate	of	the	problem	if	the	wave	function	is	the	complete	description	of	the	state	
of	an	individual	system.	The	solution	is	really	simple:	the	wave	function	cannot	be	
considered	as	a	state	of	an	individual	system	so	that	the	question	about	its	completeness	is	
meaningless.	
	
The	statement	that	the	quantum	state	is	attributable	only	to	ensembles	is	the	firm	basis	of	
the	epistemic	model.	In	the	property-epistemic	model	we	extend	the	epistemic	model	by	
the	introduction	of	the	concept	of	properties	of	individual	systems.	
	
In	the	property-epistemic model of QM	many	properties,	statements	and	proofs	are	
extremely	simplified	with	respect	to	the	hybrid-epistemic	models	of	QM.	
	

(i) The	concept	of	an	individual	state34	used	in	[1],	[3]	cannot	be	applied	in	the	
property-epistemic	model	since	all	systems	in	this	model	are	either	property-
epistemic	systems	or	epistemic	systems.	
	

(ii) The	superposition	principle	for	individual	states	(the	individual	state	=	the	
quantum	state	of	an	individual	system)	is	meaningless	in	the	property-epistemic	
models	since	there	are	no	individual	states.35	

	

(iii) In	the	property-epistemic	models	individual	systems	can	have	properties	and	in	
this	way	the	basic	objection	against	the	epistemic	model	is	solved	–	individual	
systems	have	their	real	status.	The	basic	objection	to	the	epistemic	model	(that	
the	epistemic	model	is	unable	to	describe	individual	systems)	is	in	this	way	
solved.	In	the	property-epistemic	models	the	individual	systems	are	described	by	
properties.36	

	

                                                           
34 I.e. the state where dim L(v) = 1 and this means the associated homogeneous space to v is one-dimensional. 
35	The	superposition	principle	for	the	states	of	ensembles	is	true	but	it	is	trivial	since	possible	states	belong	to	
the	linear	Hilbert	space.	
36 The epistemic systems (like a spin) can have no properties but there must exist sufficient number of property-
epistemic systems - see axiom HE5.	
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(iv) The	no-go	theorems	(Bell’s,	Leggett-Garg’s	and	similar	theorems)	are	based	on	
the	concept	of	an	individual	state	(i.e.	the	quantum	state	of	an	individual	system)	
and	this	concept	is	vacuous	in	the	property-epistemic	model.	Thus	these	no-go	
theorems	cannot	be	proved	in	the	property-epistemic	models.	
	

(v) The	property-epistemic	models	are	in	the	direct	opposition	to	the	ontic	models.	
In	the	ontic	model	each	pure	quantum	state	is	a	possible	state	of	some	individual	
system	(and	to	each	individual	system	there	is	attributed	its	pure	quantum	state)	
while	in	the	property-epistemic	model	no	quantum	state	can	be	attributed	to	an	
individual	system.		
	

(vi) In	general,	it	can	be	assumed	that	the	properties	of	individual	system	will	be	
related	to	the	position	properties.	These	can	be	considered	as	particle	properties.		
Thus	one	could	assume	that	individual	systems’	properties	will	be	of	the	kind	of	
particle	properties.	We	shall	assume	this.	Then	we	can	assume	that	individual	
systems	have	no	wave	properties,	only	particle	properties.	
	

(vii) In	this	way	we	obtain	a	simple	solution	to	the	problem	of	the	wave-particle 
duality:	

	
a. Wave	properties	can	be	attributed	only	to	the	ensembles	–	i.e.	individual	

systems	have no wave properties 37	38	39	
	

b. Particle	properties	can	be	attributed	only	to	the	individual	systems40.		
	

c. The	solution	is	then	quite	simple:	the	particle	and	wave	properties	are	
attributed	to	the	different	objects	–	to	individual	systems	resp.	to	ensembles,	
so	that	there	is	no	contradiction.		
	

d. The	Bohr’s	complementarity principle	is	superfluous,	not	necessary,	
meaningless	and	should	be	abolished.	

	
(viii) The	collapse	problem	cannot	be	solved	in	the	standard	ontic	model	since	the	

immediate	change	of	the	state	of	an	individual	system	during	the	collapse	is	un-
physical.		

                                                           
37 It is well-known that the interference picture (“demonstrating the wave nature of quantum objects”) can be built up 
only by doing the experiment with a large number of photons, i.e. with an ensemble of photons. 
38 With one photon the interference property cannot be demonstrated – we obtain a point on the screen and where is 
the superposition picture? This implies that the interference phenomenon is a statistical phenomenon and not the 
physical phenomenon in each individual case. I.e. that the interference phenomenon can be attributed only to 
ensembles and not to individual systems.  
39 The fact that the interference phenomenon can be a statistical property is a consequence of the fact that in QM the 
quadratic probability theory must be used instead of the standard Kolmogorov probability theory [1]. 
40 Of course, there are quantum states which have particle properties – consider the eigenstates of the position 
operator – but these are only exceptions of the general rule 
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In	the	epistemic	model	the	collapse	problem	has	a	trivial	solution	–	the	update	of	
the	state	of	an	ensemble	after	obtaining	new	information.	The	same	solution	of	
the	collapse	problem	can	be	applied	in	the	property-epistemic	model.41	
	

Remarks.  
 It	was	clear	that	the	no-go	theorems	cannot	be	proved	in	the	epistemic	model	(the	

non-existence	of	individual	states)	but	the	epistemic	model	was	a	priori	excluded	as	
a	possible	solution	of	foundational	QM	problems.		

 Our	solution	–	to	extend	the	epistemic	model	into	the	property-epistemic	model	
solves	the	critique	of	the	epistemic	model	but	it	retains	the	impossibility	of	proving	
no-go	theorems.	

 The	main	principle	of	the	property-epistemic	model	is	the	non-existence	of	
individual	states	(i.e.	quantum	states	of	individual	systems).	This	goes	directly	
against	any	intuition	from	the	standard	QM.	It	is	not	simple	to	take	into	account	this	
new	ideology	and	not	to	fall	into	the	previous	picture	–	the	concept	of	the	quantum	
state	(i.e.	ψ)	of	an	individual	system	is	meaningless.	This	is	the	main	change.	

 In	Sect.	7	it	was	proved	that	the	empirical	predictions	of	the	hybrid-epistemic	model	
of	QM	and	the	empirical	predictions	of	the	ontic	model	of	QM	are	the	same.	The	
property-epistemic	models	are	the	special	sub-class	of	the	hybrid-epistemic	models	
and	it	can	be	simply	shown	that	these	two	models	generate	the	same	empirical	
predictions.	Thus	the	standard	ontic	model	and	the	property-epistemic	model	are	
empirically	equivalent.	

 In	the	hybrid-epistemic	models	the	situation	is	the	same	as	in	the	property-
epistemic	models	but	proofs	are	more	complicated.	In	the	property-epistemic	
models	the	situation	is	completely	clear	and	simple	and	proofs	are	almost	trivial.	

