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On Huygens’ Principle, Extinction Theorem, and
Equivalence Principle — Part II:

Metal-Material Combined System
in Inhomogeneous Anisotropic Environment

Renzun Lian

Abstract—In this paper, we generalize Huygens’ principle (HP),
extinction theorem (ET), and Franz-Harrington formulation
(FHF) in two parts. In Part I, the traditional HP, ET, and FHF in
homogeneous isotropic environment are generalized to inhomo-
geneous anisotropic lossy environment; the traditional FHF of
homogeneous isotropic material system is generalized to inho-
mogeneous anisotropic lossy material system and then to piece-
wise inhomogeneous anisotropic lossy material system; the tradi-
tional HP, ET, and FHF of simply connected material system are
generalized to multiply connected system and then to
non-connected system; the traditional FHF of external scattering
field and internal total field are generalized to internal scattering
field and internal incident field. In Part I, it is proved that the
generalized HP (GHP) and generalized ET (GET) are equivalent
to each other; the GHP, GET, and generalized FHF (GFHF) sat-
isfy so-called topological additivity, i.e., the GHP/GET/GFHF of
whole electromagnetic (EM) system equals to the superposition of
the GHP/GET/GFHF corresponding to all sub-systems.

In this Part 11, the above results obtained in previous Part I,
which focuses on the EM system constructed by material bodies,
are further generalized to the metal-material combined EM sys-
tem in inhomogeneous anisotropic lossy environment, and tradi-
tional surface equivalence principle is generalized to line-surface
equivalence principle.

Index Terms—Current decomposition method, equivalent line
current, extinction theorem (ET), Franz-Harrington formulation
(FHF), Huygens’ boundary, Huygens’ principle (HP), inhomoge-
neous anisotropic lossy media, line-surface equivalence principle,
metal-material combined system.

I. INTRODUCTION

H UYGENS’ principle (HP) [1], extinction theorem (ET) [2],
and Franz-Harrington formulation (FHF) [3]-[5] are the
important components of classical electromagnetic (EM) the-
ory, and they have had many successful applications in EM
engineering society. In the Part | of this paper [6], they are
generalized from the following aspects:
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m In the aspect of EM media, the traditional HP, ET, and
FHF in homogeneous isotropic environment are generalized to
inhomogeneous anisotropic lossy environment; the traditional
FHF of homogeneous isotropic material system is generalized
to inhomogeneous anisotropic lossy material system and then
to piecewise inhomogeneous anisotropic lossy material system.

m In the aspect of topological structure of EM system, the
traditional HP and ET for the case that Huygens’ surface is a
single closed surface is generalized to the case that “Huygens’
surface” is constituted by multiple closed surfaces; the tradi-
tional FHF of a simply connected material body is generalized
to a multiply connected material body and then to the EM
system constructed by non-connected material bodies.

m In the aspect of formulating fields, the traditional FHF of
external scattering field and internal total field are generalized
to the FHF of internal incident field and internal scattering
field.

For the EM system constructed by material bodies, it is
found in Part | that:

e The generalized Huygens’ principle (GHP), generalized
extinction theorem (GET), and generalized Franz-Harrington
formulation (GFHF) satisfy so-called topological additivity,
i.e., the GHP/GET/GFHF of whole EM system equals to the
superposition of the GHP/GET/GFHF corresponding to all
sub-systems.

e The GHP is equivalent to GET, i.e., the GHP of any field
satisfies GET, and any GET corresponds to the GHP of a field.

e The GFHF of external scattering field and internal incident
field is not the mathematical expression of GHP, and it is solely
the summation of scattering field GHP and incident field GHP.

e The GFHF of internal total field satisfies so-called weak
extinction theorem instead of extinction theorem. If the piece-
wise Green’s functions proposed in Part | are utilized, the
GFHF of internal total field satisfies so-called artificial extinc-
tion theorem, and this artificial theorem is helpful to unify the
mathematical form of GFHF for various topological structures.

e The GHP is a special surface equivalence principle (SEP),
but SEP is not necessarily GHP. The GHP can be particularly
called as physical equivalence principle, because it simulta-
neously satisfies the concept of action at a distance, the law of
causality, and the principle of superposition. It is not necessary
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for SEP to simultaneously satisfy these fundamental physical
requirements.

e The GFHF is not the mathematical expression of GHP and
GET, and it is only the mathematical expression of SEP. The
values of GFHF are mainly manifested in that various fields are
uniformly expressed in terms of an identical set of equivalent
surface currents, and this feature is very valuable for many
engineering applications, such as solving the EM scattering and
constructing the characteristic mode (CM) of material system.

In this Part 11, the results obtained in previous Part | will be
further generalized to the metal-material combined system in
inhomogeneous anisotropic lossy environment, and the mate-
rial part of system can be any case discussed in Part I. In addi-
tion, SEP is generalized to line-surface equivalence principle.

This Part 11 is organized as follows. Some necessary prepa-
rations, such as some symbols used in this paper and the topo-
logical restrictions of metallic and material parts, are provided
in Sec. Il. The metallic and material boundaries are decom-
posed in Sec. Il for the preparation of decomposing various
currents in Sec. IV. The currents related to metal-material
combined system are decomposed in Sec. 1V to reveal the de-
pendences among them. The GHP, GET, and GFHF of met-
al-material combined system are provided in Sec. V, based on

the Sec. IV of this Part 1l and the results given in previous Part I.

As an application, the GFHF given in Sec. V is utilized to
construct the CM of metal-material combined system in Secs.
VI and VII. At last, this paper is concluded in Sec. VIII.

In what follows, the e!** convention is used throughout.

Il. PREPARATIONS

Some necessary preparations for deriving the mathematical
formulation of GHP, GET, and GFHF corresponding to met-
al-material combined EM system are done in this section.

A. Some symbols used in this paper

The EM system focused on by this paper is constructed by
the metallic line part L™, the metallic surface part S™ , the
metallic volume part V™, and the material body V™ , and a
typical example is shown in Fig. 1. To efficiently derive the
mathematical formulation of GHP, GET, and GFHF of the
structure in Fig. 1, it is necessary to employ some concepts on
point set topology, such as the boundary, interior, exterior, and
closure, and the rigorous mathematical definitions for them can
be found in [7]. The boundaries of L™, S™ , v™ , and V™
are respectively denoted as oL™, as™, ov™, and av™ ; the
interior of V™ is denoted as intv™, and the exterior of v™
is denoted as extv™ , i.e., extV™ 2R*\clV™, where clv™
represents the closure of V™ . Obviously, both the intv™ and
extV™ are open sets [7].

When an external excitation F™ incidents on the structure
in Fig. 1, the scattering line electric current J°, the scattering
surface electric current J3% ..., and the scattering surface
electric current J , will be excited on the oL™, 6s™, and
ov™ respectively [8]; the scattering volume ohmic electric
current JS the scattering volume polarization electric
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Fig. 1. The metal-material combined system considered in this paper, and the
decomposition for its boundary.

current Jov ., and the scattering volume magnetization mag-
netic current MJy .. will be induced on the intv™ [8], [9].
Here, the superscript “s.” on J* is the acronyms of term
“scattering line”, and the other superscripts on various currents
can be similarly explained. To simplify the symbolic system of
this paper, the summation of J% . and J5 ., is simply de-

et, surf
notedas J%,i.e., J®2J% L +Jng .o ; the summation of J3

met,vol ?

and Jyy S S|mply denoted as J ,i.e., J¥ £ 3% 0+ Jow o
the My .., 1S Simply denoted as |\7|SV e, MY &MY .
The scattering currents {J*,J*} and {JSV M=} will gen-

erate scattering field F“a and the summation of F™ and F*
is total field F*, i.e., F* =F™ +F** where F=E,H . For
the convenience of thls paper, the F** is divided into two parts,
the F== generated by metal-based scattering electric currents
{J*,3%} and the F= generated by material-based scattering
currents {J%,M%} , and F** =F% + Fi because of superpo-

sition principle [10].
B. Some restrictions for the topological structure in Fig. 1,
from a practical point of view

