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Inspired by the continued success of MOND (Modified Newtonian Dynamics) in the prediction
of galactic rotation curves, an attempt to derive the deep-MOND equation from known mechanics
has resulted in a third explanation apart from MOND and dark matter. It is proposed that particle
velocities follow the relation v =

√
GMr−1/2 +

√
axr

1/2, where ax is a scalar accelerating field
that is independent of mass. This yields the following relation for centripetal acceleration: a =
GMr−2 + 2

√
axGMr−1 + ax, which, at large radii, is nearly identical to the deep-MOND equation

a =
√
a0GMr−1. When applied to a handful of galaxies, the velocity equation prefers an ax on the

order of 10-14 (km s-2), which gives a good fit of velocity curves to observed values. It is posited
that scalar field ax is a result of local galactic expansion, such that ax = cHg, where Hg is the rate
of expansion. For the Milky Way, it is estimated that Hg ≈ 9.3E−4 (km s-1 kpc-1). This rate would
predict an increase of the astronomical unit of 14 (cm yr-1), which compares well with the recently
reported measurement of 15±4 (cm yr-1).

I. BACKGROUND

In the early 20th Century, astronomers made a
startling discovery – the rotational velocity of galaxies at
the outer regions far exceeded that predicted by Newton’s
Laws and Relativity given the amount and distribution of
observable matter contained in those galaxies, a discov-
ery that has continually been verified as distant galaxies
come into view [1]. The two predominant hypotheses ex-
plaining this discrepancy are dark matter and MOND,
with the latter receiving only marginal interest [2][3][4].

The dark-matter hypothesis holds that around 27% of
the mass of the universe is a dark mass that doesn’t in-
teract with electromagnetic radiation [5]. For a given
galaxy, percentages can go much higher. On the order of
90% of the mass of the Milky Way, for example, is theo-
rized to be a spherical halo of dark matter that extends
far beyond the visible disk [6][7][8].

MOND, on the other hand, holds that gravitational
acceleration, below a certain limit, doesn’t adhere to
the inverse-square law. In this ’deep-MOND’ regime,
typically seen at the outer edges of galaxies, accelera-
tion tapers inversely proportional distance, not distance
squared. This renders a velocity curve that mathemat-
ically flattens out in congruence with observed curves
[3][9][10][11].

Under MOND, at the inner regions of galaxies, accel-
eration still adheres to Keplerian decline, as observed in
our own solar system and predicted by Kepler and New-
ton, with the transition to the more gradual decline gov-
erned by an empirically-derived interpolating function
[12][13]. The lack of a rigorous, logic-based framework
that produces the MOND equations, along with its spe-
cific relevance to galactic mechanics versus cosmology at
large, has left dark matter as the prevailing hypothesis
[3][4][14].
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FIG. 1. Particle Y orbiting particle X at radius r.

II. DERIVATION OF THE DEEP-MOND
VELOCITY-CURVE EQUATION

In this section, using non-relativistic mechanics (appli-
cable to the outer regions of galaxies) the deep-MOND-
regime equation is derived with introduction of a single
free parameter, ax, similar to the parameter a0, which is
historically associated with MOND [15].

Fig. 1 shows particle Y of mass m orbiting particle X
at radius r at angular speed ω. Factoring out m and tak-
ing the derivative of the non-relativistic specific kinetic
energy, E of particle Y with respect to r and ω gives the
following:

dE = ZZmd

(
1

2
r2ω2

)
= ZZmrω2dr + ZZmr2ωdω . (1)

Eq. (1) can be re-written as Eq. (2) below, which shows
the differential change in kinetic energy dE being equal
to the differential radial work dW applied to the particle
plus the differential inertial work dU
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dE = dW + dU , (2)

where dW is defined as

dW = rω2dr , (3)

and dU , specifically, is the change in specific angular mo-
mentum dL/dt through angle dθ at a constant r (the
derivative of r was taken in the dW term), which is de-
rived as follows:

L = r2ω , (4)

dL

dt
= r2

dw

dt
, (5)

dU =
dL

dt
dθ = r2

dθ

dt
dω , (6)

dU = r2ωdω . (7)

dW is an energy input: the differential work needed to
urge particle Y, radial distance dr against its centripetal
acceleration rω2. dU is not an energy input as no exter-
nal torque is applied to the particle. dU is only a measure
of inertial torque.