 There	is	some	surprising	similarity	between	the	property-epistemic	models	of	QM	
and	the	Bohr’s	concept	of	quantum	mechanics.	

o The	basic	difference	is	clear:	Bohr	assumes	that	the	quantum	state	(wave	
function)	is	attributed	to	the	individual	quantum	system	while	we	assume	
exactly	the	opposite.	

o Bohr	assumes	that	microscopic	systems	are	directly	un-observable,	only	
(classical)	measuring	systems	are	observable.	The	same	is	true	for	our	
epistemic	systems	(they	have	no	properties),	while	the	property-epistemic	
systems	are	individually	observable	through	their	properties.	

o Bohr	assumed	that	the	world	is	not	monistic,	i.e.	that	it	is	not	true	that	all	
systems	are	of	the	same	kind	(he	made	difference	between	quantum	systems	
and	classical	systems).	The	analogical	(but	surely	not	the	same)	difference	
exists	between	epistemic	systems	and	property-epistemic	systems.	But	our	
difference	between	epistemic	and	property-epistemic	systems	is	systematic	
(i.e.	well	defined)	and	it	does	not	use	the	concept	of	a	macroscopic	system.		

o As	a	consequence	we	see	that	the	property-epistemic	model	is	dualistic	and	
that	this	dualistic	approach	corresponds	properly	to	the	character	of	QM.	
There	are	systems	like	the	spin	of	a	particle	which	have	no	(directly)	
observable	properties	and	there	are	systems	like	the	Stern-Gerlach	

                                                           
41 It can be seen that many good features of an epistemic model can be extended onto property-epistemic models. 
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apparatuses	which	have	observable	properties	(spin-up,	spin-down).	The	
difference	between	these	two	classes	of	systems	objectively	exists.		

o In	fact,	there	does	not	exist	an	argument	that	QM	must	be	monistic.	This	is	
rather	the	philosophical	prejudice.	QM	can	be	dualistic	and	all	experience	
shows	that	this	is	the	real	case.	

	
Main consequences of the property-epistemic models of QM 

 In	the	property-epistemic	model	of	QM	the	Bell’s	theorem	cannot	be	proved	(this	is	a	
rather	trivial	consequence	of	the	non-existence	of	individual	states)	and	thus,	for	
example,		the	non-locality	of	QM	cannot	be	proved.		

 This	means	that	all	the	“industry	of	quantum	non-locality”	is	out	of	a	reality.	
 This	means	that	the	“industry	of	Bell’s	inequalities”	is	out	of	a	reality	
 The	same	is	true	for	the	Leggett-Garg’s	theorem	and	the	possible	violation	of	macro-

realism.	
 No-go	theorems	are,	in	general,	un-provable	in	the	property-epistemic	models	of	QM	

since	the	basic	assumption	of	the	existence	of	individual	quantum	states	(i.e.	
quantum	states	of	individual	systems)	is	false	in	the	property-epistemic	models.	

	
At	the	end	we	want	to	mention	the	important	meta-argument	

 In	the	standard	classical	probability	theory	(for	example	the	description	of	the	
Brownian	motion)	the	basic	assumption	is	that	the	probability	distribution	describes	
a	state	of	an	ensemble.	It	is	true	that	there	are	some	exceptions:	the	ensemble	of	
Brownian	particles	with	the	same	position	is	the	ensemble	which	can	be	associated	
with	the	state	of	individual	Brownian	particle.	But	this	exception	is	rather	random	
and	un-important.	Thus,	in	general,	the	probability	distribution	does	not	describe	
the	state	of	an	individual	system.42	

 In	QM	the	wave	function	defines	the	resulting	probabilities	and	thus	it	should	be	
considered	as	an	analog	of	the	probability	distribution.	Thus	it	should	describe	the	
state	of	an	ensemble	and	not	the	state	of	an	individual	system.		

 As	a	consequence	we	obtain	the	statement	that	the	wave	function	describes	the	
possible	state	of	an	ensemble	and	that	the	wave	function	does not	describe	the	state	
of	an	individual	system.	There	may	exist	exceptions	to	this	statement	but	they	are	
not	essential.	We	obtain	the	basic	assumption	of	epistemic	and	property-epistemic	
models	that	wave	function	cannot	be	attributed	to	the	individual	system.	

 The	difference	between	epistemic	and	property-epistemic	systems	lies	in	the	fact	
that	in	the	epistemic	model	the	individual	systems	have	no	status	(they	have	no	
features)	while	in	the	property-epistemic	model	individual	systems	can	have	the	
proper	objective	existence	since	they	can	have	properties.	
	

The	attribution	of	the	quantum	state	(i.e.	the	wave	function)	to	the	individual	quantum	

system	is	absurd	in	the	same	way	as	the	attribution	of	the	probability	distribution	to	the	

individual	Brownian	particle	is	absurd.	Both	are	non-sense.		
                                                           
42 The probability distribution is the non-negative function on R3 while the state of the individual Brownian particle 
is defined by the position x ∈	R3 (at a given time). The exceptional probability distribution which can be associated 
with the individual state is the well-known delta-function δ(x). 
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This	is	our	main	conclusion:	the	attribution	of	the	quantum	state	to	the	individual	quantum	

system	is	a	non-sense.	Individual	quantum	systems	cannot	be	described	by	quantum	states.	

	
	
	
	
	
	
	
	
	

12. The discussion 

	
In	this	section	we	shall	discuss	some	typical	arguments	in	this	problematic.		
	
Argument 1.  The	experiments	on	the	Leggett-Garg		inequality	proves	that	the	macro-
realism	is	false.	
 
Answer 1. There	are	many	counter-arguments	to	this	statement.	

(i) This	experiment	cannot	prove	anything	without	the	assumption	of	the	validity	of	
QM	–	in	fact,	without	assuming	and	using	QM	this	experiment	cannot	be	
described	and	interpreted.	The	statement	that	this	experiment	alone	proves	
something	is	false.	This	experiment	only	confirms	the	validity	of	QM	(or	that	the	
possible	refutation	of	QM	was	un-successful)	and	nothing	else.		

(ii) What	is	really	important	is	the	theoretical	fact	that	Leggett-Garg	inequality	
contradicts	to	QM	-	possible	experiments	are,	in	fact,	irrelevant	(they	are	relevant	
only	for	the	validity	of	QM).	

(iii) The	most	important	counter-argument	considers	what	is	the	true	content	of	the	
Leggett-Garg	theorem.	This	theorem	says	inaccurately	that	the	macro-realism	⇒	
the	Leggett-Garg	inequality	or,	equivalently		QM	⇒	the	violation	of	the	macro-
realism.	But	the	true	content	of	this	theorem	expresses	equivalent	statements:	

 Macro-realism	+ the ontic model	⇒		Leggett-Garg	inequality		
 The	ontic	model	⇒	the	violation	of	macro-realism		
 The	macro-realism	⇒	the	invalidity	of	the	ontic	model	
 The	existence	of	the	classical	world	⇒	the	invalidity	of	the	ontic	model.	

