Research Project Primus

Predrag Terzić

Podgorica, Montenegro

e-mail: pedja.terzic@hotmail.com

February 21, 2018

Theorems and Conjectures 1

Theorem 1.1. A natural number n > 2 is a prime iff $\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}$.

Theorem 1.2. Let $p \equiv 5 \pmod 6$ be prime then , 2p+1 is prime iff $2p+1 \mid 3^p-1$.

$$p_n = 1 + \sum_{k=1}^{2 \cdot (\lfloor n \ln(n) \rfloor + 1)} \left(1 - \left\lfloor \frac{1}{n} \cdot \sum_{j=2}^k \left\lceil \frac{3 - \sum_{i=1}^j \left\lfloor \frac{\lfloor \frac{j}{i} \rfloor}{\lceil \frac{j}{i} \rceil} \right\rfloor}{j} \right\rfloor \right) \right)$$

Theorem 1.4. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j\right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m - 1$ such that m > 2, $3 \mid k$, $0 < k < 2^m$ and

$$k \equiv 1 \pmod{10}$$
 with $m \equiv 2, 3 \pmod{4}$

$$k \equiv 3 \pmod{10}$$
 with $m \equiv 0, 3 \pmod{4}$

$$k \equiv 7 \pmod{10}$$
 with $m \equiv 1, 2 \pmod{4}$

$$k \equiv 9 \pmod{10}$$
 with $m \equiv 0, 1 \pmod{4}$

the gain we thingers. Let
$$N=k\cdot 2=1$$
 such that $m>2$, $3 \mid k$, $0 \leqslant k \leqslant 2$ to $\begin{cases} k \equiv 1 \pmod{10} \text{ with } m \equiv 2, 3 \pmod{4} \\ k \equiv 3 \pmod{10} \text{ with } m \equiv 0, 3 \pmod{4} \\ k \equiv 7 \pmod{10} \text{ with } m \equiv 1, 2 \pmod{4} \\ k \equiv 9 \pmod{10} \text{ with } m \equiv 0, 1 \pmod{4} \end{cases}$
Let $S_i = S_{i-1}^2 - 2 \text{ with } S_0 = P_k(3)$, then N is prime iff $S_{m-2} \equiv 0 \pmod{N}$

Theorem 1.5. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j\right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m - 1$ such that m > 2, $3 \mid k$, $0 < k < 2^m$ and

$$k \equiv 3 \pmod{42}$$
 with $m \equiv 0, 2 \pmod{3}$

$$k \equiv 9 \pmod{42}$$
 with $m \equiv 0 \pmod{3}$

$$k \equiv 15 \pmod{42}$$
 with $m \equiv 1 \pmod{3}$

$$\begin{cases} k \equiv 3 \pmod{42} & \text{with } m \equiv 0, 2 \pmod{3} \\ k \equiv 9 \pmod{42} & \text{with } m \equiv 0 \pmod{3} \\ k \equiv 15 \pmod{42} & \text{with } m \equiv 1 \pmod{3} \\ k \equiv 27 \pmod{42} & \text{with } m \equiv 1, 2 \pmod{3} \\ k \equiv 33 \pmod{42} & \text{with } m \equiv 0, 1 \pmod{3} \\ k \equiv 39 \pmod{42} & \text{with } m \equiv 0, 1 \pmod{3} \\ k \equiv 39 \pmod{42} & \text{with } m \equiv 2 \pmod{3} \end{cases}$$