From a purely mathematical point of view, L™ <clL™ , and
S™ ccls™, and V™ cclv™ [7]. However, from a practical
point of view it is restricted in this paper that

Restrction for L™ : L™ = cIL™ (1.1)
Restrction for ™ :  S™ = cIS™ (1.2)
Restrction forvV™ : V™ = clv™ (1.3)

and these restrictions can be vividly understood as that there
does not exist any “point-type holes” on L™, “point-type and
line-type holes” on s™ , and “point-type, line-type, and sur-
face-type holes” on V™ . In addition, the restrictions (1.1) and
(1.2) imply that L™ =oL™ and S™ =as™ in R® [7]. Based
on the same consideration, it is also restricted that

Restrction for V™ : cIV™ \V™ =ov ™ (L™ US™ Uav™) (1.4)
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Fig. 2. (a) A part of metallic line contacts with metallic surface, and this case is
not considered in this paper; (b) a part of metallic line contacts with or is
submerged into metallic body, and this case is not considered in this paper; (c) a
part of metallic surface contacts with metallic body, and this case is not con-
sidered in this paper; (d) a part of metallic surface is submerged into metallic
body, and this case is not considered in this paper.

and this restriction can be vividly understood as that there does
not exist any environment-filled “point-type, line-type, and
surface-type holes” on v™ ; the “line-type holes” on v™
originate from the submergence of L™ into v™ , and the
“surface-type holes” on v™ originate from the submergence
of S™ into V™ . In summary, the “holes” on V™ are met-
al-filled instead of being environment-filled.
From a practical point of view, it is further restricted that

Restrction for L™ : L™ = cl(L™\(S™UV™))
CI(Smel \V met)

1.1)

Restrction for S™ @ S™ = (1.29
The restriction (1.1") is equivalent to saying that the intersection
between L™ and S™UVv™ can only be some discrete points,
and cannot be any lines; the restriction (1.2") is equivalent to
saying that the intersection between S™ and V™ can only be
some discrete points or lines, and cannot be any surfaces. These
imply that the structures in Fig. 2 are not considered in this
paper.

In addition, it is also restricted that V™ is a simply con-
nected inhomogeneous anisotropic lossy material body, and
that the material parameters &, &, and j are one-order
symmetrical tensors as explained in previous Part | [6]. The
multiply connected case, the non-connected case, and the
piecewise inhomogeneous anisotropic lossy case can be simi-
larly discussed, and corresponding mathematical formulations
are formally identical to the formulations given in this paper.

I1l. BOUNDARY DECOMPOSITION

All currents appearing in the following parts of this paper
distribute on the metallic and material boundaries of the
structure in Fig. 1, so this section decomposes the boundaries
into some sub-boundaries, to prepare for decomposing corre-
sponding currents in the next section.

A. The decomposition for metallic boundary
The L™, s™ ,and ov™ can be decomposed as follows:

Lmet — Lrget U Lﬂmet (2)
S met  _ S[;net U SrTet (3)
av met _ avomet U avﬂmel ( 4)

where the L7 and L{* are defined as

Lrget é Lmet \ |nt( Lmet UV mat ) (5 1)

LHEt é Lmel n Int( Lmel UV mal) (52)
and the s;® and Si* are defined as

ng A Smet \ int(smet UV mat) (61)

S(Tet A Smet ﬂ int(smet UV mat) (62)
and the ov,™ and av™ are defined as

VI 2 V™ \int(V™ UV ™) (7.1)

avnmet é a met ﬂ |nt( met UV mat) (72)

The L§® and Lf* can be vividly understood as the part
which is not submerged into V™ and the part which is sub-
merged into V™, and the Sy and S;® can be similarly ex-
plained; the av,™ and av™ can be vividly understood as the
part which contacts with environment and the part which con-
tacts with material body. In addition, it is obvious that

N - o ®)
SN S =0 9)
NNV = @ (10)

B. The decomposition for material boundary

As pointed out in (1), there doesn’t exist any environ-
ment-filled “point-type, line-type, and surface-type holes” on
V™ so V™ can be decomposed into the following four
parts:

Boundary Point Part Npw = O (11.1)
Boundary Line Part sVt = LY (11.2)
Boundary Open Surface Part : Vg ¢ = S (11.3)

Boundary Closed Surface Part : 0V e, o, = OV ™ \(LY'USH) (11.4)

closed surf —

Obviously, the above four parts are pairwise disjoint, and

1) The boundary point part (i.e., the metal-filled “point-type
holes” on V™" ) does not exist on V™ , based on (1).

2) The boundary line part (i.e., the metal-filled “line-type
holes” on V™) originates from the submergence of metallic
lines into material body, and it is constituted by some lines only,
and it does not include any surfaces and discrete points.
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3) The boundary open surface part (i.e., the metal-filled
“surface-type holes” on V™ ) originates from the submergence
of metallic surfaces into material body, and it is constituted by
some open surfaces only, and it does not include any lines,
closed surfaces, and discrete points.

4) The boundary closed surface part originates from the
contact between material body and environment, the contact
between material body and metallic lines (here, the metallic
lines are not submerged into material body), the contact be-
tween material body and metallic surfaces (here, the metallic
surfaces are not submerged into material body), and the contact
between material body and metallic bodies. The boundary
closed surface part does not include any lines, open surfaces,
and discrete points. In fact, the boundary closed surface part
o can be further decomposed as follows:

closed surf

av mat

closed surf

= VM Uovy (12)

where the ov™ is defined as (7.2), and the ov,™ is defined as

avomat 2 aVc[IT::ed surf \avnme1

( Vmat\(H?elUSr?et))\a r]met
— 8V mat \(anet US(TEL Uavnmet)

(13)

If the union of ov™ _ and ov.™ is denoted as ov.™

pen surf closed surf surf

(i.e., the whole material boundary surface part is denoted as
ovoe 2oV Uovis, .+ ), then the whole material boundary

open closed surf

ov™ can be decomposed as follows in detail:

Ny Nie' Nt
mat met met met mat
™ =" U L™ U s™ U av™ U av™ (14)
mat ~\/ mat
Wapen surf Nelosed surf

IV. CURRENT DECOMPOSITION METHOD

Based on the boundary decompaosition given in above section,
the current decomposition method is provided in this section,
and then the relationships among various sub-currents are
discussed in detail for deriving GHP, GET, and GFHF in the
next section.

A. The decompositions for metal-based scattering currents

Based on (2)-(4) and (8)-(10), the scattering electric currents
J% and J* can be correspondingly decomposed as follows:

JH(F) = H(r)+35(r) . (Fel™) (15)
IJR(r) = I3(F)+IF () . (res™Uav™)  (16)
where the Jg* and J3 are defined as
TSL & met
sy e 70 (Fel) (17.1)
0, (rewy)

TSl A 0 , (F €
Jﬁ (r) - {jSL(F) ) (FE Lf[qel) (172)
and the J;° and J3° are defined as
. B jss(r) , (F SmetUanet)
ss 2
JO (r) - { 0 , (F Smet Uavnmet) (181)
TS5y A 0 , (F SmetUanet)
I (r) = {jSS(F) , (Fesmet avmet) (18.2)

B. The decompositions for material-based equivalent currents

In this subsection, the equivalent current on whole material
boundary ov™ is separately defined according to the bound-
ary decomposition formulation (14).