(iv) The	Argument	1.	is	false	since	there	exists	the	hybrid-epistemic	model	in	which	
the	Leggett-Garg	theorem	cannot	be	proved	(at	least	it	is	not	proved).	

	
Argument 2. The	superposition	principle	is	the	base	of	QM	(confirmed	by	experiments)	
and	it	cannot	be	attacked.		
 
Answer 2. There	are	many	counter-arguments.	

(i) The	superposition	principle	is	generally	assumed	for	states	of	ensembles	where	
it	is		a	consequence	of	basic	axioms	of	all	three	models	considered	here.		
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(ii) The	superposition	principle	is	problematic	for	states	of	individual	systems	-	let	
us	call	it	the	individual	superposition	principle.	In	the	ontic	model	each	(pure)	
state	of	an	ensemble	is	also	a	possible	state	of	an	individual	system,	so	that	in	this	
case	the	individual	superposition	principle	is	a	trivial	consequence	of	axioms	for	
the	ontic	model.	

(iii) In	the	epistemic	model	the	individual	superposition	principle	has	no	sense.	
(iv) In	the	property-epistemic	model	also	the	individual	superposition	principle	has	

no	sense	since	there	are,	in	general,	no	states	of	individual	systems	(individual	
systems	can	have	only	properties	but	no	states).	For	details	see	Theorem	4.	

(v) The	individual	superposition	principle	contradicts	to	the	classical	world.	
(vi) The	individual	superposition	principle	is	in	the	core	of	paradoxes	and	

contradictions	of	the	ontic	model.		
(vii) In	the	hybrid-epistemic	model	the	superposition	principle	is	false	for	individual	

states.	
	
Argument 3. The	QM	is	evidently	the	valid	theory	(i.e.	experimentally	confirmed)	and	thus	
the	superposition	principle	must	be	true	also	for	macroscopic	systems.	
 
Answer 3. Individual	superposition	principle	is	a	consequence	of	QM	only	in	the	ontic	
model	of	QM.	In	the	hybrid-epistemic	model	of	QM	the	individual	superposition	principle	is	
not	consequence	of	axioms.	It	follows	that	the	individual	superposition	principle	is	not	a	
consequence	of	QM.	The	situation	with	the	superposition	principle	is	following:	for	
ensembles	it	is	trivial	and	for	individual	systems	it	is	false.	
	
Argument 4.	The	macroscopic	superposition	must	exist.	
 
Answer 4.  There	are	some	counter-arguments.	

(i) Up	to	now	nobody	has	observed	such	macroscopic	states		
(ii) The	question	must	be	specified:	does	there	exist	ensembles	(of	macroscopic	

systems)	which	are	in	the	cat	states?	The	existence	of	such	ensembles	was	not	
proved.	But	in	all	three	models	considered	here	it	follows	from	axioms	the	
necessary	existence	of	such	states.		

(iii) The	alternative	question:	does	there	exist	individual	systems	in	such	states?	This	
is	completely	different	question	from	the	preceding	question.		

We	think	that	the	question	(ii)	could	be	answered	(in	the	future)	perhaps	positively	but	the	
question	(iii)	cannot	have	a	positive	answer.	
	
People	often	believe	in	some	“absurd”	consequences	of	QM	(like	the	existence	of	“cat	
states”)	since	they	argue	that	QM	is	evidently	true.	But	also	in	the	case	when	QM	is	true,	the	
argument	is	false	since	these	“absurd”	consequences	of	QM	are	not	consequences	of	QM	but	
of	QM	+ the ontic model.	This	means	that	these	“absurd”	consequences		are,	in	fact,	
consequences	of	the	ontic	model	but	there	exists	also	the	hybrid-epistemic	models	where	
such	consequences	are	not	possible.	Thus	the	argument	is	false.	
	
The	solution	of	above	mentioned	problems	is	simple:	to	take	into	account	the	existence	of	
other	models	of	QM	than	the	ontic	model.	
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Argument 5.	The	Bell’s	theorem	was	considered	by	many	scientists	as	“the	most	important	
discovery	of	science”.	After	the	proof	of	its	invalidity	what	is	then	its	meaning?	
 
Answer 5.  The	new	meaning	of	the	Bell’s	theorem	is	equally	important.		
	
The	Bell’s	theorem	must	be	considered	as	the	first	clear	indication	(almost	a	proof)	that	the	
ontic	model	of	QM	is	inconsistent.	The	Bell’s	theorem	rejects	the	local	realism	but	this	
statement	was	generally	interpreted	(erroneously)	as	a	rejection	of	the	locality.		
	
But	the	right	interpretation	of	the	Bell’s	inequality	(see	this	paper)	implies	that	the	realism	
(	=	the	ontic	model	of	QM)	must	be	rejected.		
	
Thus	what	Bell	discovered	with	his	inequality	is	the internal inconsistence of the 
standard ontic model of QM	introduced	by	von	Neumann	(1932).		This	opened	the	way	to	
the	other	models	of	QM	considered	here.	
	
	
	
	

13. Conclusions  

	

Our	main	conclusion	is:		

	

Ensembles	have	states	while	(some)	individual	systems	have	properties.	This	is	our	answer	

to	the	question	about	the	nature	of	quantum	states.		

	

Quantum	states	are	attributable	only	to	ensembles	(with	a	few	exceptions)	and	to	

individual	systems	quantum	states	cannot	be	attributed.		

	

In	this	sense	we	have	solved	in	the	hybrid-epistemic	model	the	basic	argument	against	the	

epistemic	model:	the	zero	status	of	individual	systems.			We	have	extended	the	epistemic	

models	of	QM	onto	hybrid-epistemic	models	(resp.	property-epistemic	models),	where	

individual	systems	can	have	properties.	

	

The	ontic	model	of	QM	is	inconsistent	with	the	classical	world	on	many	levels.	Very	

probably	it	is	inconsistent	also	internally.		

	

Fortunately	there	exists	a	substitute	–	the	hybrid-epistemic	model	which	has	the	same	

empirical	content	as	the	ontic	model	and	does	not	have	any	problems	created	by	the	ontic	

model.	
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What	we	have	obtained	in	this	paper	

 The	axiomatic	definition	of	a	new	model	for	QM,	the	hybrid-epistemic	model	

 The	basic	properties	of	the	hybrid-epistemic	model	

 In	the	hybrid-epistemic	model	states	can	be	attributed	only	to	ensembles	(there	are	

only	very	rear	exceptions	from	this	rule)		

 Individual	systems	may	be	characterized	by	properties	(individual	hybrid-epistemic	

systems	can	have	properties	while	individual	epistemic	systems	do	not	have	any	

properties)	

 The	proof	that	this	new	model	and	the	standard	QM	model	give	the	same	empirical	

predictions	-	i.e.	they	are	empirically	equivalent	(this	is	true	also	for	the	epistemic	

model)	

 Since the valid statements of QM must be valid in all models of QM, we have 

shown that no-go theorems are not valid statements in QM (they are valid 

statements only in the ontic model of QM) 

 The	proof	that	the	ontic	model	of	QM	is	incompatible	with	the	classical	physics	and,	

in	general,	the	incompatibility	of	the	quantum	world	with	the	classical	world	in	the	

ontic	model	of	QM	

 There	are	arguments	indicating	that	the	ontic	model	of	QM	is	internally	inconsistent	

	

Merits	of	the	hybrid-epistemic	model	

 The	impossibility	to	prove	no-go	theorems	

 In	the	hybrid-epistemic	model	there	exists	a	mechanism	of	EPR	correlations	which	is	

explicitly	local	and	this	together	with	the	impossibility	to	derive	Bell’s	theorem	gives	

the locality of QM	

 The	locality	of	QM	in	the	hybrid-epistemic	model	is	a	great achievement		since	the	

presumed	non-locality	of	QM	would	have	great	consequences	not	only	in	physics	but	

in	the	general	natural	philosophy	and	in	the	general	understanding		of	the	world.	