$$k \equiv 33 \pmod{42}$$
 with $m \equiv 0, 1 \pmod{3}$

$$k \equiv 39 \pmod{42}$$
 with $m \equiv 2 \pmod{3}$

Let
$$S_i = S_{i-1}^2 - 2$$
 with $S_0 = P_k(5)$, then N is prime iff $S_{m-2} \equiv 0 \pmod{N}$

```
Theorem 1.6. Let P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j\right), where j and x are nonnegative integers. Let N = k \cdot 2^m + 1 such that m > 2, 0 < k < 2^m and
\begin{cases} k \equiv 1 \pmod{42} \ with \ m \equiv 2,4 \pmod{6} \\ k \equiv 5 \pmod{42} \ with \ m \equiv 3 \pmod{6} \\ k \equiv 11 \pmod{42} \ with \ m \equiv 3,5 \pmod{6} \\ k \equiv 13 \pmod{42} \ with \ m \equiv 4 \pmod{6} \\ k \equiv 17 \pmod{42} \ with \ m \equiv 4 \pmod{6} \\ k \equiv 19 \pmod{42} \ with \ m \equiv 0 \pmod{6} \\ k \equiv 23 \pmod{42} \ with \ m \equiv 0 \pmod{6} \\ k \equiv 25 \pmod{42} \ with \ m \equiv 1,3 \pmod{6} \\ k \equiv 25 \pmod{42} \ with \ m \equiv 1,5 \pmod{6} \\ k \equiv 29 \pmod{42} \ with \ m \equiv 1,5 \pmod{6} \\ k \equiv 31 \pmod{42} \ with \ m \equiv 2 \pmod{6} \\ k \equiv 37 \pmod{42} \ with \ m \equiv 2 \pmod{6} \\ k \equiv 41 \pmod{42} \ with \ m \equiv 1 \pmod{6} \\ Let \ S_i = S_{i-1}^2 - 2 \ with \ S_0 = P_k(5) \ , \ then \ N \ is \ prime \ iff \ S_{m-2} \equiv 0 \pmod{N} \ . \end{cases}
Theorem 1.7. Let \(P_j(x) = 2^{-j} \cdot \left( (x - \sqrt{x^2 - 4})^j + (x + \sqrt{x^2 - 4})^j \right) \ , \ where \ j \ and \ x \ are nonnegative integers \ . Let \ N = k \cdot 2^m + 1 \ such \ that \ m > 2 \ , 0 < k < 2^m \ and 
\left\{ k \equiv 1 \pmod{6} \ and \ k \equiv 1, 7 \ \pmod{10} \ with \ m \equiv 0 \ \pmod{4} \right\}
                          k \equiv 1 \pmod{42} with m \equiv 2, 4 \pmod{6}
                          k \equiv 1 \pmod{6} and k \equiv 1,7 \pmod{10} with m \equiv 0 \pmod{4}
               \begin{cases} k \equiv 1 \pmod{6} \ and \ k \equiv 1, 1 \pmod{10} \ with \ m \equiv 1 \pmod{4} \\ k \equiv 5 \pmod{6} \ and \ k \equiv 1, 3 \pmod{10} \ with \ m \equiv 1 \pmod{4} \\ k \equiv 1 \pmod{6} \ and \ k \equiv 3, 9 \pmod{10} \ with \ m \equiv 2 \pmod{4} \\ k \equiv 5 \pmod{6} \ and \ k \equiv 7, 9 \pmod{10} \ with \ m \equiv 3 \pmod{4} \\ Let \ S_i = S_{i-1}^2 - 2 \ with \ S_0 = P_k(8) \ , \ then \ N \ is \ prime \ iff \ S_{m-2} \equiv 0 \pmod{N} \ . \end{cases}
  Theorem 1.8. Let N = k \cdot 2^n + 1 with n > 1, k is odd, 0 < k < 2^n, 3 \mid k and
                                                                                                           with n \equiv 1, 2 \pmod{4}
                   \begin{cases} k \equiv 9 \pmod{30}, & \textit{with } n \equiv 1, 2 \pmod{4} \\ k \equiv 9 \pmod{30}, & \textit{with } n \equiv 2, 3 \pmod{4} \\ k \equiv 21 \pmod{30}, & \textit{with } n \equiv 0, 1 \pmod{4} \\ k \equiv 27 \pmod{30}, & \textit{with } n \equiv 0, 3 \pmod{4} \end{cases}
                 then N is prime iff 5^{\frac{N-1}{2}} \equiv -1 \pmod{N}.
  Theorem 1.9. Let N = k \cdot 2^n + 1 with n > 1 , k is odd , 0 < k < 2^n , 3 \mid k and
                          k \equiv 3 \pmod{42}, with n \equiv 2 \pmod{3}
                  \begin{cases} k \equiv 3 \pmod{42}, & \textit{with } n \equiv 2 \pmod{3} \\ k \equiv 9 \pmod{42}, & \textit{with } n \equiv 0, 1 \pmod{3} \\ k \equiv 15 \pmod{42}, & \textit{with } n \equiv 1, 2 \pmod{3} \\ k \equiv 27 \pmod{42}, & \textit{with } n \equiv 1 \pmod{3} \\ k \equiv 33 \pmod{42}, & \textit{with } n \equiv 0 \pmod{3} \\ k \equiv 39 \pmod{42}, & \textit{with } n \equiv 0, 2 \pmod{3} \end{cases}
                 then N is prime iff 7^{\frac{N-1}{2}} \equiv -1 \pmod{N}.
```