From Newton, we know that the centripetal acceler-
ation of an orbiting particle is inversely proportional to
the square of the orbit radius r as follows:

a = rω2 =
µ

r2
,where µ = GM , (8)

which reduces to

r3ω2 = µ . (9)

Dividing both sides of this equation by r2, gives this:

rω2 = µr−2 . (10)

Plugging this result into Eq. (3), yields the differential
work dW in terms of µ and r:

dW = µr−2dr . (11)

Here, a new differential-work term is introduced,
(axdr), where ax is an accelerating field that is constant
with respect to r and independent of mass. The physical
reasoning for this hypothesis will be examined in Section
IV; however, the objective of this section is to show that a
scalar field can mathematically produce the deep-MOND
equation, which has demonstrated significant predictive
success [16][17][18][3][9][16][10][11][13][4].

Adding in this term, gives

dW = µr−2dr + axdr . (12)

With Eq. (3), the centripetal acceleration becomes

rω2ZZdr = µr−2ZZdr + axZZdr . (13)

Dividing both sides by r, gives an equation for ω2:

ω2 = µr−3 + axr
−1 . (14)

Taking the derivative, gives this:

ωdω = −3

2
µr−4dr − 1

2
axr

−2dr . (15)

Multiplying both sides of the equation by r2 and plugging
the result into Eq. (7), gives an equation for dU :

dU = r2ωdω = −3

2
µr−2dr − 1

2
axdr . (16)

Plugging Eqs. (12) and (16) into Eq. (2), yields an
equation for dE:

dE = µr−2dr + axdr +−3

2
µr−2dr − 1

2
axdr , (17)

dE = −1

2
µr−2dr +

1

2
axdr . (18)

Integration gives the following result:

∫
dE =

∫
−1

2
µr−2dr +

1

2
axdr , (19)

E =
1

2
µr−1 +

1

2
axr + C . (20)

Integration introduces the constant C. If E is purely
a function of µ and ax, the instinct would be to zero out
C to avoid introducing an additional free parameter that
would have an unknown physical basis. However, if C
could be derived such that it were a function of µ and
ax, avoiding the introduction of a new parameter, there
would be an argument for leaving C in place. Ultimately,
it will be shown that C is critical to the derivation at
hand.

Solving for v2, gives this:

E =
1

2
v2 =

1

2
µr−1 +

1

2
axr + C , (21)

v2 = µr−1 + axr + 2C . (22)

With the aim to derive C as function of µ and ax, pa-
rameter ax is temporarily eliminated by taking the square
root of Eq. (22) as follows:
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v =
√
µr−1/2 +

C
√
µ
r1/2 . (23)

Re-squaring v gives the result:

v2 = µr−1 + 2C +
C2

µ
r . (24)

Setting Eqs. (22) and (24) equal to each other, gives the
following:

HHHµr−1 + axr + HH2C = H
HHµr−1 + HH2C +

C2

µ
r , (25)

axAr =
C2

µ Ar . (26)

Solving for C, gives

C =
√
axµ , (27)

which confirms the suspicion that C can be derived as a
function of µ and ax.

With this definition for C, Eq. (23) can be rewritten
as such:

v =
√
µr−1/2 +

√
axr

1/2 . (28)

Breaking Eq. (28) into its two terms, leaves the following:

v1 =
√
µr−1/2 , (29)

v2 =
√
axr

1/2 . (30)

Eq. (28) shows that the velocity of an orbiting body has
two components: the Newtonian component, v1, which
is a function of µ and a second component, v2, which is a
function of ax. Squaring v and dividing by r, yields the
equation for centripetal acceleration:

a =
v2

r
=

µ

r2
+

2
√
axµ

r
+ ax . (31)

At large radii, Eq. (31) converges to:

a ≈ 2
√
axGM

r
+ ax (where µ = GM) , (32)

which is nearly identical to the MOND equation for ac-
celeration in the deep-MOND regime:

a =

√
a0GM

r
. (33)

As noted, the nomenclature ax was chosen to avoid
confusion with a0, which is historically associated with
MOND. While the two constants are similar, they are de-
fined differently, which will be discussed below. At large-
radii, both approaches show accelerations that decline
inversely proportional to distance. The key difference,
however, is the inclusion of last the term in Eq. (31), the
constant offset ax, which does not exist in MOND. This
term results in a value for ax that is an order of magni-
tude lower than a0, but in the end, both approaches pro-
duce nearly identical galactic rotation curves that match
observed velocities.

Referring back to Eq. (20), congruence with MOND
offers empirical evidence that the inclusion and deriva-
tion of C as a function µ and ax, as shown by Eq. (27), is
correct. Eq. (27) shows that for C to be zero, ax would
also have to be zero, as µ is clearly nonzero. Hence, it is
argued that if ax is nonzero, then C, as defined, must be
included in Eq. (20).