 The	deliverance	from	the	non-locality prison	–	the	world	is	now	more	or	less	

standard	and	without	any	(unclear)	non-local	phenomena	(this	non-locality	prison	

started	in	1935	with	the	famous	EPR	paper	and	continued	up	to	now)		

 The	model	of	an	internal	measurement	process,	i.e.	the	possibility	to	consider	the	

measurement	process	as	the	standard	QM	process	

	

Merits	of	the	property-epistemic	models	of	QM	

 The	property-epistemic	models	are	the	sub-class	of	hybrid-epistemic	models	thus	

they	inherit	all	properties	of	hybrid-epistemic	models	

 The	almost	trivial	proof	of	the	impossibility	to	prove	no-go	theorems	

 No	problems	with	the	collapse	of	individual	states	and	with	the	other	foundational	

problems	
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 The	realistic	view	of	quantum	systems	

	

The	conclusions	which	follow	from	these	findings:		

 The	standard	ontic	model	of	QM	should	be	abandoned	since	it	creates	too	many	

problems	and	inconsistences	and	since	the	ontic	model	contradicts	to	the	reality	of	

the	classical	world	

 Instead	of	the	ontic	model	the	new	hybrid-epistemic	(or	property-epistemic)	models	

should	be	accepted	as	a	better	solution	to	foundational	problems	which	is,	moreover,	

empirically equivalent	to	the	ontic	model	

 The	hybrid-epistemic	model	with	states	of	ensembles	and	properties	of	individual	

systems	describes	better	the	reality	of	the	quantum	world	than	the	ontic	model.	The	

property-epistemic	models	could	do	this	still	better.	

	

This	shows	that	the	main	obstacle	in	the	solution	of	foundational	problems	of	QM	is	the	
concept	of	an	individual	quantum	state	(=	the	quantum	state	of	an	individual	system).		
	
But	the	concept	of	an	individual	state	is	the	basis	of	the	ontic	model	and	of	the	standard	QM	
and	this	was	the	real	obstacle	in	the	development	of	the	true	understanding	of	QM	in	the	
past	85	years.	
	
Our	conjectures,	opinions	and	remarks	can	be	found	in	Appendix	B.	

	
	
	
	
	

Appendix A: proofs. 

	
In	this	part	we	collect	proofs	of	theorems	and	propositions.	
	
The proof of Proposition 1. 
We	can	assume	that	there	exist	a	Hermitian	operator		K	,	such	that			p	(	v	|	[ψ]	)	=	(ψ	|	K	ψ	)			

for	each		ψ	∊	HS	,	‖ψ‖	=	1.	Let		K	=	λ1	P1	+	..	+	λm	Pm	,	λ1	>	..	>	λm	is	the	spectral	decomposition	

of	K.	We	have		(ψ	|	K	ψ	)	=	λ1	‖P1ψ‖2	+	..	+	λm	‖Pmψ‖2		and	from	0	≤	p	(	v	|	[ψ]	)	≤	1		we	

obtain		1	≥	λ1	>	..	>	λm	≥	0	.	Then		p	(	v	|	[ψ]	)	=	(ψ	|	K	ψ	)	=	1		is	possible	if	and	only	if		λ1	=	1	

and		ψ	∊	P1(HS)	.	

The proof of Theorem 1.  
Let	us	consider	an	ensemble		E	=	{S1,	…	,SN}	in	the	state		[ψ]	,	ψ	∊	L(w)	.	From	this	we	obtain	

that		for	values		{w(S1),	…,	w(SN)}		we	have		lim	N→∞	N-1	|	E(w)	|	=	1	.	Since	properties		v	and	w	

are	exclusive	(i.e.	they	cannot	be	verified	simultaneously)	we	have			
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lim	N→∞	N-1	|	E(v)	|	=	0.	

	

Then	using	Axiom		HE7		(with		HS	trivial)	we	obtain			

‖	P(v)	ψ	‖2	=	p	(	v	|	[ψ]	)	=	lim	N→∞	N-1	|	E(v)	|	=	0	.	

From	this	it	simply	follows	that		ψ	is	orthogonal	to	the	subspace		L(v)	.		

	
The proof of Theorem 2. 
We	have	already	shown	the	orthogonality	of	homogeneous	subspaces.	Let	us	assume	that		

Hom(S)		is	not	a	complete	orthogonal	decomposition	of		HS	.	Then	there	exists	a	state		[ψ]	∊	

PS		which	is	orthogonal	to	all	elements	of		Hom	(S).	Using	Axiom	HE7	we	obtain	

	

p	(	v	|	[ψ]	)	=		‖	P(v)	(ψ)	‖2		=	0,		for	each	v	∊	C(S).	

	
This	means	that	the	function		p	(	.	|	[ψ]	)		is	trivially	equal	to	0	and	this	is	impossible	since	
this	function	is	a	probability	distribution.	
	
The proof of Theorem 4. 

(i) If	two	homogeneous	states	belong	to	two	distinct	homogeneous	subspaces,	then	
their	non-trivial	superposition	cannot	be	an	element	of	some	homogeneous	
subspace	since	these	subspaces	are	orthogonal.	But	only	an	element	of	some	
homogeneous	subspace	is	a	homogeneous	state.	On	the	other		hand	if	two	
homogeneous	states	belong	to	the	same	homogeneous	subspace,	then	any	
superposition	off	these	two	states	belongs	to	the	same	homogeneous	subspace	
and	thus	this	superposition	is	a	homogeneous	state.		

(ii) If		[ψ]	∈	L(v),	[φ]	∈	L(w),	L(v)	and	L(w)	are	orthogonal	then	the	non-trivial	
superposition		[αψ	+	βφ]		cannot	be	orthogonal		to	both		L(v)	and	L(w)	thus		[αψ	+	
βφ]		cannot	be	an	individual	state.	

	
The proof of Theorem 5.  