Theorem 1.10. Let $N = k \cdot 2^n + 1$ with n > 1, k is odd, $0 < k < 2^n$, $3 \mid k$ and

$$\begin{cases} k \equiv 3 \pmod{66}, & \textit{with } n \equiv 1, 2, 6, 8, 9 \pmod{10} \\ k \equiv 9 \pmod{66}, & \textit{with } n \equiv 0, 1, 3, 4, 8 \pmod{10} \\ k \equiv 15 \pmod{66}, & \textit{with } n \equiv 2, 4, 5, 7, 8 \pmod{10} \\ k \equiv 21 \pmod{66}, & \textit{with } n \equiv 1, 2, 4, 5, 9 \pmod{10} \\ k \equiv 27 \pmod{66}, & \textit{with } n \equiv 0, 2, 3, 5, 6 \pmod{10} \\ k \equiv 39 \pmod{66}, & \textit{with } n \equiv 0, 1, 5, 7, 8 \pmod{10} \\ k \equiv 45 \pmod{66}, & \textit{with } n \equiv 0, 4, 6, 7, 9 \pmod{10} \\ k \equiv 51 \pmod{66}, & \textit{with } n \equiv 0, 2, 3, 7, 9 \pmod{10} \\ k \equiv 57 \pmod{66}, & \textit{with } n \equiv 3, 5, 6, 8, 9 \pmod{10} \\ k \equiv 63 \pmod{66}, & \textit{with } n \equiv 1, 3, 4, 6, 7 \pmod{10} \\ \textit{then } N \textit{ is prime iff } 11^{\frac{N-1}{2}} \equiv -1 \pmod{N} \,. \end{cases}$$

Theorem 1.11. A positive integer n is prime iff $\varphi(n)! \equiv -1 \pmod{n}$

Theorem 1.12. For $m \ge 1$ number n greater than one is prime iff

$$(n^m - 1)! \equiv (n - 1)^{\left\lceil \frac{(-1)^{m+1}}{2} \right\rceil} \cdot n^{\frac{n^m - mn + m - 1}{n - 1}} \pmod{n^{\frac{n^m - mn + m + n - 2}{n - 1}}}$$

Theorem 1.12. For $m \geq 1$ number it greates that the S_i and S_i if i = 0; then S_i then S_i are S_i is defined as $S_i = \begin{cases} 8 & \text{if } i = 0; \\ (S_{i-1}^2 - 2)^2 - 2 & \text{otherwise} \end{cases}$. $2^{2^n}+1, (n \geq 2)$ is a prime if and only if F_n divides $S_{2^{n-1}}$

Theorem 1.14. Let $p \equiv 1 \pmod{6}$ be prime and let $5 \nmid 4p + 1$, then 4p + 1 is prime iff $4p+1 \mid 2^{2p}+1$.

Theorem 1.15. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $F_n(b) = b^{2^n} + 1$ such that $n \geq 2$ and b is even number. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(6)$, thus If $F_n(b)$ is prime, then $S_{2^n-1} \equiv 2 \pmod{F_n(b)}$.

Theorem 1.16. Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $E_n(b)=\frac{b^{2^n}+1}{2}$ such that n>1, b is odd number greater than one . Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(6)$, thus If $E_n(b)$ is prime, then $S_{2^n-1} \equiv 6 \pmod{E_n(b)}$.

Theorem 1.17. Let
$$P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$$
.

Let $N_p(b) = \frac{b^p+1}{b+1}$, where p is an odd prime and b is an odd natural number greater than one. CASE(1). $b \equiv 1,9 \pmod{12}$, or $b \equiv 3,7 \pmod{12}$ and $p \equiv 1 \pmod{4}$, or $b \equiv 5$ $\pmod{12}$ and $p \equiv 1, 7 \pmod{12}$, or $b \equiv 11 \pmod{12}$ and $p \equiv 1, 11 \pmod{12}$.