Before proceeding, a paradox needs to be resolved re-
garding the centripetal-acceleration equation, Eq. (31),
which has an additional term, introduced via constant C,
as compared to the differential-work equation, Eq. (12).
The differential work dW is the energy needed to urge
an orbiting particle against its centripetal acceleration,
and thus Eqs. (12) and (31) must be congruent. This
extra term needs to be added to Eq. (12), but it needs
to be shown that doing so will not alter equations de-
rived therefrom – Eqs. (18) and (31), as a new term
in Eq. (31) would create somewhat of a feedback loop.
Redefining dW , gives this:

dW = µr−2dr + 2
√
axµr

−1dr + axdr . (34)

Following the derivation above, Eq. (3) gives the relation
for rω2:

rω2ZZdr = µr−2ZZdr + 2
√
axµr

−1ZZdr + axZZdr . (35)

Dividing both sides by r, gives this:

ω2 = µr−3 + 2
√
axµr

−2 + axr
−1 . (36)

Taking the derivative, gives

ωdω = −3

2
µr−4dr − 2

√
axµr

−3 − 1

2
axr

−2dr . (37)

Multiplying both sides of the equation by r2 and plugging
the result into Eq. (7), gives an updated equation for dU :

dU = r2ωdω = −3

2
µr−2dr − 2

√
axµr

−1 − 1

2
axdr . (38)

Plugging Eqs. (34) and (38) into Eq. (2), yields the same
equation for dE as above:
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dE =µr−2dr +
XXXXX2
√
axµr

−1 + axdr +

−3

2
µr−2dr −XXXXX2

√
axµr

−1 − 1

2
axdr , (39)

dE =−1

2
µr−2dr +

1

2
axdr . (40)

As shown, the additional differential-work term is can-
celed by its additive inverse in dU , resulting in a consis-
tent equation for dE. In fact, any term of the form Ar−1

in the equation for dW would be canceled when added
to dU . This leaves Eqs. (34) and (38) as the complete
equations for dW and dU , respectively.

III. COMPARISON TO MOND

Under MOND, orbital velocity eventually flattens out
according to the following relation:

v2

Ar
=

√
a0GM

Ar
, (41)

v4 = a0GM . (42)

This comports with the Tully-Fisher Relation, which
holds that v4 ∝ M [19][20][17][21]. In the 1990’s, it
was found that even low-surface-brightness (LSB) galax-
ies follow this relation, contrary to assumptions at the
time. This was seen as an important predictive victory
for MOND, which asserts that the asymptotic velocity,
v4 ∝M is universal [16][10].

Whereas MOND velocity curves mathematically flat-
ten out, v in Eq. (28) flattens only as a consequence of
the Keplerian decline – v1 being matched by the increase
in v2. This is illustrated by Fig. 2, which shows the ve-
locity curves for M33 with an assumed mass-light (M/L)
ratio of .5 for the stellar disk, the low end of the esti-
mated contribution to v(r) [22]. Setting ax to 1.7E−14
(km s-2), results in the (v1+v2) curve shown in the figure,
which does flatten out in agreement with observed veloci-
ties. Notice that v(r) in M33 doesn’t flatten to a constant
value; there is a slight upward slope. In contrast, MOND
curves mathematically flatten to a constant v(r).

Under MOND, a0 is the acceleration at which Newto-
nian mechanics transitions to the deep-MOND regime —
where Keplarian decline is no longer the governing term
[15][12][14]. In the present thesis, ax is a scalar field that
augments the Newtonian component, which is to say that
a0 and ax correspond to different physical properties. As
noted, the two parameters are within an order of magni-
tude of each other. MOND generally finds a0 ≈ 1.2E−13
(km s-2) [23][24][3], which corresponds to an ax ≈ .9E−14
(km s-2).

The higher ax for M33 is attributable to the low M/L
ratio input of .5. A ratio closer to the upper bound of 1.5,
would result in a lower ax, but 1.5 results in a v(r) that
falls out of line with observations, thereby constraining
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M33, M/L = .5

FIG. 2. Rotation curve for M33. The solid line is (v1 + v2).
The dashed line is the expected velocity based on luminous
mass (stellar + gas discs), v1. Data are from Corbelli et al.
(2000).
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NGC 2403, M/L = .9

FIG. 3. Rotation curve for NGC 2403. The solid line is
(v1 + v2). The dotted line is the MOND-based curve. The
dashed line is the expected velocity based on luminous mass
(stellar + gas discs), v1. Data are from Sanders (2009).

M/L to a lower value. This highlights the fact that curve
fits require a balance between assumed M/L ratio and
ax. Giving ax some berth as a free parameter may be
appropriate as will be argued below. It is argued by
some that a0 may not be fixed either [25][9][26].

