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Abstract

In this paper it is proposed and proved a conjecture of existence of a
prime number on the arithmetic progression

Sa,b = {ab+ 1, ab+ 2, ab+ 3, ..., ab+ (b− 1)} (1)

As corollaries of this proof, they are proved many classical prime num-
ber's conjectures and theorems, but mainly Bertrand's theorem, and Op-
permann's, Legendre's, Brocard's, and Andrica's conjectures. It is also
de�ned a new maximum interval between any natural number and the
nearest prime number. Finally, it is stated a corollary which implies some
advance on the conjecture of the existence of in�nite prime numbers of
the form n2 + 1.
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1 Introduction

To begin with, it is proposed the following

Conjecture. Let two positive integer numbers be a and b, a ≤ b. Then,
it can be stated that at least one of the terms of the arithmetic progression
Sa,b = {ab+ 1, ab+ 2, ab+ 3, ..., ab+ (b− 1)}is a prime number.

This conjecture is equivalent to the following:

Conjecture reformulated. Let two positive integer numbers be a and b, a ≤ b,
such that gcd (a, b) ≥

√
a. Then, it can be stated that exists at least one prime

number p such that a < p < b.

There are values of a and b for which the Conjecture is already proved, or is
similar to other conjectures or theorems. For instance, the Conjecture for a = 1
is proved and called Bertrand's Theorem, and the cases a = b− 1 and a = b put
together conform Oppermann's Conjecture [1].

In bullet points, the article develops the following Lemmas:

� Any composite number can be expressed as a product of two factors, whether
prime or composite.

� Each composite number of Sa,b has some proper divisor at the interval
(1, b), and every number of the interval (1, b) is factor of some number of
the interval Sa,b.

� From the Pigeonhole Principle, there must be at least two odd numbers of
Sa,b which have the same proper divisor less than b.

� For the Conjecture not to hold, it should be possible to create a system
of congruences such that each number contained in Sa,b is multiple of a
number of the interval (1, b).

� Using some Lemmas and the Generalization of the Chinese Remainder
Theorem, the previous Lemma is proved to be impossible for any b.

� Subsequently, it is proved the Conjecture. From this (I hope) theorem,
there can be proved as corollaries some well-known conjectures (as consid-
ering them the most important, I have developed only Oppermann's, Leg-
endre's, Brocard's and Andrica's) and some other corollaries, from which
I have chosen two that I considered most relevant.
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2 De�nitions

� We use the notation | Letter | to express the number of elements of a set
or interval.

� We use the notation {Letter } to express an indetermined element of a
set or interval.

� We de�ne the arithmetic progression

Sa,b = {ab+ 1, ab+ 2, ab+ 3, ..., ab+ (b− 1)}

� We de�ne (C) = (1, b) as the interval of natural numbers which can be
factors of a composite number of Sa,b.

� We de�ne A = {a, a+ 2, a+ 4, . . . , a+ 2m} as the set of odd numbers of
Sa,b.

� We de�ne C = {3, 5, 7, . . . , 2m+ 1} as the set of odd numbers of (C).
Therefore, | C |= m.

� We de�ne C2 = {c1, c2, ..., ck} as the numbers of set C, ordered arbitrarily.

� We de�ne System A as the following system of congruences:

a ≡ r1 (mod c1)

a ≡ r2 (mod c2)

a ≡ r3 (mod c3)

...

a ≡ rk (mod ck) (2)

� We de�ne d as the minimum particular solution of System A.

� We de�ne R = {r1, r2, ..., rk} as the set of non negative residues of {A}
(mod ck) (e.g, if a ≡ −4 (mod 7), then r = 3). Note that one residue can
be equal or di�erent to another residue, as {A} may be multiple of one,
two or more {C}. Also, note that{R} is 0 or odd, as it is a residue of some
odd number modulo other odd number.