CASE(2). $b \equiv 3,7 \pmod{12}$ and $p \equiv 3 \pmod{4}$, or $b \equiv 5 \pmod{12}$ and $p \equiv 5,11$ (mod 12), or $b \equiv 11 \pmod{12}$ and $p \equiv 5, 7 \pmod{12}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(4)$. Suppose $N_p(b)$ is prime, then:

- $S_{p-1} \equiv P_b(4) \pmod{N_p(b)}$ if Case(1) holds;
- $S_{p-1} \equiv P_{b+2}(4) \pmod{N_p(b)}$ if Case(2) holds;

Theorem 1.18. Let
$$P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$$
.

Let $M_p(a) = \frac{a^p-1}{a-1}$, where p is an odd prime and a is an odd natural number greater than one CASE(1). $a \equiv 3,11 \pmod{12}$, or $a \equiv 5,9 \pmod{12}$ and $p \equiv 1 \pmod{4}$, or $a \equiv 7 \pmod{12}$ and $p \equiv 1,7 \pmod{12}$, or $a \equiv 1 \pmod{12}$ and $p \equiv 1,11 \pmod{12}$.

CASE(2). $a \equiv 5, 9 \pmod{12}$ and $p \equiv 3 \pmod{4}$, or $a \equiv 7 \pmod{12}$ and $p \equiv 5, 11 \pmod{12}$, or $a \equiv 1 \pmod{12}$ and $p \equiv 5, 7 \pmod{12}$.

Let $S_i = P_a(S_{i-1})$ with $S_0 = P_a(4)$. Suppose $M_p(a)$ is prime, then:

- $S_{p-1} \equiv P_a(4) \pmod{M_p(a)}$ if Case(1) holds;
- $S_{p-1} \equiv P_{a-2}(4) \pmod{M_p(a)}$ if Case(2) holds;

Conjecture 1.1. Let $b_n = b_{n-2} + lcm(n-1, b_{n-2})$ with $b_1 = 2$, $b_2 = 2$ and n > 2. Let $a_n = b_{n+2}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every odd prime number is member of this sequence. 3. Every new prime in sequence is a next prime from the largest prime already listed.

Conjecture 1.2. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{n^3} \rfloor, b_{n-1})$ with $b_1 = 2$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every odd prime of the form $\lfloor \sqrt{n^3} \rfloor$ is member of this sequence . 3. Every new prime of the form $\lfloor \sqrt{n^3} \rfloor$ in sequence is a next prime from the largest prime already listed .

Conjecture 1.3. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{2} \cdot n \rfloor, b_{n-1})$ with $b_1 = 2$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ in sequence is a next prime from the largest prime already listed.

Conjecture 1.4. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{3} \cdot n \rfloor, b_{n-1})$ with $b_1 = 3$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ in sequence is a next prime from the largest prime already listed.

Conjecture 1.5. Let b and n be a natural numbers, $b \ge 2$, n > 2 and $n \ne 9$. Then n is prime if and only if $\sum_{k=1}^{n-1} \left(b^k - 1\right)^{n-1} \equiv n \pmod{\frac{b^n - 1}{b-1}}$

Conjecture 1.6. Let a, b and n be a natural numbers, b>a>1, n>2 and $n\not\in\{4,9,25\}$. Then n is prime iff $\prod_{k=1}^{n-1} \left(b^k-a\right)\equiv \frac{a^n-1}{a-1}\pmod{\frac{b^n-1}{b-1}}$

Conjecture 1.7. Let a, b and n be a natural numbers, b>a>0, n>2 and $n\not\in\{4,9,25\}$. Then n is prime iff $\prod_{i=1}^{n-1} \left(b^k+a\right)\equiv \frac{a^n+1}{a+1}\pmod{\frac{b^n-1}{b-1}}$

Conjecture 1.8. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n - 1$ such that k > 0, $3 \nmid k$, $k < 2^n$, b > 0, b is even number, $3 \nmid b$ and n > 2. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{kb/2}(P_{b/2}(4))$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$.

Conjecture 1.9. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^j + \left(x + \sqrt{x^2 - 4} \right)^j \right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m + 1$ with k odd, $0 < k < 2^m$ and m > 2. Let F_n be the nth Fibonacci number and let $S_i = S_{i-1}^2 - 2$ with $S_0 = P_k(F_n)$, then N is prime iff there exists F_n for which $S_{m-2} \equiv 0 \pmod{N}$.