Fig. 3 shows the velocity curves for NGC 2403 with
an assumed mass-light ratio of .9 [3]. The MOND curve
is indicated by a dotted line. This curve and (v1 + v2),
indicated by the solid line, trace each other with minimal
separation until about 12 kpc, where the MOND curve
dips slightly while (v1+v2) stays mostly flat, both within
the margin of error. Here, (v1 + v2) was calculated with
an ax = .9E−14 (km s-2). It is assumed the MOND curve
was derived with an a0 = 1.2E−13 (km s-2).

Fig. 4 shows the velocity curves for NGC 3198, which
is a spiral galaxy in UMa considered to be an exemplary
test for any theory aiming to resolve the discrepancy be-
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NGC 3198, M/L = 1.1

FIG. 4. Rotation curve for NGC 3198. The solid line is
(v1 + v2). The dotted line is the MOND-based curve. The
dashed line is the expected velocity based on luminous mass
(stellar + gas discs), v1. Data are from Bottema et al. (2002).

tween visible mass and observed velocities. NGC 3198
is marginally troublesome for MOND [25]. The MOND
curve, indicated by a dotted line, is based on a mass-light
ratio of 1.1, as derived from the Cepheid-based distance
of 13.8 Mpc. The curve falls below observed velocity er-
ror bars at the inner region of the galaxy and above the
error bars at the outer region, with a separation of up to
10 (km s-1).

As noted, MOND curves are typically based on an
a0 = 1.2E−13 (km s-2). This curve from Bottema et al.
[25], however, is based on an a0 = .9E−13 (km s-2). The
authors argue that the value of a0 is dependent on dis-
tance scale. If the distance to UMa is assumed to be
15.5 Mpc, MOND curve fits by Sanders and Verheijen
[24] prefer an a0 = 1.2E−13 (km s-2). Tully and Pierce
[27] and Bottema et al. [25] argue that 18.8 Mpc is the
correct distance to UMa, in which case MOND curve fits
put a0 = .9E−13 (km s-2).

At 12.5 Mpc, with an implied M/L of 1.3, the MOND
curve for 3198 more closely traces observed velocities –
within 5 (km s-1). This distance leaves discrepancies be-
tween MOND and observations within reason while stay-
ing within 10% of the Cepheid prediction, the maximum
tolerance. At 10.0 Mpc and an M/L of 2.1, the MOND
curve directly traces observations, but this distance is
beyond the error budget of the Cepheid method.

In Fig. 4, the (v1 + v2) line, computed with an ax =
.5E−14 (km s-2), traces the error bars well up to 30 kpc,
where it diverges slightly, deviating no more than 5 km
(s-1) from observed velocities.

IV. SCALAR FIELD aX

In Sections II and III, it was shown that scalar field ax
in combination with the Newtonian field can produce the
deep-MOND equation (with a constant offset) that yields
nearly identical rotation curves, which comport with ob-

servations. If ax exists, what could be causing it?
Apart from galactic rotation curves that ostensibly

show mass discrepancy, the other startling discovery
made by astronomers in the 20th century was that nearly
all visible galaxies are progressively redshifted where the
amount of redshift increases linearly with distance.

The Friedmann-Robertson-Walker (FRW) metric,
which models the universe as a homogeneous and
isotropic fluid, shows that comoving observers at rest
with respect to this cosmic fluid, the ’Hubble flow’, would
see the distance growing distance between each other over
time with observers down the line seeing progressive red-
shift [28][29].

On local scales, space is no longer homogeneous, and
particles are not at rest with respect to the cosmic flow,
so the FRW metric no longer applies. Galaxies can
roughly be modeled as a central mass, where the met-
ric is Schwarzchild, surrounded by a sphere of Minkowski
spacetime (which does not expand) and would be unaf-
fected by global expansion [29][30]. Clearly, any local
expansion would be non-relativistic, at least as currently
understood.

If there were local expansion, there should be some
evidence thereof. The recession of the moon is easily ex-
plained by tidal acceleration [31], but recession of the
earth from the sun is harder to explain; multiple re-
search groups have found a secular increase of the as-
tronomical unit [32][33]. Krasinsky and Brumberg [32]
calculate this rate at 15±4 (cm yr-1). Neither classical
Newtonian mechanics nor general relativity can explain
the phenomenon. Krasinsky and Brumberg [32] rule out
cosmic expansion and offer as an exotic explanation, a
secular decrease in the gravitational constant, but gen-
erally leave the mystery as unsolved. Miura et al. [34]
argue that tidal interactions on the sun could be trans-
ferring angular momentum to the planets similar to the
effect between the earth and the moon.

Other phenomena exist in the solar that are left unex-
plained by Newtonian mechanics and general relativity
such as the flyby anomaly, where spacecraft see unex-
plainable accelerations as they fly by planets. The ef-
fect was recently confirmed again by the Juno mission to
Jupiter where analysis of the craft is showing anomalous
acceleration during flybys [35].