1) The equivalent surface currents on ov =,
oVt Uev™)
Based on [4], [5], and the Part I of this paper, the equivalent
surface currents {J5.qur Mseawr ] ON boundary closed sur-
face part ov 2 are as follows:

closed surf

(i.e., on

closedsurf (r) - ‘]Es(r) +‘J~Vme'( ) ' (reavcll-gs:edsuﬁ) (191)
M ome st (F)= Mg (F)+M 0 (F) 1 (F € Vgt o ) (19:2)

closed surf closed surf

in which the {J5°,M;*} are defined as follows: [4], [5]

<

o (F) 2 [An (F)xH"(F)]
Mg*(F) & [E™(F)x A (F)],., .

F'or

~

(Feav™) (20.1)
(Feovy™) (20.2)

and the {JES MES

oV, et —vvmel

} are defined as

JEL(F) 2[R (HxHA(F)], . (Feavs™) (211)

ME. (F)2 [E*(F)xn,u(F)]., . (Feav™) (212)

where ' eintV™ , and 7 approaches to r as illustrated in the
subscripts in (20) and (21); f,,. is the normal vector of
OV s st » @nd points to intv™ . It should be emphasized that
the equivalent surface currents defined in [5] equal to the
{-J5°,-M;°}, because the normal vector used in [5] is -

instead of

—mat
—mat *

2) The equivalent surface currents on oV,
s7)

To efficiently introduce the equivalent surface currents on
the boundary open surface part S7* , we consider the example
illustrated in Figs. 3 (a) and 3 (") (i.e., a thick metallic slab
Ve is submerged into the material body) at first, and then the
Sa® shown in Figs. 3 (b) and 3 (b’) is viewed as the limitation

f vt when the thickness of V. approaches to zero.

slab

The plus and minus faces of Vg are denoted as SJ;., and
Smet

o respectively, and the scattering surface electric currents
on S™ and S™ are denoted as Jsﬁe‘ and J3, . Obviously,

slab;+ slab;—
the s™ and ST are the parts of material boundary (i.e.,

slab;+ slab;—

(i.e., on
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Fig. 3. (a) A thick metallic slab is submerged into material body; (b) a metallic
surface is submerged into material body; (a’) the sectional view of Fig. 3 (a),
and the equivalent surface currents J‘SE; |\7|5th and {555% MSE; } ; (b”) the
sectional view of Fig. 3 (b), and the equivalent surface currents {J=,M*} and
{jES ) M ES } .

A TES n\7ES
1’amal ‘]0 ’MO

Saper Sumy. < OV™ ), and the material-based equivalent surface
currents on Sj5.. and Sjg  are denoted as {JZ. .MS, | and
{jES M ES r f :

M

= ME | respectively. If the thickness of metallic slab is
denoted as D%, the following limitations exist:

Ds!{‘if.‘,nlo Ssrr:tto;i = SrTet (22)
DI"EO(JSS“S* +I5 )= I (23)
lim N = JB (24.1)
DIE -0 slab =+ -
H 7 ES _ NAES
dm o MG = M (24.2)
where the {JF°,M{*} on s are defined as follows
IE(r) 2 [a(mxH"(R)] . (rest)  (25.1)
ME(r) 2 [E*(n)xa.(r)] . (rest) (25.2)

and minus sides of S{* respectively; A, and fi_ are the normal
vectors of S7*, and they point to the plus and minus sides of
Sh* respectively.

Because of superposition principle [10], the summation of
the fields respectively generated by {J* M} and {J= M®}
are identical to the field generated by {J® +J%, MZ®+M®},
and then the {J&+J%, M +M®} is treated as a whole in this
paper. In addition, considering of that both the domain of
{J¥,M®} and the domain of {J* M®} are S[* and that
n_(F)=-n, (F) forany reSi™, the equivalent surface currents
on the boundary open surface part S can be defined as

In (25), r,,f eintv™; F_ and r approach to ¥ from the plus

j()Epsensurf (F) é jfs (F)
r

+J
= ﬁ+( )X[HIDI(E)—HAYOY(F?)]“A . (261)

(resg“)

~\/ met met
(/ch\inder Lr\‘

met
Rcylmder —0

vV mat \VJ mat

(@) (b)

Fig. 4. () A metallic cylinder is submerged into material body; (b) a metallic
line is submerged into material body.

MES

open surf

(F) = ME(r)+M=(r)

- - 26.2
= [E"(r)-E"(F)] xA.(F) . (resg“‘)( )

=l

3) The equivalent line currents on ov,n" (i.e., on L")

To efficiently introduce the equivalent line currents
{J®,M®} on the boundary line part L{", we consider the
example illustrated in Fig. 4 (a) (i.e., a metallic cylinder V.,
is submerged into the material body) at first, and then the L{"
shown in Fig. 4 (b) is viewed as the limitation of Vi, when
the radius of v approaches to zero.

cylinder
The boundary of Vi, is denoted as oV, , and the scat-

linder
tering surface electriccycurrent on Ve, is denoted as J fjm
Obviously, the &V, is a part of material boundary (ie.,
N inger <OV™ ), and the material-based equivalent surface
currents on v, are denoted as éifjm." M5, | Ifthe radius

cylinder OV iter T OVgtner . .
of Vi isdenoted as RIY .. , the following limitations exist:

EY; nr:_etd Ryiincer =0 er:et (27)
cylinder ?

Tss R iinger 0 TsL

ot

‘]evgﬁ;der In (28)
T Riyinder =0 T

e JE (29.1)

Neylinder

7 ES Rijiinger >0 M E- (29. 2)

~\7 met
Neylinder

and then the equivalent line currents {J*,M®} on the bound-
ary line part Ly can be defined as follows:

JE-(F) &lim¢,  H(M)-dl, (Feli) (30.1)

M (F) £ - 6 lim )Ew‘(r’)vdr’ . (Fel)) (30.2)

r'>r Je(r

In (30), the integral path C(¥) is a circle constructed by the
points " which are in the set intv™ and approach to point  ;
¢, is the reference direction of J® and M ; the ¢ and the
reference direction of C(7") satisfy right-hand rule.

4) Summary

In summary, the whole material boundary ov™ can be de-
composed into four parts as (11) or more elaborately decom-
posed into five parts as (14), and then the equivalent currents on
ov™ can be correspondingly defined as (20), (21), (26), and
(30). To simplify the symbolic system of the following parts of
this paper, the summation of C*. and Cg,, ., is denoted as

- = - VA opensul:f A
C:® (because CaEVSn and CJ; . exist on the intersection be-
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tween ov™ and oV UST™), and the summation of CE ..
and CZ ., is denoted as C™ (because Cg.. and Cg

‘open surf
constitute the whole of equivalent surface currents), i.e.,

GEs

~ES ES
Closed surf Copen surf

. — =
Equivalent Currents on oV ™ : { C® ,CF® ,Cf\fﬂm ,CE®,CE (31)

cks

where C=J,M .

C. The relationships among various sub-currents

Based on the above discussions, all the sub-currents on the
boundary of a metal-material combined system are as follows:

scattering J on metal boundary equivalent J on material boundary
—_————

jES JES
Jclosed surf Jopen surf

T o T cm s e Tes e
Electric Currents: { NFRN N FN I R S } (32.1)
NS

jst jss

TES
In
J ES

equivalent M on material boundary

jES Es
Meioseq surt Maogen surt

H . A EL 7 ES 1 ES A ES 1 ES
Magnetic Currents: { M, MZ, M%M yME MF (32.2)
N

2
Mg

MES

Due to the tangential boundary conditions of H* and E™
on ovy™, itis easy to derive that

j;im(r) = Jjjﬂma(r) o (reavi™) (33.1)
Mo (F) = 0 o (reavi™) (33.2)

Due to the same reasons as deriving (33), the following re-
lations for the currents defined in Sec. 1\VV-B 2) can be derived:

I, (N =35 (0 (Tesg.) (34.1)

ME () = 0, (Fesi.) (342
and then

JB (P = JS(r) . (res™) (35.1)

prsensmf (F) = 0 , (Fesget) (352)

because of (23), (24), and (26).
In fact, the above (33) and (35) can be uniformly written as
follows:

j()ES(-EﬂSU r ! r -
)= I = TS ey
S () (Feav™)
MOESEHSUI’ r 1 rESmEt
0 = NE(F) =1 " i() (4 ”) (36.2)
M (1) 1 (Fedvi™)

In addition, it must be EMPHASIZED that: M;®(r)=0 for any
reoVy™ NS™ , because of the tangential boundary condition
of the total electric field on S™ ; [A, . (F)x§& (F)]- M (r)=0
for any reov,™ NL™ , because of the tangential boundary
condition of the total electric field on L™.