(i) Let	v	=	vj	.	Then		(P(v)	⊗	Id(HS))	(U(ϕ⊗ψ))	=	Σi	αi	(P(v)	⊗	Id(HS))	(U(ϕ⊗ψi))	.	
Since		U(ϕ⊗ψi)	∊	L(i)	⊗	Kj		for		i	≠	j		we	obtain	(P(v)	⊗	Id(HS))	(U(ϕ⊗ψi))	=	0.	
Thus	we	have	to	assume	that	i	=	j	and	then	we	obtain	

	
(P(v)	⊗	Id(HS))	(U(ϕ⊗ψ))	=	αj		(P(v)	⊗	Id(HS))	(U(ϕ⊗ψj))	=	αj	U(ϕ⊗ψj)	

	
since	U(ϕ⊗ψj)	∊	L(j)	⊗	Kj		and		P(v)		is	identity	on	L(j)	.	
	
By	HE7 we	obtain  
p	(	v	|	[U(ϕ⊗ψ)]	)	=	‖(P(v)	⊗	Id(HS))	(U(ϕ⊗ψ))‖2	=	‖αj	U(ϕ⊗ψj)‖2	=	|αj|2	. 
	

(ii) We	have		U(ϕ⊗ψ)	=	Σ	αj	U(ϕ⊗ψj)	=	Σ	αi Vi(ϕ)	⊗ψi	.		
From		vj(Mk)	=	1	we	obtain		U(ϕ⊗ψ)	=	Vj(ϕ)	⊗ψj	since	only		Vj(ϕ)	∊	L(j)		and	
Vj’(ϕ)	,	i’≠i	,	is	orthogonal	to	L(i).	
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(iii) For	given	n≥2		there	exists	a	balanced	observable	system	satisfying	|C(E)|	=	n	by	
the	axiom		HE5.	
	
Up	to	now	the	map		U		was	defined	only	on	L(1)	⊗	HS		by		U(ϕ⊗ψ)	=	Vi(ϕ)	⊗ψ		
for		ψ	∊	Ki	.		
If		ϕ	∊	L(j)		and		ψ	∊	Ki		we	set		U(ϕ⊗ψ)	=	Vi+j-1	(ϕ)	⊗ψ	for	i+j-1≤n		and		U(ϕ⊗ψ)	
=	Vi+j-1-n	(ϕ)	⊗ψ		for	i+j-1>n	.	

	
The proof of Theorem 6.  It	will	be	divided	into	two	parts. 

(i) We	shall	start	with	the	-experiment	described	in	the	epistemic	model	which	
produces	the	prediction	pred	and	we	shall	show	that	the	same	prediction	can	be	
obtained	in	the	hybrid-epistemic	model.		
In	the	preparation	(and	evolution)	parts	the	ensemble		E	=	{S1,	..	,	SN}		in	the	state	
ψ	is	produced.		The	specification	of	the	measurement	is	given	by	the	observable	
A		with	the	spectral	decomposition		A	=	Σ	ai	Ri	.	We	shall	define	corresponding	
eigenspaces	by		Ki	=	Ri(HE)	.	The	eigenvalue	ai	will	be	the	output	value.		
	
The	corresponding	prediction	will	be	

 
pred	=	{(ai,	pi.	ψi)	|	i=1,	..	,	n}		where		pi	=	‖Ri(ψ)‖2	,		.	ψi	=	‖Ri(ψ)‖-1	Ri(ψ)	.	

	
In	the	hybrid-epistemic	model	we	shall	consider	the	same	ensemble		E	=	{S1,	..	,	
SN}		of	measured	systems	in	the	state		ψ	.	The	measurement	will	be	defined	by	the	
orthogonal	decomposition		HE	=	K1	+	…	+	Kn		and	the	corresponding	projections	
will	be	denoted	by		Ri	.		
	
The	state		ψ		can	be	decomposed		ψ	=	α1ψ1	+	…	+	αnψn		where		ψi	=	‖Ri	ψ‖-1	Ri	ψ	∊	
Ki	,		αi	=	‖Ri	ψ‖,			if		‖Ri	ψ‖	>	0	,	while	for	‖Ri	ψ‖	=	0	we	take	any	unit	vector	ψi	∊	Ki		

and		αi	=	0	.	
	
By	the	Axiom	HE5	there	exists	at	least	one	balanced	observable	ensemble		F	=	
{M1,	…	,	MN}	of	measuring	systems	satisfying	|C(F)|	=	n	.	The	decomposition	into	
homogeneous	subspaces		will	be	denoted		HF	=	L(1)	+	..	+	L(n)		and	corresponding	
projections	will	be	denoted	by		P(1),	..	,	P(n)	.	We	shall	suppose	that	the	state	of		F		
will	be	ϕ	∊	L(1)	.	The	ensemble	of	composite	systems  G	=	{M1⊕S1	,		…	,	MN⊕SN}		
will	be	in	the	state		ϕ⊗ψ.	These	will	be	the	input	data	for	the	measurement	
process.	
	
After	applying	the	measuring	transformation		U  we	obtain	the	output	data			
U(ϕ⊗ψ)	=	Σ	αi	Vi	(ϕ)	⊗ψi	and	by	Theorem	5.	(i)		that	p(vi	|	U(ϕ⊗ψ))	=	|αi|2	.		
By	the	same	theorem	(ii)		we	obtain	that	the	updated	state	will	be		Vi	(ϕ)	⊗ψi	.	
Thus		the	state	of	the	subsystem	S	will	be	ψi	.		
	
This	result	is	equal	to	the	prediction	 pred calculated	above	in	the	epistemic	
model.		
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(ii) We	shall	start	with	the	measurement	in	the	hybrid-epistemic	model	described	in	
the	Sect.	5.	by	considering	the	ensemble		of	measuring	systems	F	=	{M1,	…	,	MN}		
in	the	state		ϕ		and	the	ensemble	of	measured	systems		E	=	{S1,	…	,	SN}	in	the	state		
ψ	.		
	
We	shall	use	freely	the	notation	from	the	Sect.	5.		The	measurement	will	be	
defined	by	the	orthogonal	decomposition		HE	=	K1	+	…	+	Kn		and	the	
corresponding	projections	will	be	denoted	by		Ri	and	the	state		ψ		will	be	
decomposed		ψ	=	α1ψ1	+	…	+	αnψn		.		
	
Then	by	the	Theorem	5.	we	obtain	the	output	data	from	the	measurement:			
pi	=	|αi|2		and		the	updated	state	of	an	ensemble	Vi	(ϕ)	⊗	ψi	.		
	