Ostensibly, something, yet to be explained, is adding
energy to systems locally in the solar system; to particles
within galaxies, as evidenced by elevated rotation curves;
and to galaxies within the cosmos that are receding at an
accelerating rate. In the context of the universe, the en-
ergy in question is called ’dark energy’. In as much as
MOND is motivated by the search for an alternative ex-
planation of galactic rotation curves by stepping outside
of Newtonian mechanics and relativity, it is argued that
local expansion does exist and, if looked at from a differ-
ent angle, could possibly explain anomalous phenomena
in the solar system and in galaxies.

To be clear, the term ’expansion’ is not meant to im-
ply that space itself is expanding – being progressively
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FIG. 5. Scalar field ax between two particles in expanding
space.

filled with new space or that the fabric of space is being
stretched such that a steel ruler would grow larger over
time. The term ’expansion’ is only meant as a conve-
nient descriptor of what is observed – photons being pro-
gressively redshifted and bodies moving freely in space
growing further apart; while being completely agnostic
as to the cause and what, if any, changes in space are
occurring between those particles.

As a photon travels through expanding space, it is pro-
gressively stretched resulting in a redshift that increases
with distance. Fig. 5 shows two comoving particles, X
and Y, in expanding space. Referring back to Fig. 1,
if one particle is in stable circular orbit around the sec-
ond, they can be considered comoving as the change in
proper distance between the two is a function of space
expansion. From the perspective of X, light from Y is
continuously red shifted such that the wavelength λ in-
creases with distance from Y. The opposite is also true –
from the perspective of Y, λ increases with distance from
X.

At any instant in time without benefit of prior observa-
tions, observers on X and Y could conclude that redshift
was a result of space expanding between the two parti-
cles, but they could also reason that there was a scalar
accelerating field ax that progressively de-energizes pho-
tons traveling between the two, akin to gravitational red-
shift. Here, it’s posited that both conclusions would be
correct. With spatial expansion, there is a scalar field
that opposes the expansion. The effect is similar to eddy
currents in a conductor opposing the movement of a mag-
netic field. Over time, observers on X and Y would notice
both effects: increasing distance at an accelerating rate,
with the plotted velocity-distance rotation curve showing
the contribution of ax.

To calculate ax, the redshift of a photon traveling in
expanding space is equated with the redshift of a photon
traveling against field ax.

The redshift z of a photon emitted from Y, where λe
is the emitted wavelength is as follows [36]:

z =
(λ− λe)
λe

. (43)

The recessional velocity V of Y relative to X is

V = cz , (44)

which equates to

V = c

(
λ− λe
λe

)
. (45)

Taking the derivative of Eq. (45) with respect to r, yields
this:

dV

dr
=
dλ

dr

c

λe
. (46)

Imagine a ruler of length r0 connecting X and Y. As
Y recedes from X at velocity V0, if the ruler expands ho-
mogeneously, the recessional velocity of each hatch mark
must vary linearly from 0 to V0 as such:

Hg =
V0
r0

, (47)

V = Hgr , (48)

where Hg is the rate of space expansion at galactic scales.
Note, the nomenclature Hg was used to avoid confusion
with H0, which refers to intergalactic expansion.

The velocity gradient Hg becomes increasingly con-
stant with respect to time as r0 � V0. At galactic scales
(kpc), Hg can be considered as constant.

Taking the derivative of Eq. (48) with respect to r,
gives the following:

dV

dr
= Hg . (49)

Plugging this into Eq. (46), gives the result:

Hg =
dλ

dr

c

λe
, (50)

dλ

dr
=
λe
c
Hg . (51)

The momentum of a photon is given by the Planck-
Einstein relation, which equates momentum p to wave-
length λ as such:

p =
h

λ
. (52)

Taking the derivative with respect to r gives the result:

dp

dr
= −−h

λ2
dλ

dr
. (53)
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Plugging Eq. (51) into this, yields Eq. (54) below:

dp

dr
= −hHg

λe
c

1

λ2
. (54)

Multiplying Eq. (54) by the speed of light gives this:

dr

dt
= c , (55)

dp

ZZdr

ZZdr

dt
= −hHg

λe

Ac

1

λ2 A
c , (56)

dp

dt
= −hHgλe

1

λ2
. (57)

Dividing both sides of Eq. (52) by the speed of light
c, gives the ratio of momentum to speed, which is the
’effective mass’ me of a photon. As above, λe is the
emitted wavelength:

me =
p

c
=

h

cλe
. (58)

The change in momentum with respect to time of me in
field ax is thus:

dp

dt
= meax , (59)

dp

dt
= − h

cλe
ax . (60)