Similarly, the following relationships among the currents
defined in Sec. IV-B 3) can be derived:

j;/sglﬁ;der (r) = jés’\i'ﬂe.;der (r) ) (reavc;?;der) (371)
M;vsc,mder (r) = O 1 (r- € a c?l?r:der) (372)
and then
JR@F) = J3(r) . (Fely) (38.1)
M®=()= 0 , (Fel) (38.2)

because of (28) and (29).

The equivalent currents appeared in the material boundary of
metal-material combined system include equivalent line elec-
tric current besides traditional equivalent surface electric and
magnetic currents, so the corresponding equivalence principle
is particularly called as line-surface equivalence principle
(LSEP) to be distinguished from traditional SEP. In previous
Part I, it is found that the GFHF of material system is the
mathematical expression of SEP, and the mathematical ex-
pression of the LSEP of metal-material combined system will
be explicitly provided in the following Sec. V.

V. GENERALIZED HUYGENS’ PRINCIPLE, EXTINCTION
THEOREM, AND FRANZ-HARRINGTON FORMULATION

In this section, the formulations and conclusions obtained in
the Part | of this paper for material system will be further gen-
eralized to the metal-material combined system.

The domain occupied by whole metal-material combined
system is denoted as D¥, i.e.,

Dsys é Lm61 U smet UV met UV mat (39)
and then [7]
aDsys ngt U Sgﬂet U avomet U avomat (401)
intD* = L™ US™Uav™ Uintv™ Uintv™  (40.2)
extD» = R*\cID
- R\ D (40.3)

_ R3\(Lmet Usmet Uvmet Uvmat)

The second and third equalities in (40.3) are based on (1) and
(39).
A. Generalized Huygens’ principle and extinction theorem

For material system, the Huygens’ surface supporting Huy-
gens’ secondary source is not unique, and the boundary of real
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source is a natural and the smallest one [6], so the Huygens’
surfaces used in [6] are selected as material boundaries. How-
ever, the source boundaries of metal-material combined system
are not restricted to surfaces as illustrated in Sec. 111, so they are
particularly called as “Huygens’ boundaries” to be distin-
guished from traditional Huygens’ surfaces.

1) The GHP and GET corresponding to the “Huygens’
boundary” which is selected as material boundary

If the “Huygens’ boundary” is selected as whole material
boundary ov™ , the incident field GHP can be mathematically
written as the (41.1) based on the conclusion given in the Part |
of this paper [6].

extD™ : 0
ity Ee | -
intv™ : 0

where the second equality is because of that the incident
sources don’t distribute on Ly and S7* ; the mathematical
formulation of GHP corresponding to material scattering field
is as follows:

extDY : F%@

mat
intv™ 0 p= -
inty™ ;. Fx

mat

8 Jim G, Haa ()-dl" s G7(F ) |

Jim B () dP G (P )L
< MF

where the second equality is because of that there doesn’t exist
material-based scattering current distributing on L*, S7* , and
ov™ | and this conclusion can be strictly proven by employing
the method given in paper [9]; the mathematical formulation of
GHP corresponding to the metallic scattering field is as fol-
lows:

;
extD¥ : 0
itV Es = e im ) HE (P e GE ()]
intv™ : 0 o o~ o
g, B G (]
(A x H ) GIF (Bt x g ) # G }sﬂw
sca JF s A < MF
+ (A 2 )G+ (B x| G0 Jsae‘
[ (A H;Z?)*GJF B )+ G2 Lo
+[ ) B A )*é:’/‘lp Javomf‘
= [3 *GJF m[ass Gt Jore
n
+[ (A H;f;) *Gr + E;Z?th)*GeTFlvm
[ (A x Hi ) G + (Bt xy ) *GYF ]
(42.2)

where the second equality is because of that there doesn’t exist
any metal-based scattering magnetic currents on the L™ and
She .

In (41.1), the integral domains S5 and Si respectively
represent the plus and minus sides of S7* ; the f o and n,
are the normal vectors of Si*, and respectlvely pomt to the
plus and minus sides of Sr;”et ; the integral domains ov* and
ovy™ respectively represent the metallic outer boundary cor-
responding to oV and the material inner boundary corre-
sponding to oV,"™ ; the A .. is the normal vector of ov™ , and
points to the interior of V™ ; the various Green’s functions are
the environment Green’s functions used in the Part I of this
paper [6]. The other symbols in (41.1), (42.1), and (42.2) can be
similarly explained.

2) The GHP and GET corresponding to the “Huygens’
boundary” which is selected as metallic boundary

If the “Huygens’ boundary” is selected as whole metallic
boundary L™ US™ Uav™ , the incident field GHP can be
mathematically written as the following (41.2) based on the
conclusion given in the Part | of this paper [6]:

extD™ : 0
intv™ : 0
intv™

where the second equality is due to that the incident sources
don’t distribute on L™, S™ , and ov™ ; the mathematical
formulation of the GHP corresponding to metallic scattering
field is as follows:
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ext DY S

v R = [l AR AreGX (]

intv™ 0 —[élf“i‘lqsc(r Exa (7)-dI" G (1, r)lme‘
(A x HRE) G (Ex i <Gl |
#[ (g < Hiz) ¢ G (Bt ¢ GUF |
(A xRz 62 +(Exixn. o

=[G, +[IF 6]

(A H‘;zi‘)*é:f H(Em e <G,

where the second equality is due to that there doesn’t exist
metal-based scattering magnetic current on L™ and S™ ; the
mathematical formulation of the GHP corresponding to mate-
rial scattering field is as follows:

extD”® : 0
intv™ 0 :_[é'rlr'iﬁrgsc(r’ Hoa () I+ &7 (7 4)]”“
intv™ B +[élr_,ﬂim’ Ena (77 -dI" = G (7, f)]m
+ [(ﬁsme‘ X ancaat)* Gxr +(E§$ X A )* GML: Js;“'
#[(Age X HE )G (B oG]
#[(e < HZ )£ G2 (E )5 G ]
= ([ x FHz) G + (B2, )2 627
(42.4)

where the second equality is due to that there doesn’t exist
material-based scattering current on L™, S™ ,and ov™.

3) The GHP and GET corresponding to the “Huygens’
boundary” which is selected as system boundary: Topo-
logical additivity

The summation of GHP (41.1) and (41.2) is the following
incident field GHP (41":

extD* : 0
intym - gl [(ﬁwﬂat xﬁinc)*é;: +(Eincxf\’m‘)*ée’\:1(vm
ity Fe

Jr[(rﬁvmxﬁi“)*e”F (“‘m \
= [( ><H'"°)*GJF (E xﬁDEys)*GMF

(41)

where the first equality is due to (4), (10), and that A .. =1, .
on &V, and that F™ is continuous on &V ; in the
right-hand side of second equality, integral domain
ov,™ Uov,™ is just the closed surface part of whole system
boundary éD*, and f_,. is the inward normal vector of sur-
face ov,™ Uavy™ .