Now	we	shall	consider	the	same	experiment	in	the	epistemic	model.	We	shall	
consider		the	composite	ensemble		G	=	{M1⊕S1	,		…	,	MN⊕SN}		in		HG		in	the	state		
Ψ’	=	Σi	Vi(ϕ)	⊗	ψ	.	We	shall	consider	the	observable		A		in	the	space		HG  with	the	
spectral	decomposition  A	=	Σ	i	L(i)⊗Ri		and	we	shall	consider	the	measurement	
of	this	observable	(in	the	epistemic	model).	The	resulting	prediction	will	be	

 
pred =	{(i,	pi.	Ψi)		where	

	
pi	=	‖(L(i)⊗Ri)(	Σj	Vj(ϕ)⊗ψ)‖2	=	‖ Vi(ϕ)⊗Ri(ψ)‖2	=	‖Ri(ψ)‖2	=	|αi|2		since	

L(i)	(	Σj	Vj(ϕ))	=	L(i)	(Vi(ϕ))	=	Vi(ϕ)	,	‖Vi(ϕ)‖	=	1	
	

Ψi	=	‖(L(i)⊗Ri)(Σj	Vj(ϕ)⊗ψ)‖-1	((L(i)⊗Ri)(Σj	Vj(ϕ)⊗ψ))	
=	‖Vi(ϕ))	⊗Ri(ψ)‖-1	Vi(ϕ))	⊗Ri(ψ)	=	|αi|-1	Vi(ϕ))⊗Ri(ψ)	=	Vi(ϕ))⊗ψi	

	
This	prediction		(|αi|2		,	Vi(ϕ))⊗ψi)		coincides	with	the	prediction	from	the	
hybrid-epistemic	model.	

	
The proof of Theorem 7.  It	will	be	divided	into	two	parts.	Let	us	assume	that	there	is	
given	an	observable	A	with	the	spectral	decomposition		A	=	Σ	ai	Ri		. 

(i) In	the	epistemic	model	the	preparation	and	evolution	parts	produce	the	
ensemble		E	=	{S1,	..	,	SN}		in	the	state	ψ.		The	corresponding	prediction	will	be	
 
pred	=	{(ai,	pi.	ψi)	|	i=1,	..	,	n}		where		pi	=	‖Ri(ψ)‖2	,		ψi	=	‖Ri(ψ)‖-1	Ri(ψ)	.		
	
In	the	ontic	model	we	shall	consider	systems		S1’,	..	,	SN’		in	the	(individual)	state		
[ψ]	 	and	the	ensemble	 	E’	=	{	S1’,	 ..	 ,	SN’}	 	in		the	state		[ψ]	.	The	observable	 	A	=	
ΣaiRi		will	be	measured	on	the	system		Sk’.	Using		the	output	map		o		we	obtain	the	
output	value		o(Sk’)	∊	{a1,	..	,	an}	.		
	
The	Axiom	SO6	says	that	the	relative	frequency	of	the	value		ai		will	be		‖Ri(ψ)‖2	.		
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The	axiom	 	SO7	 	 says	that	 the	collapsed	state	will	be	‖Ri(ψ)‖-1	Ri(ψ)	 .	Thus	we	
see	that	 the	corresponding	prediction	 in	the	ontic	model	will	be	 the	same	as	 in	
the	epistemic	model.	
	

(ii) Let	us	consider	measurement	in	the	ontic	model.	We	shall	consider	systems		S1’,	..	
,	SN’		in	the	(individual)	state		[ψ]		and	the	ensemble		E’	=	{	S1’,	..	,	SN’}		in		the	state		
[ψ]	.	The	observable		A	=	ΣaiRi		will	be	measured	on	the	system		Sk’.		
Using		the	output	map		o		we	obtain	the	output	value		o(Sk’)	∊	{a1,	..	,	an}	.		
	
Using	Axioms		SO6	and	SO7	we	shall	obtain	the	prediction			

 
pred	=	{(ai,	pi.	ψi)}		where		pi	=	‖Ri(ψ)‖2	,			ψi	=	‖Ri(ψ)‖-1	Ri(ψ)	.	

	
In	the	epistemic	model	we	shall	consider	the	corresponding	ensemble		E	=	{	S1,	..	,	
SN}		in		the	state		[ψ]	and	the	same	observable		A	.	Using	Axioms		SE6	and	SE7		we	
obtain	corresponding	prediction	which	will	be	identical	to	the	prediction		pred		
from	the	ontic	model.	

	
	

 
 

Appendix B: conjectures and opinions. 

	
Up	to	now	all	statements	were	proved.	Now	we	would	like,	in	this	part,	to	express		our	
conjectures,		hypotheses	,	opinions	and	remarks:	

 The	ontic	model	of	QM	is	wrong	and	probably	also	internally	inconsistent	(and	thus	

provably	wrong)	

 The	concept	of	the	ontic	model	was	a	big error	from	the	beginning	of	QM	(von	

Neumann,	1932)	and	the	source	of	most	misunderstandings	in	QM	(the	Schrodinger	

cat	paradox,	the	collapse	rule	for	individual	systems,	the	role	of	an	observer	in	

experiments	and	others)	

 No-go	theorems	are	not	the	empirical	statements	but	the	proofs	of	an	internal		

contradictions	in	the	ontic	model	of	QM	(see	[7])	

 The	ontic	model	of	QM	contains	internal	contradictions	and	has	to	be	abandoned	on	

the	base	of	its	logical	inconsistence	(but	the	ontic	model	cannot	be	rejected	on	the	

experimental	ground	since	it	is	empirically	equivalent	to	the	other	models	of	QM)	

 The	principle	of	superposition	is	one	of	the	biggest  errors	in	the	history	of	physics:	

either	it	is	generally	assumed	(for	ensembles)	or	it	is	wrong	(for	individual	
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systems)43	44.	It	is	also	the	source	of	most	misunderstandings,	absurdities	and	

problems	in	QM.	

 QM	is	basically	the	applied	probability	theory	but	based	on	the	new	“quadratic”	

probability	theory	introduced	in	[1]	(and	not	on	the	standard	Kolmogorov’s	

probability	theory):	i.e.	QM is the standard Markov theory of time-reversible 

processes in the quadratic probability theory (completed	with	a	certain	complex	

symmetry)	[1].	

 The	hybrid-epistemic	model	of	QM	is	able	to	solve	many	foundational	problems	of	

QM	(all	of	problems	mentioned	above)		

 The	property-epistemic	model	of	QM	solves	the	same	problems	as	the	hybrid-

epistemic	model	but	in	a	simpler	and	more	transparent	way.	We	prefer	the	property-

epistemic	model	of	QM	as	the	best	solution	to	most	(but	not	all)	foundational	

problems	of	QM.	

 But	notice	that	not	all	foundational	problems	can	be	solved	in	the	hybrid-epistemic	

model	(e.g.	the	problem	of	the	role	of	the	information	in	physical	processes,	the	

delayed	choice	experiments	etc.)	–	these	other	problems	require	the	full	use	of	the	

quadratic	probability	theory.	