Notice the sign reversal in Eq. (60), signifying that
from the perspective of a photon leaving the point of
emission, ax is a decelerating field. Setting Eqs. (57) and
(60) equal to each other gives this:

− h

cλe
ax = −hHgλe

1

λ2
. (61)

Solving for ax, produces this:

ax = cHg
λ2e
λ2

. (62)

Re-arranging the terms in Eq. (45) gives an equation
for λe/λ:

V = c

(
λ− λe
λe

)
, (63)

V

c
+ 1 =

λ

λe
, (64)

λe
λ

=
c

V + c
. (65)

Plugging Eq. (65) into Eq. (62) yields:

ax = cHg
c2

(V + c)2
. (66)

Assuming that c � V , leaves ax essentially constant
with respect to V and thus r. Eq. (66) can therefore be
simplified as follows:

ax = cHg
c2

(@@V + c)2
, (67)

ax = cHg . (68)

With this relation, Eq. (28) can be expanded as so:

v =
√
GMr−1/2 +

√
cHgr

1/2 , (69)

leaving the final relation for energy E as:

E =
1

2
mv2 , (70)

E =
1

2
GMmr−1 +

1

2
cHgmr +m

√
GMcHg . (71)

Table I shows Hg for M33, NGC 2403, and NGC 3198,
ordered by distance. At galactic scales, (km s-1 kpc-1),
relatively low rates of expansion can yield significant ac-
celerating fields. For example, at the outer edge of NGC
2403 (20 kpc), with an Hg = 9.3E−4 (km s-1 kpc-1),
the recessional velocity is .019 (km s-1), verifying the as-
sumption that c� V .

An Hg = 9.3E−4 (km s-1 kpc-1) corresponds to an
a0 = 1.2E−13 (km s-2), which is appropriate for the
Milky Way in term of MOND [37][13]. Scaling kpc to
km, gives an Hg = 3.0E−20 (km s-1 km). Multiplying
the distance between the earth and sun of 149.6E6 (km),
by Hg, gives a recessional velocity = 4.5E − 012 (km
s-1), which translates to 14 (cm yr-1). This is in strong
agreement with the value calculated by Krasinsky and
Brumberg [32] of 15±4 (cm yr-1). Of course, this is only
one data point, and if any of other planets in the solar
system were found to not be receding as predicted, the
present hypothesis would largely be falsified.

At cosmic scales, (km s-1 Mpc-1), Hg for NGC 2403
recalculates to .93 (km s-1 Mpc-1), which is two orders of
magnitude lower than the Hubble constant H0, most re-
cently calculated at 70.0 km s-1 Mpc-1 [38]. As described,
the FRW metric, which does predict cosmic expansion,
does not apply at galactic scales, making any possible
reconciliation of Hg with H0 beyond the scope of this
paper.

Coincidentally, the original MOND papers by Milgrom
(1983) noted the similarity in magnitude between a0 and
cH0 [15][39][40].

Eqs. (69) and (71) only make sense in the context of
two or more particles. In other words, cHg doesn’t con-
nect particles to random points in space. A two-particle
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TABLE I. recessional velocity V , ax, and Hg for M33, NGC 2403, and NGC 3198.

Galaxy Distance (Mpc) V (km s-1) @15 kpc ax (km s-2) Hg (km s-1 kpc-1)

M33 .73-.94 0.026 1.7E−14 17E−4

NGC 2403 2.5 0.014 .9E−14 9.3E−4

NGC 3198 13.8 0.0077 .5E−14 5.1E−4

system is already connected by a gravitational field be-
tween the particles. In essence, cHg can only augment
this existing gravitational field. For example, particle Y,
in orbit around particle X, doesn’t slowly grind to halt
as it’s continuously redshifted. Redshifted with respect
to what? There is no field between particle Y and an
infinite number of points in space along its path. The
field only exists between particles X and Y. This means
further that the second term in Eq. (69) cannot exist
without the first term. Interestingly, the second term,
(
√
cHgr

1/2), requires that Hg be non negative, implying
that space can never contract.