The summation of the material scattering field GHP (42.1)&
(42.4) and the metallic scattering field GHP (42.2)&(42.3) is

8
extD™ . F™
V™ o0 b= (A xH )G+ (B )+ G |
intvma : 0 +|:(rk/ - Hsca) GJF (E ca rfi\hm)*éel\:F]wm
+[ 358 *GJF]W +[ J5 *G"::]Lge,
= [(ﬁnys x }-_isca)*é;: +(|§Sca x ﬁDW)*Ge":F]meWm
T RGEIcH IR [t cig ’
(42)
where A_,. is the outward normal vector of ov,™ Uavy™ .

The above (41') and (42') are just the incident field GHP and
the total scattering field GHP corresponding to “Huygens’
boundary” oD% . Obviously, they satisfy GET and the topo-
logical additivity introduced in Part 1.

B. Generalized Franz-Harrington formulation and artificial
extinction theorem

The summation of incident field GHP (41" and scattering
field GHP (42") gives the following GFHF of internal incident
field and external scattering field.

extD¥ : —F@
R o S P =T =T S
inty™ :  Fi

_[joss*G”eJnF] _I:jSL*GJF]"m

smety, [7\/0"'&‘

Following the ideas of Part I, the following piecewise
Green’s functions are proposed to derive so-called artificial
extinction theorem corresponding to internal total field.

GrL(rr) , (Fecv™ recv™ )
Gh(Fr) 21 0, (Fedv™ reextv™) (44.1)

Gr(r,r) | (F’ eexty™ )

G (r.F) , (FecV™ Fecv™ )
C:;s“;lsp(r"f) £ 0 L (Feadv™ Feextv™) (44.2)

ée’\:F (Fvl r7) ) (4 cextv™ )

where G and G are the Green’s functions corresponding
to the material part of EM system. Based on above (44) and the
results given in Part |, the following artificial extinction theo-

rem for internal total field exists:

extD¥ : 0

intv™ . F® L= [J e 4G J [.TES *GJ J 45

intv™ .0 s (49)
. |: GSJ; M ES GS’\;SF e

In fact, the above (45) can be equivalently rewritten as follows:

extD™ : 0
ity Fel o [J *GJF} [JSS*G ]
inty™ - Fuo > ¥ Jspruavge (45)
. JF ES MF
HGEANE G|



LIAN: ON HUYGENS’ PRINCIPLE, EXTINCTION THEOREM, AND EQUIVALENCE PRINCIPLE — PART Il 9

because of (36.1), (38.1), and that F =0 on intv™.
Following the ideas of Part I, the following piecewise delta
Green’s functions are proposed:

GE(F.F)-GF () , (Fedv™ rFecv™
=n0-enn e " ) sy
= -Gy (rr) (F’eclvma‘ , Feextvm"“)
0 , (Feextv™ )
AGYE ()2 Gl (1,r)= G (1)
G (P F)=GYF (F,F) , (FecV™ Fecv™
(PG L (re =™ ) 46.2)
= -G (Fr) , (FecV™, Feextv™)
0 , (F’eextv"‘e‘t )

and then the following GFHF (47) of scattering field can be
obtained:

extD¥ : F*@

intymt - gsal_ [JSL*éJF] +[jss *éJF:|
. o R S (L)
In .

+[5§5 *AGK + M5 *AéMF}
6\/0"\3[

sys sys

based on (43) and (45").

C. Summary

In summary, above GHP, GET, and GFHF of metal-material
combined system are formally identical to the inhomogeneous
anisotropic lossy material system given in Part I, and the former
satisfies the same topological additivity as the latter, i.e.,

Scattering field GHP/GET of metal- material combined system
= Scattering field GHP/GET of metallic subsystem
+ Scattering field GHP/GET of material subsystem
= zgscattering field GHP/GET of metallic line L}*

+ >, Scattering field GHP/GET of metallic surface S
+ ZUScattering field GHP/GET of metallic body V,™
+ ZVScattering field GHP/GET of material body V™
(48.1)

and

Incident field GHP/GET of metal- material combined system
= Incident field GHP/GET of metallic subsystem
+ Incident field GHP/GET of material subsystem
= zg_ Incident field GHP/GET of metallic line L™

+ Z: Incident field GHP/GET of metallic surface S
+ Y Incident field GHP/GET of metallic body V,™
+ " Incident field GHP/GET of material body V,™
(48.2)

and

The GFHF of metal- material combined system
= The GFHF of metallic subsystem
+ The GFHF of material subsystem

= ZéThe GFHF of metallic line L™
+ nghe GFHF of metallic surface S™
+ " The GFHF of metallic body V,™
+ " The GFHF of material body V,™

(48.3)

As the typical engineering applications, the above GFHF is
applied to construct the CM of metal-material combined system
in the following Secs. VI and VII. In the following Secs. VI and
VII, the environment is restricted to being VACUUM, and then
the various environment Green’s functions become free-space
Green’s functions, and the mathematical formulations of these
free-space Green’s functions can be found in [8].

V1. APPLICATION OF GFHF: To CONSTRUCT HARRINGTON’S
CM oF METAL-MATERIAL COMBINED SYSTEM

For metallic system, Harrington et al. [11] developed a
mathematical scheme to construct CM by using SEFIE-MoM
(surface electric field integral equation based method of mo-
ments). For isotropic material system, Harrington et al. con-
structed some kinds of CM by using VIE-MoM (volume inte-
gral equation based MoM) [12] and SIE-MoM (surface integral
equation based MoM, also known as PMCHWT-based MoM)
[5]. The physical essence of Harrington’s CM is to construct a
series of orthogonal modes which have ability to orthogonalize
objective EM power, for example:

* For metallic system, Harrington’s SEFIE-based CM [11]
orthogonalizes the following objective power:

(Y2)(I*E™) .+ (Y2) (T E™) e (49)

where the inner product is defined as < f,g>,2[ f*-gdQ.

» For homogeneous or inhomogeneous isotropic material
system, Harrington’s VIE-based CM [12] orthogonalizes the
following objective power:

Y2)(TV ™) +(y2) (N, )

s (50)
» For homogeneous isotropic material system, Harrington’s
PMCHWT-based CM [5] orthogonalizes the following power:
~(Y2)(I%.E™) L —(Y2) (M= H™) (51)
where the minus signs originate from that the equivalent sur-
face currents in [5] are {-J%,-M®}.
Recently, [13] proved that the objective powers orthogo-
nalized by VIE-based CM and PMCHWT-based CM are iden-
tical to each other, i.e.,

%<jSV’Einc> +1<MSV]|:|inc> ] =_%<jES’Einc> _1<MES’HMC>

v/ mat 2 v mat oy mat p) oy mat

(52)
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when material system is homogeneous isotropic. By directly
combining Harrington’s SEFIE-based and PMCHWT-based
schemes, [14] constructed the SEFIE-PMCHWT-based CM of
the metallic body which was completely coated by a homoge-
neous isotropic lossless dielectric medium.

In this section, Harrington’s CM will be further generalized
to the metal-material combined system whose metallic part can
be line or surface or body and material part can be inhomoge-
neous anisotropic lossy material body. The reason to call the
CM constructed below as “Harrington’s CM” is that the CM
orthogonalizes the following objective power operator:

PHarnng(on _%<jSL®jSS’Emc> +1<jsv'éinc> +1<M Sv'Hmc>

met—mat sys LSt oy met 2 et 2 \/mat

(83)

by following Harrington’s ideas in [11] and [12]. The subscript
“met—mat sys” in PR is to emphasize that the power cor-
responds to metal-material combined system. The symbol “®

in <J%®J% E™> is defined as follows:

L™t s ™t oy ™t

<jSL (_Djss’ Einc> é<jSLl Einc> § +<jss,Einc>

L™t s ™t oy met L

(54)

Smet gy met

and the reason to utilize “@ ” instead of “+” is that the di-
mensions of line current J* and surface current J% are dif-
ferent from each other.