� We de�ne X = {x1, x2, ..., xk} as the set of multiples of ck such that
d = ckxk + rk.
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� We de�ne S = {s1, s2, s3, ..., sn} as the set of non negative residues such
that xk ≡ sk (mod ck). Some element sk is called �simpli�ed�, when it is
assigned to be equal to some expression (e.g., s1 = (r2 − r1)m1) and this
expression is reduced to an equivalent non negative residue (mod ck). For
instance, if s1 = (3− 7) ∗ 5 = −20, and thus x1 ≡ −20 (mod 5), then �s1
simpli�ed� would mean that s1 = 0, so x1 ≡ 0 (mod 5).

� We de�ne M = {m1,m2,m3, ...,mn} as the set of minimum multiplicative
inverses de�ned along the paper.

� We de�ne cp > co > cn as the three greatest odd numbers of set C2. Thus,
cp = 2m+ 1, co = 2m− 1 and cn = 2m− 3.

� We de�ne cm < cn as some odd number, such that gcd (cm, cn, co, cp) = 1.
Note that cm = 2m− k | 3 < k < 2m− 2.

3 Main theorems

� Pigeonhole Principle . Let it be two sets X (with n elements) and Y
(with k elements) and an application

f : X�Y

Then, despite of which application f are we considering, if n > k there are
at least two elements of X, x1 and x2 (x1 6= x2), such that f(x1) = f(x2).

� Generalization of the Chinese Remainder Theorem. Let us con-
sider the positive integers n1, n2, . . . , nk and let them be q1, q2, . . . , qk any
integers. Then, the congruence system

x ≡ q1(modn1), . . . , x ≡ qk(modnk)

has a solution if, and only if, gcd (ni, nj) is divisor of qi − qj for every
i 6= j.

When this condition is satis�ed, then the general solution constitutes a single
congruence class module n, where n is the least common multiple of n1, n2, . . . , nk.
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4 Conjecture proof

4.1 Basic lemmas

� Lemma 1. Any composite number can be expressed as a product of two
factors, whether prime or composite.

Lemma 1 is trivial, because if any natural number could not be expressed as
a product of natural numbers greater than one, then it would be prime by
de�nition.

� Lemma 2. Any number in Sa,b has a proper divisor less than b.

The maximum value of an element of Sa,b, by de�nition, is b2 + b− 1.

If the two multiples where equal to b, then the resulting number would be b2,
which does not belong to Sa,b.

If one multiple where equal to b, and the other greater than b, then the minimum
resulting number would be b2 + b, which does not belong to Sa,b and is greater
than any possible number of any Sa,b.

If the two multiples where greater than b, then the minimum resulting number
would be b2 + 2b + 1, which does not belong to Sa,b and is greater than any
possible number of any Sa,b.

Thus, at least one factor of every composite number contained in Sa,b is less
than b.

� Lemma 3. Every natural number of (C) is proper divisor of some number
of Sa,b.

Lemma 3 is almost trivial because Sa,b is wider than (C), as | Sa,b |= b − 1,
and | (C) |= b− 2; thus, every natural number of (C) is proper divisor of some
{Sa,b}.

� Lemma 4. For all the odd numbers of Sa,b to be composite numbers, and
taking into account Lemma 3, then, if we pair each odd number of (C)
with one of its possible multiples in Sa,b, there must be at least two odd
numbers of Sa,b which are multiple of the same odd number of (C).

Lemma 4 can be stated from Lemma 3 and from the Pigeonhole Principle
(Dirichlet's principle)[2], speci�ed at the Main theorems section.

In our case, set X would be Sa,b, and Y would be (C). As there is one more
element in Sa,b than in (C), in order for this element to be composite, there
must exist an element of (C) which is factor of two elements of Sa,b.
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As in (C) at least the last number is even (number 2), then always there are
equal or less odd numbers in (C) than even numbers. Subsequently, and as all
composite even numbers in Sa,b are multiples of two and can be impaired one
to one with all the pairs of (C), then the element of (C) which is factor of two
elements of Sa,b must be odd.