V. MATTER WAVES

The analysis, so far, has focused on photons. If, how-
ever, expanding space can redshift light, wave-particle
duality suggests that matter should be redshifted as well;
which begs the question: does the redshift of a slow-
moving massive particle translate to scalar field cHg? Or
is the magnitude of the field velocity dependent such that
ax = vHg? If this were the case, two particles with zero
relative velocity would see the magnitude of ax drop to
zero. To explore this, let us start with the de Broglie
relation for the frequency of a particle of rest mass m0

and velocity v, where v is the group velocity of the wave:

f =
m0c

2

h

(
1− v2

c2

)−1/2

. (72)

Taking the derivative with respect to r gives this:

df

dr
= −1

2

m0@@c
2

h

(
1− v2

c2

)−3/2(−2v

@@c2

)
dv

dr
, (73)

df

dr
=
m0v

h

(
1− v2

c2

)−3/2
dv

dr
. (74)

Substituting dr/dt for v, gives the following:

df

dr
=
m0

h

(
1− v2

c2

)−3/2
dv

ZZdr

ZZdr

dt
, (75)

df

dr
=
m0

h

(
1− v2

c2

)−3/2
dv

dt
. (76)

Assuming a non-relativistic velocity for v and substitut-
ing ax for dv/dt, gives this relation for df/dr:

df

dr
=
m0

h

(
1− A

AA

v2

c2

)−3/2
dv

dt
, (77)

df

dr
=
m0

h
ax . (78)

Eq. (78) shows that a frequency gradient can induce
the acceleration of a particle. Because frequency is a
measure of energy or time, df/dr can be thought of an
energy gradient or a gradient of increasing time dilation.
An observer on particle X would perceive a clock run-
ning on particle Y slightly behind a local clock and vice
versa – an observer on particle Y would perceive particle
X’s clock as running slower. Furthermore, the observers
would see each others clocks not just running slower but
decelerating.

Referring back to Eq. (43), the redshift z of a photon
traveling between Y and X can be rewritten in terms
of frequency through the wave-speed equation for light
fλ = c as such:

λ =
c

f
, (79)

z =
(λ− λe)
λe

, (80)

z =
(c/f − c/fe)

c/fe
, (81)

z =
fe
f
− 1 . (82)

Plugging z into Eq. (44), gives the recessional veloc-
ity V in terms of frequency f , where fe is the emitted
frequency:

V = c

(
fe
f
− 1

)
. (83)

Taking the derivative with respect to r, yields this:

dV

dr
=
−cfe
f2

df

dr
. (84)

Plugging the velocity gradient Hg into dV/dr and re-
arranging terms, gives this relation for df/dr:
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df

dr
=
−f2

cfe
Hg . (85)

While a photon traveling from Y to X loses energy
according to Eq. (85), does the same relation hold for a
slow-moving particle of mass? To explore this, we start
by re-writing Eq. (51) as a function of emitted frequency
fe via Eq. (79):

dλ

dr
=
λe
c
Hg , (86)

dλ

dr
=

1

fe
Hg . (87)

For a photon, the rate of change of λ over time can
be found by multiplying Eq. (87) by the speed of light
(Eq. (55)):

dλ

ZZdr

ZZdr

dt
=

1

fe
Hgc , (88)

dλ

dt
=

c

fe
Hg . (89)

Here, it is posited that the change in λ over time, for a
given particle frequency (energy) is irrespective of parti-
cle speed. When a photon traveling from Y to X is red-
shifted, it is redshifted over a span of time [36]. Because
light propagates, that time period translates to a dis-
tance, giving the redshift vs. distance correlation. Along
these lines, it is presumed that two particles of identical
energy (and thus frequency) traveling at different speeds
in expanding space would see identical redshifts over a
period of time but different redshifts over distance, with
the slower moving particle seeing more redshift in a given
distance as a consequence of moving slower.

With this in mind, a second relation for df/dr, for a
massive particle, as a function of Hg can be derived. The
frequency f of a matter wave is related to its wavelength
λ as so:

f =
vp
λ
, (90)

where vp is the phase velocity of the wave. Taking the
derivative with respect to time, gives this:

df

dt
=
−vp
λ2

dλ

dt
. (91)

Plugging in Eq. (89), which, as argued, should be true for
both photons and particles of mass, gives the following:

df

dt
=
−vp
λ2

c

f0
Hg . (92)

Here, fe is re-written as f0, which refers to the frequency
of a matter wave vs. that of a photon. Plugging Eq. (90)
into λ yields this:

df

dt
=
−vpc
v2p

f2

f0
Hg , (93)

df

dt
=
−c
vp

f2

f0
Hg . (94)

A particle Y moving relative to particle X at velocity v,
where v is the group velocity of the wave can be described
as follows:

dt

dr
=

1

v
. (95)

Multiplying Eq. (94) times this relation yields an equa-
tion for df/dr:

df

ZZdt

ZZdt

dr
=
−c
vpv

f2

f0
Hg . (96)

From de Broglie, the phase velocity times the group
velocity of a matter wave is the speed of light squared:
vpv = c2. With this, a final equation for df/dr for a
massive particle is as follows:

df

dr
=
−c
c2
f2

f0
Hg , (97)

df

dr
=
−f2

cf0
Hg . (98)

Setting Eqs. (78) and (98) equal to each other gives
this:

m0

h
ax =

−f2

cf0
Hg . (99)

The rest frequency f0 of m0 is given by Eq. (72) as v → 0:

m0 =
f0h

c2
. (100)

Plugging this into Eq. (99), yields this relation for ax:

f0Ah

c2Ah
ax =

−f2

cf0
Hg , (101)

ax = −cHg
f2

f20
. (102)

Eq. (102) can be rewritten via Eq. (90) as this:
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ax = −cHg
(vp/λ)2

(vp/λ0)2
, (103)

ax = −cHg
λ20
λ2

, (104)

which is equivalent to Eq. (62). The negative sign can be
ignored with the understanding that ax is an attractive
field between particles.