A. Power characteristic of operator (53)

The power operator Py in (53) can be equivalently
rewritten as follows:

Pmkéfi:;%tsnyns = %<55L ® 555 ! EI"C>L’“6‘US'“E‘U5«/‘"E‘ +%<55V ! E'"C >v'“a‘ + E
HY2)(A™ M) | —(y2)(M )
TR B L R

+j Im{<M v I:|‘"°>vml}
-1
)
+(]/2)<jsv ’ gt >Vma‘ +(1/2)<|:|tot’ M >Vma‘

+j|m{<MSV,I:|‘”“>vml}

=

cy e = 1o = [
<JSL®JSS’Esca> <JS\/'Esca> _7<Hsca’MSV>vm‘al

s T e T

(53)

In (53), the first equality is due to that <H™ M%¥ > .=
<M¥ H™>' ; the second equality is because of that
C-C"=j2Im{C} for any complex scalar C ; the third equality
is based on the tangential electric field boundary condition on
metallic boundary and that F™ =F*™ —F** on V™,

Based on complex Poynting’s theorem [4], constitutive re-
lationship, and that Az is real symmetrical, the following re-
lations can be derived:

1 1

JsL Iss £ Jsv £ a 7SV
_E<J @] 'Esca>Lme‘Usmaua\/'“e' —E<J ’E5C5>vma[ _§<H < N >vma‘
_ sca,rad H sca,sto, field
- Pmet—mat sys +) Pmet—mat sys

(55.1)

(Y2)(IE™) L, +(2)(H MY L, =Pl + j P,

(55.2)
Im{(M=, =)} =—of (A7 H) |+ Re(aiH=H) | ]
(55.3)
where

P, = 2P, [Ex(H=) -5 (s6.)
Pty = 20(Winie, -WEmbs)  (56.2)
Pt = (Y2)(6 E™E™) (56.3)
Py = 20(Wil, Wi hry.)  (56.4)

in which S_ is a spherical surface at infinity, and
Wt = (Y A)(H* iH*) (57.1)
Wotimte = (/4)(8,E= E*=) | (57.2)
Wit = (YA)(H™ Al H) (57.3)
W = (Y4)(aé - E*E®) | (57.4)
In (56.1), the superscript “sca,rad ” means that Py is the

radiated power carried by scattering field; in (56.2), the su-
perscript “ sca,sto, field ” and subscript “ m/e ” mean that
W e 1S the magnetic/electric energy stored in scattering
field; in (56.3), the superscript “ tot,loss,mat ” means that
Pyl is the lossy power due to the interaction between total
electric field and material; in (56.4), the superscript “ tot, sto, mat
and subscript “m/e” mean that W20 is the magnetiza-
tion/polarization energy due to the interaction between total
magnetic/electric field and material. In (57.3) and (57.4),
Atz ji—Tu,and Aé2E-1g,.

Inserting (55) into the last equality of (53'), the power char-
acteristic of operator PH9 s exhibited as below:

met—mat sys

PHarringmn _ Psca,rad

tot,loss,mat H sca,sto, field tot,sto,mat
met—mat sys met—mat sys +R +] (P +P, )

met—mat sys met—mat sys met-mat sys 58
jof (- A Re(a A= A L] 8

B. Line-surface formulation of operator (53)

Based on the same process as deriving the (64.1) and (64.2)
in the Part | of this paper, the following relations corresponding
to the material body shown in Fig. 1 can be derived:

<jEL @ J5 , Elnc>g\/ml - _ jm<|_‘|wlhuD}_‘llnc>vml + jw<ggélolY Elnc>vm! _<J‘sv , Emc>vm(
(59.1)

<M B oM ES’ Hinc>wma‘ _ jw<H‘tm”u0|:| i"c>\/ma! _ jw<€0|§m\' Emc>vma‘ 7<M sv , H inc>vm
(59.2)

The summation of (59.1) and (59.2) gives that
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jSV E‘lnc MSV |:|inc

(3% B + (M7, H)

_ —<J B8, Emc>(—;\/ma‘ —<|\/| EpMEs, Hmc>(—Nmat (60)
= _<ng @(jrﬁs " jOEs) , Einc>LgﬂUsﬂm‘uavmm‘Ua’v0”a‘ _<MOES’ I:Ilnc>a\/mf“a‘

where the second equality is based on (14), (31), (36), and (38).
Inserting (60) into (53), it is obtained that

P Harrington
met—mat sys

- @23 @ 3. E)

LTt Us et Uavg

Lﬂmet USH‘E‘ Uavye

(

(8 O(F + IV} - WD)
(

(

N
<y
°m
3
my
3
~—
S
5
B
|
N

iz )

v

(53")

where the first equality is based on (15)-(16) and electric field
tangential boundary condition; the second equality is obvious.
By utilizing the GFHF given in (43), the line-surface formula-
tion of power operator P! can be expressed as follows:

met—mat sys

Harrington
met—mat sys

= (Y2)(33 @35 jouly (35 @ T - jgs)_KO(M‘;ES)>L,TE‘USS‘E‘U43VO'“E‘
~W2)(IE L Jomly (35 @ 32 -3 ) - (M)

(Y2 (ME ~ Jos o (ME) =K (35 @ 37 - IF))

(53")

where [5], [8]
(X) 2 [1+klgvv]ieo(r,r’)X(r’)dn' (61.1)
KG(X) 2 [[VGy(r,r)]x X (r)dIr (61.2)

and G,(r,F)=e ™" "/az|r—¥|, and k,=w\ue, . The sub-
script “—> used in integral domain &v,"™ is to emphasize that
the integral is done on the internal surface of boundary ov,"™ ,
because K, (C;*) is discontinuous on the two sides of av,™ .
The reason to call (53™) as line-surface formulation is that all
arguments in this formulation are line or surface currents.

C. Discretization of operator (53"")

In this subsection, the operator (53") is transformed from
current space to expansion vector space at first, and then the
equivalent electric and magnetic currents are related to each
other in expansion vector space [13].

From current space to expansion vector space
To discretize operator (53"), the currents Jgr,, Jop, J5°,
and M{* are expanded in terms of proper basis functions as

J'SL
TSL ) _ N TR (=Y _ BIh =
Jon(F)= D &b, (F) = B™"-a ,
=1

g

(fe Lg‘/%) (62.1)

I&(F)= Y aipi(r) = B a® | (respiUover) (62.2)

CF (1= T () = 87 AT L (rean) (@29
where C=J,M, and
Ex:[alx LB, e BEXX] (63.1)
ax:[aix , a2>< TR a;x:'T (632)

for any X =Jgi, Joi, Jg°,Mg* . The symbol . represents the
matrix multiplication, and the superscript “T * in (63.2) repre-
sents the transpose of matrix. In addition, it must be
EMPHASIZED that: b (F)=0 for any reavy™ Ns™ , be-
cause of the tangential boundary condition of the total electric
field on S™ ; [A,.(F)x&(F)]-bM (F)=0 for any
reov™ NL™, because of the tangential boundary condition
of the total electric field on L™.

Inserting (62) into (53"), the objective power Pyi"ree is
discretized to the following matrix form:

P Harrington

met—mat sys

L 55 <ES Sl <SS s H
NN P L e
- ‘met—mat sys

(64)
:{J'OSL vJ'gs ’J'DES YJRL 'JRS vM'OES} 7{‘]'(% YJ'Dss ,JES "].fSWL *J.rSWs YMUES}
" FPmet—mat sys " Amet—mat sys

where superscript “ H ” represents transpose conjugate, and

r EJ'DSLJ'OSL EJ‘OSLJ'(?S EJ'OSLJ‘OES 0 O EJ'DSLMDES 7
Pt pINE RIS g g paMS
__(%SL vSS SES TSL i . = jESjysL :J'ESJ'SS :J'ESJ'ES = 'ESM ES
Bl S IE M| _ | PET PERTPENT 0 0 PN gg q)
met-mat sys - O O O 0 0 O .
0 0 0 00 0
EM ES JOSL EMOES JOSS SMOES JOES O O EMUESMOES
_gjus"
7
{ et
5358 38 I8 I MES
Anet-mat sys = g (65 . 2)
Fn
_jss
Fn
~MES

pE% = e W2)(6F G (7)) L (66)
pET = e W2)(0F (7)) L L (662)
P2 = - @ () L (663)
pE¥ =~ joue W20 (07)) (66.4)
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pE = Jom W 4 (02)) (66.5)
= W) 68
P = o, (BT G(87)) L (66)
P = W k() (66.8)
pUEE — (1/2)<6§M55 (B2 )>N (66.9)

forany Y,z =SL,SS , where the subscript “ - used in integral
domain &v,"™ is to emphasize that the integral is done on the
internal surface of boundary ov,"™ .