Conjecture 1.10. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^j + \left(x + \sqrt{x^2 - 4} \right)^j \right)$, where j and x are nonnegative integers. Let $F_m(b) = b^{2^m} + 1$ with b even , b > 0 and $m \ge 2$. Let F_n be the nth Fibonacci number and let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(P_{b/2}(F_n))$, then $F_m(b)$ is prime iff there exists F_n for which $S_{m-2} \equiv 0 \pmod{F_m(b)}$.

Conjecture 1.11. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $N = b^n - b - 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$.

Conjecture 1.12. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = b^n - b - 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.

Conjecture 1.13. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.

Conjecture 1.14. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$.

Conjecture 1.15. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $N = b^n - b + 1$ such that n > 3, $b \equiv 0, 2 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.

Conjecture 1.16. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = b^n - b + 1$ such that n > 3, $b \equiv 4, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 1.17. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = b^n + b - 1$ such that n > 3, $b \equiv 0, 2 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 1.18. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $N = b^n + b - 1$ such that n > 3, $b \equiv 4, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.

- **Conjecture 1.19.** Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4} \right)^m + \left(x + \sqrt{x^2 4} \right)^m \right)$ Let $N = k \cdot 3^n - 2$ such that n > 3, $k \equiv 1, 3 \pmod 8$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If N is prime then $S_{n-1} \equiv P_3(6) \pmod N$
- **Conjecture 1.20.** Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4} \right)^m + \left(x + \sqrt{x^2 4} \right)^m \right)$ Let $N = k \cdot 3^n - 2$ such that n > 3, $k \equiv 5, 7 \pmod 8$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If N is prime then $S_{n-1} \equiv P_1(6) \pmod N$
- **Conjecture 1.21.** Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $N=k\cdot 3^n+2$ such that n>2, $k\equiv 1,3\pmod 8$ and k>0. Let $S_i=P_3(S_{i-1})$ with $S_0=P_{3k}(6)$, thus If N is prime then $S_{n-1}\equiv P_3(6)\pmod N$
- **Conjecture 1.22.** Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4}\right)^m + \left(x + \sqrt{x^2 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot 3^n + 2$ such that n > 2, $k \equiv 5, 7 \pmod{8}$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If N is prime then $S_{n-1} \equiv P_1(6) \pmod{N}$
- Conjecture 1.23. Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4}\right)^m + \left(x + \sqrt{x^2 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n c$ such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$ Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lceil c/2 \rceil}(6) \pmod{N}$
- Conjecture 1.24. Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4}\right)^m + \left(x + \sqrt{x^2 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n c$ such that $b \equiv 0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$
- Conjecture 1.25. Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4}\right)^m + \left(x + \sqrt{x^2 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n c$ such that $b \equiv 2, 6, 10 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv -P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$
- Conjecture 1.26. Let $P_m(x) = 2^{-m} \cdot \left(\left(x \sqrt{x^2 4}\right)^m + \left(x + \sqrt{x^2 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n + c$ such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$ Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$
- Conjecture 1.27. Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $N=k\cdot b^n+c$ such that $b\equiv 0,4,8\pmod{12}, n>bc, k>0, c>0$ and $c\equiv 3,5\pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1}\equiv P_{(b/2)\cdot\lceil c/2\rceil}(6)\pmod{N}$
- Conjecture 1.28. Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $N=k\cdot b^n+c$ such that $b\equiv 2,6,10\pmod{12}, n>bc, k>0, c>0$ and $c\equiv 3,5\pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1}\equiv -P_{(b/2)\cdot\lceil c/2\rceil}(6)\pmod{N}$

Conjecture 1.29. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = 2 \cdot 3^n - 1$ such that n > 1. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_3(a)$, where $a = \begin{cases} 6, & \text{if } n \equiv 0 \pmod{2} \\ 8, & \text{if } n \equiv 1 \pmod{2} \end{cases}$ thus, N is prime iff $S_{n-1} \equiv a \pmod{N}$

Conjecture 1.30. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = 8 \cdot 3^n - 1$ such that n > 1. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{12}(4)$ thus, N is prime iff $S_{n-1} \equiv 4 \pmod{N}$

Conjecture 1.31. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot 6^n - 1$ such that n > 2, k > 0, $k \equiv 2, 5 \pmod{7}$ and $k < 6^n$ Let $S_i = P_6(S_{i-1})$ with $S_0 = P_{3k}(P_3(5))$, thus N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 1.32. Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $N=k\cdot 6^n-1$ such that n>2, k>0, $k\equiv 3,4\pmod 5$ and $k<6^n$ Let $S_i=P_6(S_{i-1})$ with $S_0=P_{3k}(P_3(3))$, thus N is prime iff $S_{n-2}\equiv 0\pmod N$