As Eq. (72) shows, for non-relativistic velocities (which
is the case for recessional velocity V ), f ≈ f0, allowing
ax to simplify to:

ax = cHg , (105)

which shows that slow-moving massive particles see the
same scalar field cHg as do photons.

Eqs. (102) and (105) hinge on the duality of parti-
cles and waves, which is well understood to be the case.
If particles of mass travel in waves, it’s plausible that
they are redshifted in the same manner as photons. A
core argument is that the magnitude of particle redshift
is a function of time, but not particle velocity, as de-
scribed by Eq. (89). Slow-moving and fast-moving par-
ticles of a given energy are equally redshifted over time,
with slower-moving particles redshifted more per unit dis-
tance.

VI. CONCLUSIONS

In the early 20th century, astronomers made two re-
markable discoveries: the velocity curves for galaxies do
not follow Keplerian decline, and galaxies show increas-
ing redshift with distance. This paper suggests that the
two phenomena are interconnected. While general rel-
ativity explains celestial mechanics in the realm of ex-
tremely high gravitational potentials, with Newtonian
gravitation filling in the middle, an explanation of me-
chanics at the low end of the spectrum has remained
elusive.

The most widely accepted hypothesis, dark matter, is
nearly impervious to falsification as models are given free
parameters to define halo shape and density distribution
[3][21]. Direct evidence could end the debate, but to
date, experiments designed to detect dark-matter parti-
cles have come up empty handed [41].

The competing hypothesis, MOND, doesn’t rely on
hidden matter and is very predictive at galactic scales.
Since being first proposed by Mordehai Milgrom in 1983,

MOND has been tested against numerous galaxies with
broad success. Even borderline results haven’t risen to
the level of falsification as a consequence of uncertainties
in assumptions and observations. Importantly, MOND
is easily falsifiable, even if the value of a0 is allowed a
certain tolerance, which is appropriate if a0 is a function
of time and perhaps other metrics.

One impediment to MOND has traditionally been its
empirical nature. The aim of this paper was to present a
line of physical reasoning that produces the deep-MOND-
regime equation. The resulting equation is close enough
in form to produce nearly identical velocity curves. The
hypotheses diverge in the interpretation of a0, which is
labeled ax with respect to the thesis herein to avoid con-
fusion.

Under MOND, a0 marks the acceleration at which
regimes transition from Newtonian to deep MOND. This
paper argues that ax is not a marker but a distinct scalar
field that exists on top of the Newtonian component.
This allows a single equation, Eq. (69), to be derived
that produces velocity curves without need of an inter-
polating function.

The second objective of the paper was to offer an hy-
pothesis as to the origin of ax, which is argued to be a
consequence of expanding space, such that ax = cHg,
where Hg is the local (galactic) rate of expansion. The
implication of Eq. (69) is that space can never contract.
Defining ax as a separate field vs. a fundamental physi-
cal constant, as implied by MOND, gives ax some berth
as free parameter, as local expansion may vary between
galaxies. More data points are needed to establish the
relationship between Hg and other parameters such as
cosmological distance and time, and galaxy mass. Also,
minor variability in ax could explain possible variance in
a0 as noted by Bottema et al. [25], Gentile et al. [9], and
Bottema and Pestana [26].

As the FRW metric does not account for local expan-
sion, evidence thereof would imply a non-relativistic phe-
nomenon. Such evidence may exist in the solar system,
as measurements show the astronomical unit AU increas-
ing at a rate of 15±4 (cm yr-1). An Hg = 9.3E−4 for
the Milky Way translates to an AU increase of 14 (cm
yr-1), which is in close agreement with the observed value.
Given, however, that this is only one data point, other
planets found not to be receding in concert at a rate pre-
dicted by Hg would constitute falsification of the present
hypothesis. With that said, additional phenomena ex-
ist in the solar system that are unexplained by Newto-
nian Mechanics and General Relativity, such as the flyby
anomaly. Of course, the most salient phenomenon unac-
counted for by classical physics and relativity are elevated
galactic rotation curves.
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