 The	simplest	and	probably	the	best	solution	to	foundational	problems	of	QM	is	given	

by	the	property-epistemic	model		

o the	principle	of	superposition	holds	only	for	states	of	ensembles	

o the	no-go	theorems	are	almost	trivially	non-provable	

o the	solution	to	the	wave-particle	duality	problem	

o this	is	an	epistemic	model	combined	with	the	properties	of	individual	

systems	

o the	analogy	with	the	classical	probability	(the	Brownian	motion)	is	a	good	

motivation		

o the	elegance	and	simplicity	of	the	property-epistemic	model	is	extraordinary		

 We	would	like	to	express	our	opinion	that	the	property-epistemic model	of	QM	is	

the	most	elegant,	the	most	simple,	the	most	pure	and	the	most	powerful	solution	to	

the	foundational	problems	of	QM.	The	main	advantage	of	this	model	is	the	fact	that	

in	this	model	the	individual	states	(i.e.	the	quantum	states	of	individual	systems)	do	

not	exist.	

                                                           
43 The superposition principle |Ψ> = α|ψ> +β|ϕ>  is formally meaningless. In our notation we have [Ψ] = α[ψ] + β[ϕ]  
and already the expression   α[ψ]  is meaningless since the space of pure states  PS  has no linear structure. The 
definition α[ψ] +β[ϕ] = [αψ +βϕ] is also meaningless because it does not define a unique state – the result depends on 
the choice of representatives ψ ∈	[ψ] , ϕ ∈ [ϕ] . Clearly, Dirac assumed (erroneously) that ψ  describes the quantum 
state directly without considering [ψ] as a state. 
44 In the case of hybrid-epistemic models which contain no hybrid systems there do not exist any individual states 
(i.e. states of individual systems) and thus the individual superposition principle has no meaning. Such models are 
quite reasonable and they exist very often (it is rather difficult to find a realistic model containing at least one hybrid 
system). Models which do not contain any hybrid system are  called the property-epistemic models and have been 
considered in Sect. 11. 
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 The	problem	of	“wave”	and	“particle”	properties		of	individual	systems.	Individual	

system’s	properties	in	the	hybrid-epistemic	model	can	be	usually	interpreted	as	

system’s	positions	and	thus	as	a	particle’s	properties.		

 Our	solution	to	the	wave-particle	duality	problem:				

o wave	properties	can	be	attributed	only	to	ensembles	–	individual	systems 

cannot have any wave properties.	This	means	that	the	so-called	wave	

properties	are	only	statistical	(in	the	sense	of	the	quadratic	probability	

theory)	properties	of	ensembles	

o The	interference	picture	needs	an	ensemble	of	photons	–	one	photon	cannot	

create	an	interference	picture.	Thus	the	interference	is	the	(statistical)	

property	of	ensembles	but	not	the	property	of	individual	systems.	

o Our	solution	is	very	clear:	particle-like	and	wave-like		properties	can	quietly	

coexist	in	the	property-epistemic	model	since	they	are attributed	to	different	

objects	–	particle-like	properties	are	properties	of	individual	systems	while	

wave-like	properties	are	properties	of	ensembles.	(This	means	that	the	so-

called	wave	properties	are	statistical	properties	of	ensembles.)	This	is	the	

unique	pure	solution	to	this	problem	(known	up	to	now).		

o Otherwise	there	can	exist	infinite	discussions	of	the	co-called	principle	of	

complementarity	(which	was	never	exactly	formulated	and	which	is	probably	

meaningless	and	wrong).	

	

	

	

	

Appendix C: the ontic model for the Brownian motion and its absurdity. 

	

In	this	part	we	shall	describe	the	analogue	of	an	ontic	model	description	for	a	Brownian	
motion	with	the	aim	to	show	clearly	the	absurdity	of	the	ontic	model	of	QM.	We	let	on	the	
reader	to	evaluate	our	arguments	but	nevertheless	we	think	that	this	classical	model	is	
interesting.	
	
We	shall	confront	the	ontic	model	of	the	Brownian	motion	with	the	ontic	model	of	QM.	We	
have	considered	above	only	finite	dimensional	quantum	systems	while	the	Brownian	
motion	is	described	by	the	infinity	dimensional	model.	But	we	think	that	this	difference	is	
not	substantial	for	the	understanding	and	validity	of	our	arguments.	
	
The	ontic	model	of	the	Brownian	motion	of	a	Brownian	particle	can	be	defined	by	following	
axioms.	
	
BMO1. To	each	system	S	(i.e.	to	each	Brownian	particle)	there	corresponds	the	Lebesgue		L1	
space	on	the	space	R3	
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L(S) = LS	=	{	f:	R3	→	R1	|	∫	|f(x)|	d3x	<	∞	}45	.	
	
The	space	of	possible	states	of	S	,	i.e.	the	space	of	probability	distributions	is	given	by		

 
P(S)	=	PS	=		{	f	∈	LS	|	f	≥	0	,	∫	f(x)	d3x	=	1	}	.	

	
To	each	system	S	(at	a	time	t)	there	corresponds	its	state		St	(S;	t)	∈	PS	.	
	
BMO2.	For	two	systems		S		and		M		we	have		LM	⊕	S	=	LM	⊗	LS	and	the	corresponding		PM	⊕	S.	
	
BMO3.	The	evolution	of	the	system	S	is	given	by	the	semi-group		{	Ut	|	t≥0	}		of		stochastic	
operators,		where		Ut	:	PS	→	PS	,	t≥0	.	This	semi-group	is	generated	by	the	heat	equation.		
	
BMO4.	To	each	observable		F	there	corresponds	a	bounded	function		F	:	R3	→	R1	which	(for	
simplicity)	attains	only	finite	number	of	values,	i.e.	|	F(R3)	|	<	∞	.		
	
Definition. 	

(i) We	set		Λ	=	F(R3)	.	Then	for	each		λ	∈	Λ		we	set		Aλ	=	F-1	(λ)	.			
(ii) For	each		λ	∈	Λ		we	de�ine		the	projector	

	
Pλ	(F)	=	F	.	χ(Aλ)		,			Pλ	:	LS	→	LS	

	
where		χ(A)		denotes	the	characteristic	function	of	the	set		A	⊂	R3	.	
	

(iii) For	the	observable		F		and	for	the	probability	distribution		f	∈	PS	we	set	
	

p	(	λ	|	f	;	F	)	=	∫	f	.	χ(Aλ)	d3x	=	∫	Pλ	(f)	d3x	
	

(iv) We	set	
Tλ;	F	(f)	=	(	∫Pλ	(f)	d3x	)-1	.	Pλ	(f)	,	assuming		∫Pλ	(f)	d3x	>	0	.	

	
We	clearly		have	F	=	∑	λ	∈	Λ	Pλ	(F)	.	
	
Definition.	The	ensemble		E		in	the	state		f		is	the	set	of	independent	systems	
	

E	=	{	S1,	..	,	SN	}				satisfying	
	

(i) P(S1)	=	..	=	P(SN)			and	we	denote		P(E)	=	P(S1)	=	..	=	P(SN)		
	

(ii) For	each		S	∈	E		we	have		St	(S;	t)	=	f		at	a	time	t	
	
BMO5.		(The	measurement	schema.)		

                                                           
45 In fact, in the general case, the probability distribution can be a measure on R3. We shall consider, for the 
simplicity, only probability densities. But we shall also consider the δ-functions δx(y) = δ(x-y) , x, y ∈R3. 
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Let	us	consider	an	ensemble	E		in	the	state		f		and	let	us	consider	a	measurement	of	an	

observable	F	.			