Conjecture 1.33. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n - 1$ such that n > 2, $k < 2^n$ and

```
\begin{cases} k \equiv 3 \pmod{30} \ with \ b \equiv 2 \pmod{10} \ and \ n \equiv 0, 3 \pmod{4} \\ k \equiv 3 \pmod{30} \ with \ b \equiv 4 \pmod{10} \ and \ n \equiv 0, 2 \pmod{4} \\ k \equiv 3 \pmod{30} \ with \ b \equiv 6 \pmod{10} \ and \ n \equiv 0, 1, 2, 3 \pmod{4} \\ k \equiv 3 \pmod{30} \ with \ b \equiv 8 \pmod{10} \ and \ n \equiv 0, 1 \pmod{4} \\ Let \ S_i = P_b(S_{i-1}) \ with \ S_0 = P_{bk/2}(P_{b/2}(18)) \ , \ then \ N \ is \ prime \ iff \ S_{n-2} \equiv 0 \pmod{N} \end{cases}
```

Conjecture 1.34. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n - 1$ such that n > 2, $k < 2^n$ and

```
\begin{cases} k \equiv 9 \pmod{30} \ with \ b \equiv 2 \pmod{10} \ and \ n \equiv 0, 1 \pmod{4} \\ k \equiv 9 \pmod{30} \ with \ b \equiv 4 \pmod{10} \ and \ n \equiv 0, 2 \pmod{4} \\ k \equiv 9 \pmod{30} \ with \ b \equiv 6 \pmod{10} \ and \ n \equiv 0, 1, 2, 3 \pmod{4} \\ k \equiv 9 \pmod{30} \ with \ b \equiv 8 \pmod{10} \ and \ n \equiv 0, 3 \pmod{4} \\ Let \ S_i = P_b(S_{i-1}) \ with \ S_0 = P_{bk/2}(P_{b/2}(18)) \ , \ then \ N \ is \ prime \ iff \ S_{n-2} \equiv 0 \pmod{N} \end{cases}
```

Conjecture 1.35. Let $P_m(x)=2^{-m}\cdot\left(\left(x-\sqrt{x^2-4}\right)^m+\left(x+\sqrt{x^2-4}\right)^m\right)$, where m and x are nonnegative integers. Let $N=k\cdot b^n-1$ such that n>2, $k<2^n$ and

```
\begin{cases} k \equiv 21 \pmod{30} \ with \ b \equiv 2 \pmod{10} \ and \ n \equiv 2, 3 \pmod{4} \\ k \equiv 21 \pmod{30} \ with \ b \equiv 4 \pmod{10} \ and \ n \equiv 1, 3 \pmod{4} \\ k \equiv 21 \pmod{30} \ with \ b \equiv 8 \pmod{10} \ and \ n \equiv 1, 2 \pmod{4} \\ Let \ S_i = P_b(S_{i-1}) \ with \ S_0 = P_{bk/2}(P_{b/2}(3)) \ , \ then \ N \ is \ prime \ iff \ S_{n-2} \equiv 0 \pmod{N} \end{cases}
```

Conjecture 1.36. Let F_p be the pth Fibonacci number .If p is prime, not 5, and $M \ge 2$ then $M^{F_p} \equiv M^{(p-1)^{(1-(\frac{p}{5}))/2}} \pmod{\frac{M^p-1}{M-1}}$

Conjecture 1.37. Let b and n be a natural numbers, $b \ge 2$, n > 1 and $n \notin \{4, 8, 9\}$. Then n is prime if and only if $\sum_{k=1}^n \left(b^k + 1\right)^{n-1} \equiv n \pmod{\frac{b^n - 1}{b - 1}}$

Conjecture 1.38. If q is the smallest prime greater than $\prod_{i=1}^n C_i + 1$, where $\prod_{i=1}^n C_i$ is the product of the first n composite numbers, then $q - \prod_{i=1}^n C_i$ is prime.

Conjecture 1.39. If q is the greatest prime less than $\prod_{i=1}^n C_i - 1$, where $\prod_{i=1}^n C_i$ is the product of the first n composite numbers, then $\prod_{i=1}^n C_i - q$ is prime.