To relate equivalent electric and magnetic currents in
expansion vector space

It has been pointed out in [13] that: the equivalent electric
and magnetic currents depend on each other, and it is an in-
dispensable step for CM theory to relate equivalent electric and
magnetic currents; if the equivalent electric and magnetic cur-
rents are not properly related to each other, some spurious
modes will be generated. In the following parts of this subsec-
tion, the transformations between equivalent electric and
magnetic currents are established by employing formulation
(20) and artificial extinction theorem (45").

The equivalent electric current and equivalent magnetic
current on material boundary satisfy the following relations:

" = = tan an
VI I K = {[JSL WS |" +[aswc ]
.l U (67.2)
+|:jES*éJH MES *GMH:|tan }
0
Uvmat
. . ~ tan an
i < Wig = ([ ] a8 oG]
pl U (67.2)

+[JES*GJE+MES*GME:|mn }
v

sys sys

as illustrated in (20) and (45"). If the (69.2) is tested by usmg
basis functions set bJD , then the expansion vector a* can
be expressed in terms of other expansion vectors as the fol-
lowing transformation:

JsL

a’

_iE _ EREeEe | s

ar = Tmet—matsys | a (68)
ahv

where

F{98 e |9

met—mat sys

— B\t [ = _ jES — _jES _
) (6‘”5 ) {cﬁ gt et } (69)

in which the superscript “ -1 represents the inverse of matrix,
and the elements of various submatrices are as follows:

35S <gs — ES T

2% = (B 52 «GE (70.1)

(<4 5 sys nat
L davy v

55 g5 e [ B

g = - (B [5G (70.2)
= ol g™

58 g3 i~ JEs IS E |

2 L b” *GE (70.3)

dsgeUavy v

ES
¢b0 Mg® _
53

<5;'°ES <627 <[ B Gl | > (70.4)
Vg v

where the subscript “—> used in integral domain ov,™ is to
emphasize that the integral is done on the internal surface of
boundary av,™ .

Inserting (68) into (64), the (64) becomes the following
form:

pHarrington _ 7{J§L‘J§S‘35L*J§S‘MDES} . *{JSLJSS)JEL)JaSch}ES} .7{J§LvJoss*JaL*Jr%S*M0ES}
met—mat sys ‘met —mat sys met—mat sys et —mat sys
(711)
where
— H =
10 0 10 0
B8 55 W) _ 0T 0 s{ap ap aragag) |0 T 0
met -mat sy: = (3535 NE S IE met-mat sys (I8 I M)
00 Trvlel"matsys 0 0 T, m;zsys ’
10 0 T 00 T
(72.1)
i 72.2
PR ot e _js ( . )
amel ‘mat sy ar
S )
In (72.2),
S
_[Jst 35S NiES _js
gt _ | (72.3)
ai

Similarly to establishing (68) by testing (67.2) with {6;'55},
the following transformation can be easily established:

a

—NiES S(IF T ME | g

a” = Tmet mat sys an (73)
_jss
el

by testing (67.1) with basis functions set <Ib } . Inserting (73)
into (64), the (64) becomes the following fo

:{J'SL ’J'Ss 'J'ézs vJ'r%L vJ'rgls}

R RN R
" Pmet—mat sys

N N " N N H

SL 5SS ES jSL S5

Harrington 7{\]0 o do” IR IR }
et—mat sys

met—mat sys et —mat sys

(74)

where
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o 0 T o 0
E{ng‘lés%zs‘jrs“as‘ri 01 0 AE{J—DSLVJ—OSS‘JUESVJSL‘J—;;VMDES}‘ 0 1 0
met-mat sys - 00 |: met-mat sys 00 |:
{350 38 IF oM ={35° 35 I fonise
0 0 Tolmaiys 0 0 Toelmarss
g
ks
{3535 98 I gJ;s (752)
met-mat sys =
E{Ja‘?iﬁ“déﬂ
In (75.2),
ES
a»
iES jSL jss oL
UL (75.3)
=
a’

D. Harrington’s CM orthogonalizing operator (53)

Taking matrix form (71) as an example, the Harrington’s CM
of metal-material combined system is constructed as below.

. —=[3sL jss 7
The power matrix P 9% can pe decomposed as

met—mat sys

:{JDSL‘JVSS‘J}S]L,J}SWS,MgS} :{J'SL’J'DSS‘J'ELyJﬁS’MEES} ) :{J'DSL‘J'(?SYJ'RL’J}%S‘MCFS}
met—mat sys = Finet—mat sys; + +] Pmet—mat sys;— (76)
where [13]

met-mat sys;+ E met—mat sys met-mat sys

S{jOSLVJ’OSSVJ"%LJaSVMOES} _ 1 |:P{JOSL'JDSS"]5L'J55'MUES}+(P{J§L'J§S'53LijWSvMoES})H} (77.1)

g s s s s s s s s s ss s e \H
IS{JOSL,JDSS‘JRL,HS,MDES} 1 |:P{J§L,J§5,JRL,J55,M§S}_(P{JSL,Jgs,JﬁLJgs,MDES}) :| (772)

met—mat sys;— - 2 J met—mat sys met—mat sys

Based on Harrington’s classical method [5], [11], [12], the
CM can be obtained by solving characteristic equation

—/[7ySL 7SS qSL ySS i ES 'SL 7SS ySL 7SS i ES
S(968.35° I I M) {35350 0 I NS

met—mat sys;— met—mat sys; &

78
S35 I8 TN (35 989 NE) (78)

= ﬂmetfmatsys;.f Pmetfmatsys& " Amet—mat sys; ¢

VII. APPLICATION OF GFHF: To CONSTRUCT THE
ELECTROMAGNETIC-POWER-BASED CM OF METAL-MATERIAL
COMBINED SYSTEM

In papers [15]-[17], the electromagnetic-power-based
(EMP-based) CM of metal-material combined system was
constructed, and the material sub-system was restricted to being
homogeneous and isotropic. In this section, some results ob-
tained in [15]-[17] are generalized to the metal-material com-
bined system whose material sub-system is inhomogeneous,
anisotropic, LOSSLESS, and NON-MAGNETIC. At the same
time, a new EMP-based CM set, optimally radiative intrinsi-
cally resonant CM (OptRadIntResCM) set, is proposed here.

A. Various powers
Based on the conclusions given in papers [13] and [18] and

the above Sec. VII, when the permeability of a EM system is
4, , the input power P™ (i.e. the power done by incident

met—mat sys

fields on scattering currents) equals to the Harrington’s power

Harrington

met—mat sys * i . )

Then, taking the matrix form (71) as an example, the matrix
formof P ... is as follows:

inp {3 I N\ S N (3389895 e
Pmetfmatsys = | Amet—mat sys " Pimet—mat sys " Amet—mat sys

(79)

and the radiated and reactive powers are as follows:

rad _ inp
Pmet—mat sys RE{ Pmet—mat sys}
SL 7SS FSL 7SS pgES H —[FSL 7SS FSL 7SS pniES SL 7SS FSL 7SS pfES
[ R e SV S8 3 89 M }‘,{JD I8 38T ME
| “met—mat sys met—mat sys;+ met—mat sys
react _ inp
Pmetfmat sys Im { Pmel—mat sys}

S(35 38 38 IS N (3 38 3838 )

met—mat sys;— " Amet—mat sys

o wss wol = ~ H
SL jSS JSL 3SS pFES
[ Rl S R )
| “'met—mat sys

(80.2)

based on the results given in above Sec. VII.