To show it more clearly, consider the two possible cases:

� If b is even, or if a and b are both odd, then we can establish a parity
bijection between Sa,b and (C) as follows:

ab 99K b− 2

ab+ 1 99K b− 1

ab+ 2 99K b− 4

...

ab+ b− 2 99K 2 (3)

As there is one number of Sa,b still unimpaired (ab+ b− 1), and as ab+ b− 2 is
even, then the element of Sa,b left must be odd. Thus, as composite odd numbers
must have odd factors, the element of (C) which is factor of two elements of
Sa,b must be odd.

� If a is even and b is odd, then we can establish a parity bijection between
Sa,b and (C) as follows:

ab 99K b− 1

ab+ 1 99K b

ab+ 2 99K b− 3

...

ab+ b− 1 99K 2 (4)

As there is one number of (B) still unimpaired (ab+b−2), and as ab+b−1 is even,
then the element of Sa,b left must be odd. Thus, as composite odd numbers
must have odd factors, the element of (C) which is factor of two elements of
Sa,b must be odd.

� Lemma 5. Every three consecutive odd numbers n1, n2, n3 are coprime
numbers two to two. Therefore, gcd (n1, n2, n3) = 1, and lcm (n1, n2, n3) =
n1n2n3.
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If n1, n2, n3 are consecutive odd numbers, then they can be renowned as n1, n1+
2, n1 + 4.

As 2 - n1, then subsequently:

gcd (n1, n1 + 2) = gcd (n1, n1 + 4) = gcd (n1 + 2, n1 + 4) = 1

Therefore, they are coprime two to two, and therefore lcm (n1, n2, n3) = n1n2n3

� Lemma 6. Let it be the set C = {3, 5, 7, . . . , 2m+ 1}, and cn < co < cp
the greatest elements of set C. Then, if | C |≥ 5, we can a�rm that
it exists some element cm < cn such that gcd (cm, cn) = gcd (cm, co) =
gcd (cm, cp) = 1, so gcd (cm, cn, co, cp) = 1.

As cn, co, cp are the greatest elements of set C, then they are consecutive odd
numbers, and they can be renowned as cn, cn + 2, cn + 4.

According to Lemma 5, cn, co, cp are coprime two to two, so gcd (cn, co, cp) = 1.

As | C |≥ 5, then cn 6= 3. As cn, co, cp are consecutive odd numbers, then at
least one of them is divisible by three, and thus cm 6= 3. We have then several
cases:

Case 1. If 3 - cp, then at least cm = cn − 2, because then 3 - cn − 2, and
if some odd prime number p > 3 divides cn − 2, then it can not divide any
cn, cn + 2, cn + 4. Subsequently, the Lemma is proved if 3 - cp.

Case 2. If 3 | cp, then 3 - co, 3 - cn and 3 | cn − 2. Then, it can be reasoned
that:

a) If 5 - cn − 4, then at least cm = cn − 4. In this case, 3 | cn − 2, so 3 - cn − 4.
Thus, if some prime number p > 5 divides cn − 4, then it can not divide any
cn, cn + 2, cn + 4. Subsequently, the Lemma is proved if 3 | cp and 5 - cn − 4.

b) If 5 | cn − 4, then at least cm = cn − 6. In this case, 3 | cn − 2, so 3 - cn − 6,
and if 5 | cn − 4, then 5 - cn − 6. Thus, if some prime number p > 5 divides
cn − 6, then it can not divide any cn, cn + 2, cn + 4. Subsequently, the Lemma
is proved if 3 | cp and 5 | cn − 4.

Note that the proof presented is considering that | C |≥ 6; notwithstanding, is
easily veri�able that for | C |= 5, Lemma 6 holds, as in set C = {3, 5, 7, 9, 11},
we �nd that gcd (5, 7, 9, 11) = 1.
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4.2 Proof development

Non-compliance assumption: Conjecture is false; therefore, it does exist
some Sa,b for which every natural number of this arithmetic progression
is composite.