Conjecture 1.40. Let n be an odd number and n > 1. Let $T_n(x)$ be Chebyshev polynomial of the first kind and let $P_n(x)$ be Legendre polynomial, then n is a prime number if and only if the following congruences hold simultaneously $\bullet T_n(3) \equiv 3 \pmod{n} \bullet P_n(3) \equiv 3 \pmod{n}$

Conjecture 1.41. Let n be a natural number greater than two. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $T_n(x)$ be Chebyshev polynomial of the first kind, then n is a prime number if and only if $T_n(x) \equiv x^n \pmod{x^r - 1, n}$.

Conjecture 1.42. Let n be a natural number greater than two and $n \neq 5$. Let $T_n(x)$ be Chebyshev polynomial of the first kind. If there exists an integer a, 1 < a < n, such that $T_{n-1}(a) \equiv 1 \pmod{n}$ and for every prime factor q of n-1, $T_{(n-1)/q}(a) \not\equiv 1 \pmod{n}$ then n is prime. If no such number a exists then n is composite.

Conjecture 1.43. Let $P_a(x)=2^{-a}\cdot\left(\left(x-\sqrt{x^2-4}\right)^a+\left(x+\sqrt{x^2-4}\right)^a\right)$. Let $N=k\cdot b^m\pm 1$ with b an even positive integer, $0{<}k{<}b^m$ and m>2. Let F_n be the nth Fibonacci number and let $S_i=P_b(S_{i-1})$ with $S_0=P_{kb/2}(P_{b/2}(F_n))$, then N is prime iff there exists F_n for which $S_{m-2}\equiv 0\pmod N$.

Conjecture 1.44. Let n be a natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $L_n(x)$ be Lucas polynomial, then n is a prime number if and only if $L_n(x) \equiv x^n \pmod{x^r - 1, n}$.

Conjecture 1.45. Let b and n be a natural numbers, $b \ge 2$, then $\frac{b^n-1}{b-1} \cdot \frac{b^{\sigma(n)}-1}{b-1} \equiv b+1 \pmod{\frac{b^{\varphi(n)}-1}{b-1}}$ for all primes and no composite with the exception of 4 and 6.

Conjecture 1.46. Let b and n be a natural numbers, $b \ge 2$, then $\frac{b^{\varphi(n)}-1}{b-1}(b^{\tau(n)}-1)+b \equiv b^{n-1} \pmod{\frac{b^n-1}{b-1}}$ for all primes and no composite with the exception of 4.

Conjecture 1.47. Let p be prime number greater than three and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(2) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 11 \pmod{12}$.

Conjecture 1.48. Let p be prime number greater than two and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(3) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 7 \pmod{8}$.

Conjecture 1.49. Let p be prime number greater than three and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(5) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 5, 19, 23 \pmod{24}$

Conjecture 1.50. Let n be an odd natural number greater than one, let k be a natural number such that $k \le n$, then n is prime if and only if: $\sum_{i=0}^{k-1} i^{n-1} + \sum_{i=0}^{n-k} j^{n-1} \equiv -1 \pmod n$

Conjecture 1.51. Let n be a natural number greater than one and let $T_n(x)$ be Chebyshev polynomial of the first kind, then n is prime if and only if $: \sum_{k=0}^{n-1} 2T_{n-1}\left(\frac{k}{2}\right) \equiv -1 \pmod{n}$.

Conjecture 1.52. Let n be a natural number greater than one and let $L_n(x)$ be Lucas polynomial , then n is prime if and only if $: \sum_{k=0}^{n-1} L_{n-1}(k) \equiv -1 \pmod n$.

Conjecture 1.53. Let p be an odd prime number, let $R_p(3) = \frac{3^p-1}{2}$ and let $S_i = S_{i-1}^3 + 3S_{i-1}$ with $S_0 = 36$, then $R_p(3)$ is prime number iff $S_{p-1} \equiv 36 \pmod{R_p(3)}$.

Conjecture 1.54. Let p be an odd prime number greater than three, let $R_p(-3) = \frac{3^p+1}{4}$ and let $S_i = S_{i-1}^3 + 3S_{i-1}$ with $S_0 = 36$, then $R_p(-3)$ is prime number iff $S_{p-1} \equiv 36 \pmod{R_p(-3)}$.