As	a	result	of	a	measurement	we	obtain	the		“output”	map		o	:	E	→	Λ		which	means	that	in	

the	measurement	of	a	system		S	∊	E		we	obtain	the	output	value	o(S)	∊	Λ	.	

	

Then	we	can	define	a	new	ensemble	

 

Eλ	=	{	S	∊	E	|	o(S)	=	λ	}		for	each		λ	∊	Λ0	.	

	

The	relative	frequency	of	the		output	value	λ	in	the	sequence		o(S1)	,	..	,	o(SN)	is	given	by			

	

g	(λ)	=	N-1	|	Eλ	|	

 

BMO6. 	(“Born’s	rule”.)	The	“Born’s	rule”	holds	

	

g	(λ)	=	p	(λ	|	f	;	F)	.	

	

BMO7.  (The	collapse	postulate.)		After	the	measurement		where		the	output	value	was		λ	,	

the	state	of	the	individual	system		S			will	be	(immediately)	changed			

	

from		f		to		Tλ	(f)	.	

	

BMO8. For	each	system		S		and	for	each		f	∊	PS		there	exists	an	ensemble		E		in	the	state		f		

such	that		S	∊	E .	

	

Axioms	BMO1	–	BMO8	define	the	ontic	model	of	the	Brownian	motion.		

	

Main	principles	of	the	standard	model	of	the	Brownian	motion:	
 BMS1.	The	individual	state	of	a	Brownian	particle	at	time	t	is	given	by	its	position		

	
x	(t)	∊	R3	

	
 BMS2. The	state	of	an	ensemble	is	given	by	the	probability	density		f	∊	PS 	
 BMS3. The	probability	that	the	Brownian	particle	is	found	in	the	set		A	⊂	R3		is	given	

by		
	

prob	(x	(t)	∊	A	)	=	∫	f	.	χ	(A)	d3x	
	

 BMS4. The	evolution	of	the	probability	density	is	given	by	the	semi-group		{Ut}t>0		as	
in	BMO4.	
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The	standard	model	describes	the	well-known	physical	reality.		
	
It	is	clear	that	the	ontic	model	of	the	Brownian	motion	is	from	the	physical	point	of	view		a	
complete non-sense.		
	
Nevertheless,	there	are	interesting	observations:	
	

 The	ontic	model	of	the	Brownian	motion	is	from	the	mathematical	point	of	view	
(axioms	BMO1	–	BMO8)	correct	–	i.e.	consistent		

 Empirical	predictions	of	the	ontic	model	are	equivalent	to	the	empirical	predictions	
of	the	standard	model	of	the	Brownian	motion.	

	
This	means	that	it	is	possible	to	transform	the	correct	standard	model	of	the	Brownian	
motion	into	the	non-standard	ontic	model	which	is	mathematically	and	empirically	
equivalent	to	the	standard	model	but	which	is	physically in-correct.		
	
How	to	evaluate	the	present	situation?	
	

 To	attribute	the	probability	density	to	an	individual	Brownian	particle	(as	in	the	
ontic	model)	is	a	pure	non-sense	–	it	is	evident	that	the	local	position		x(t)	of	an	
individual	Brownian	particle	cannot	have	nothing	in	common	with	the	non-local	
probability	density		f	:	R3	→	R1	.	

 It	is	clear	that	there	can	exist	a	completely	artificial	mathematical	model	which	is	
equivalent	to	the	standard	model	but	which	has	no	physical	meaning.	

 The	ontic	model	of	the	Brownian	motion	is	evidently	absurd.	
 The	collapse	postulate	BMO7		is,	of	course,	the	physical	absurdity.	

	
We	can	consider	the	ontic	model	of	the	Brownian	motion	as	an	analog	of	the	ontic	model	of	
a	QM	particle.	This	implies	(heuristically)	the	absurdity	of	the	ontic	model	of	QM.	
	
Inside	of	these	arguments	there	is	the	very important internal argument.			

 In	any	probability	theory	the	level	of	complexity	of	the	description	of	individual	
states	must	be	substantially	lower	than	the	lever	of	complexity	of	the	description	of	
an	ensemble	(in	the	case	of	the	Brownian	motion	this	is	the	description	x(t)	of	an	
individual	Brownian	particle	with	respect	to	the	description		f	:	R3	→	R1		of	an	
ensemble	of	Brownian	particles)	

 It	is	clear	that	the	description	of	an	ensemble	must	be	substantially	more	complex	
that	the	description	of	an	individual	particle	since	already	the	ensemble	as	an	object	
(containing	potentially	infinite	number	of	particles)	is	more	complex	than	one	
particle.	

 But	this	is	not true	in	the	ontic	model	of	QM:	the	level	of	complexity	of	the	
description	of	an	individual	system	(the	wave	function	ψ(x))	is	of	the	same	order	of	
complexity	as	the	description	of	an	ensemble	(the	density	operator	ρ(x,	y)).	

 This	means	that	in	any	probability	theory	the	complexity	of	an	individual	system	
must	be	substantially	lower	than	the	complexity	of	an	ensemble.	Exactly	this	
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requirement	is not satisfied	in	the	ontic	model	of	QM	but	it	is	satisfied	in	the	
hybrid-epistemic	model	of	QM.	

	
We	consider	this	argument	against	the	ontic	model	of	QM	as	a	deepest	argument	which	
disqualifies	the	ontic	model	of	QM	since	this	argument	is	very	general.	
	
The	idea	that	the	state	of	an	individual	Brownian	particle	can	be	described	by	the	
probability	distribution		f		is	evidently	absurd.		
	
But	why	the	idea	that	the	state	of	an	individual	electron	can	be	described	by	the	wave	
function		ψ		is	not	considered	as	equally absurd?		
	
The	idea	of	the	ontic	model	was	formulated	at	the	beginning	of	QM	(von	Neumann,	1932)	
and	from	this	time	it	was	considered	as	the	sacral	dogma	(completely	frozen	by	the	so-
called	Bohr’s	victory	in	the	Bohr	–	Einstein	dispute,	1935)	.		
	
A	unique	person	who	has	protested	against	the	ontic	model	of	QM	was	A.	Einstein	in	[9].	We	
have	shown	that	he	was	right.		
	
The	rejection	of	the	ontic	model	of	QM	has,	of	course,	important	consequences:	no	no-go	
theorems,	no	no-locality	of	QM,	no	Bell’s	inequalities,	the	vanished	role	of	an	observer,	no	
wave	properties	of	individual	systems	etc.		
	
But	after	this	the	world	will	be	more	standard	and	less	extravagant.			
	
We	believe	that	after	some	time	it	will	be	generally	accepted	that	the	idea	to	associate	the	
wave	function	to	an	individual	quantum	particle	is	completely absurd	(as	in	the	case	of	a	
Brownian	particle)	and	that	this	fact	will	be	considered	as	evident.		
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