B. Optimally radiative intrinsically resonant CM

In papers [18] and [19], the radiated power CM (RadCM) set
was introduced, and it has ability to optimize radiated power.
However, the RadCM set cannot guarantee the orthogonality of
modal reactive powers. In paper [17], the intrinsically resonant
CM (IntResCM) set was introduced, and it constitute the basis
of whole intrinsic resonance space. However, the IntResCM set
cannot guarantee that the IntResCMs can efficiently radiate EM
energies.

Following the ideas of papers [17]-[19], a new EMP-based
CM set, optimally radiative intrinsically resonant CM (Op-
tRadIntResCM) set, is introduced in this section. The Op-
tRadIntResCMs constitute a basis of whole intrinsic resonance
space, and at the same time the most efficiently radiative modes
can be found in the OptRadIntResCM set.

Intrinsically resonant CMs
Based on the paper [17], the IntResCMs can be obtained by
solving the following equation:

:{JovaJgsIJ'rsWL’J'aS‘MOEs} 7{‘]‘0&"]’55vjrs]L‘J'(sws'MOEs} o 81
met—mat sys;— " Amet—mat sys;int res;& = ( )

From whole modal space to intrinsic resonance space
. jSL §Ss jSL 7SS piES| . . -
If we obtain =174 |ntResCMs, then any intrinsically

— met—mat sys;int res

resonant mode a """l can be expanded in terms of

IntResCM set as follows:

[§SL 5SS jSL §SS \iES|
:‘lJU o ‘Jﬂ S0 Mgt

SL 7SS 7SL 7SS p4ES =met—mat sys;int res
7{Jo oo J5IR Mg }

et—mat sys ; int res

{J‘USLYJ’SSY‘]}SWLYJ}SWSVM‘ES}?{JSLVJ’SSY‘]‘%L'J%SYMOES}
met—mat sys ; int res; & ‘met—mat sys ; int res ; & (82)

&=l
:{J‘gL ’J‘SS vj}%L v‘]’55 ’MOES} 7{‘]‘SL YJ’SS 'ijWL ’J'rS]S YMOES}
Ane!—mat sys;int res " Pmet—mat sys ; int res
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where

—/[ySL 7SS jSL 7SS pjES
{384,388 3898 MsS)
Aﬂet—mat sys; int res

7{J'3L1J'§SVJ'[%LY‘]%S'MDES} 7{J'DSLYJ‘OSSJrSWLVJ'rSWSYMOES} (831)
e a IJSL‘J*USS‘J}SWL‘J-SSM(?S}

et—mat sys ; int res ;1 . {3s
met—mat sy ; it 1es ; Z et mat sys- int ros

(3530 38 3% MES)
amet—mat sys ; int res
- T (83.2)
{J'USL ’J'SS Y‘]vaWL ’J'rS]S vN'IOES} {J'gL v‘]'SS Y‘].rSWL "]vrSWS YMDES} }
(24

met—mat sys ; int res ;1 {JDSL‘JSS‘JEL‘J%SMUES}
met—mat sys ; int res ; Eier_mat sys - int reb

Inserting above (82) into the (80.1), we have that

SL 7SS jSL 5SS ES —/[3ySL 7SS jSL §SS ES SL 7SS FSL 7SS ES
prad  _ _{J5H 350 IR I MG . S{3635° I8 I NS . {355 IR I NS (84)
intres met-mat sys ; int res met—-mat sys ; +; int res met—mat sys ; int res
where

—[jSL 35S JSL 7SS pFES
5358350953 M5°)
met—mat sys ; +; int res

JE . H
_ (7{J§L1JDSSVJ%L1J€WSVMOES})

:{J'SLYJ'GSSVJ%LVJ'%SVMOES} } (85)
* Fimet-mat sys ; +

:{J'USL vJSS *JVFSTL ,Jvrsﬂs ,MDES

et—mat sys ; int res et—mat sys ;int res

Normalized radiated powers of intrinsically resonant
modes

Following the normalization way proposed in papers [18]
and [19], the normalized P™  is as follows:

int res

P rad

FN) rad _ int res

intres oL =S5 <L =SS i H (g w55 w5l =55 o
(7{J3LVJSSVJ%LVJ%SVMUES}) 7{JL§L'J§S'J(SWL*J%S'MUES}
[24

{35835 I IR MY

met—mat sys ; int res met—mat sys ; int res : amet—mat sys; int res

—/7SL 7SS TSL 7SS \iES 'SL 7SS ySL 7SS afES (86)
S35 IR I MES) {35350 I8 I M)

o vos - . . H
SL SS jSL 5SS \AES
,{Jo IS5 RIS ME }
met—mat sys ; +; int res

met—mat sys ; int res met—mat sys ; int res

=35 35 5 5 )
met—mat sys ; int res

{335 3535 e

ol w58 w5l ~SS H
_ {35,388 3838 S
Q met-mat sys ; int res

met—mat sys ; int res

where
:{J'SL v_]'uss vJﬁL 'J.fSWS VMOES}
met—mat sys ; int res
87
:{JVSLngsst.rS}Lyjr%vagEs} H :{J’USLVJ'SS YJ'%LJ'%S Y’\A'DES} :{J.QSLvJ'USSvJ'(S)LvJVrSWSvMUES} ( )
= et—mat sys ; int res " “met-mat sys : Anet—mat sys ;int res
and
TsL 7
0 0 0 0
Tss
0 J¥ 0 0 0
:{‘].OSLHJ.OSSv‘].rS}LvJI%SxMOES} -
— SL
Cmet—mat sys - 0 O J n 0 0 (88)
0 0 0 I¥ o0
7 ES
0 0 0 0 M

In (88), the elements of various sub-matrices are as follows:

(89.1)

L 5%n  plh
Jone = <b' , b L

3
n

1
2|

: 1o oo
ss . _ = b; oin , b o/ﬂ> 892
Jone: 2 < ¢ ¢ I sguove ( :
ES  _ i pMs® | pMs®
m0;§§ = 2775 <b5 ’ b; >N0ma| (89l3)

where the |Lg7| is the length of g7, and the 7, is wave im-
pedance in vacuum.

Optimally radiative intrinsically resonant CM

Following the ideas of papers [18] and [19], the Op-
tRadIntResCMs can be derived from solving the following
generalized characteristic equation:

:{ng’jgs vjrS\ijr%Sngs} 7{3'355055 gL s VMOES}
met—mat sys ; +; int res met—mat sys ; int res ; & (90)
rad S(35 380 BRI ME) {33538 I e

met—mat sys; int res; & ~“met—mat sys ; int res : amet—mal sys;intres; &

VIIL.

In this Part Il, the formulations and conclusions given in
previous Part I, which focuses on the EM system constructed by
inhomogeneous anisotropic lossy material bodies, are gener-
alized to metal-material combined EM system. The formula-
tions appeared in both Part | and Part 11 are formally unified,
and the conclusions in both Part | and Part I are consistent.

In previous Part I, it is pointed out that the GFHF of material
system is the mathematical expression of SEP rather than the
mathematical expression of GHP. In this Part Il, it is found out
that the GFHF of metal-material combined system is the
mathematical expression of line-surface equivalence principle.

The values of GFHF are mainly manifested in that various
fields are uniformly expressed in terms of an identical set of
currents, and this feature is very valuable for many engineering
applications, such as solving EM scattering problem and con-
structing CM set, and some typical applications are exhibited in
this Part II.

CONCLUSIONS
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