Let us recall that, at the De�nitions section, we have de�ned a set of the odd
numbers of Sa,b as set A, another set of the odd numbers of (C) as set C and
one third set of the elements of set C ordered arbitrarily as set C2.

If the Non-Compliance assumption holds, then it is possible to create a system
of congruences such that each element of set A is multiple of some element
of set C2, applying the Generalization of the Chinese Remainder Theorem[3],
speci�ed at the Main theorems section.

Applying the Generalization of the Chinese Remainder Theorem to the relation-
ship between sets A and C under the Non-Compliance assumption, the positive
integers n1, n2, . . . , nk are the elements of set C2, the number x is the �rst ele-
ment of set A (a ∈ N), and the integers q1, q2, . . . , qk are the diference between
each element of set A and its �rst element:

a ≡ 0 (mod c1)

a ≡ −2 (mod c2)

a ≡ −4 (mod c3)

...

a ≡ −2m (mod ck) (5)

Therefore, the system would be System A, de�ned above at the De�nitions
section. The integers q1, q2, . . . , qk are transformed to r1, r2, . . . , rk, as de�ned
at the De�nitions section. It can be assured that the Generalization of the
Chinese Remainder Theorem is applicable because:

� Considering the fact that one residue can be equal or di�erent to another
residue, as {A} may be multiple of one, two or more {C2}, the General-
ization of the Chinese Remainder Theorem is applicable, as in that case
ri − rj = 0, and every gcd (ci, cj) is divisor of 0.

� In case gcd (ci, cj) = 1, then gcd (ci, cj) is divisor of every ri − rj .

� In case gcd (ci, cj) > 1, then gcd (ci, cj) must be divisor of ri − rj , as
| ri − rj |=| ci − cj |.
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We can prove that there is not a solution for System A lower than b2 + b, and
subsequently that the Non-Compliance Assumption is false, proving and using
three Lemmas:

� Lemma A. It does not exist any set A such that each of its elements is
multiple of any element of a set C such that set C has less than three
elements.

Case | C |= 1

The set C of one element is de�ned as C = {3}.

As set C has one element, set A has two elements; thus, A = {a, a+ 2}.

According to the Pigeonhole Principle, both a and a + 2 must be multiples of
3. Notwithstanding, if 3 | a, then 3 - a+ 2.

Therefore, it can not exist any set A such that each of its elements is multiple
of any element of a set C of one element.

Case | C |= 2

The set C of two elements is de�ned as C = {3, 5}.

As set C has two elements, set A has three elements; thus, A = {a, a+ 2, a+ 4}.

According to the Pigeonhole Principle, at least two of the elements of set A
must be multiples of the same element of set C.

The distance between a and a + 4 is less than 5; therefore, there can not exist
two elements of set A multiples of 5.

There is no distance between the elements of set A which is multiple of 3.
Therefore, if any of the three is multiple of 3, then the remaining two elements
can not be multiples of 3.

As there can not be two elements of set A multiples of 5, and there can not be
two elements of set A multiples of 3, it can not exist any set A such that each
of its elements is multiple of any element of a set C of two elements.

Therefore, Lemma A is demonstrated.

� Lemma B. The least common multiple of the last three elements of a set
C equal or greater than 3 is always greater than b2 + b.
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According to Lemma A, set C must be at least of 3 elements.

At the De�nitions Section, set C was de�ned as C = {3, 5, 7, . . . , 2m+ 1}.
Therefore, | C |= m.

As set C is formed by the odd numbers of (C) = (1, b), then b must be lower
than the odd number next to the last element of set C. That is,

b < 2m+ 3 (6)

Therefore, we can state that:

max (b) = 2m+ 2 (7)

Consequently, substituting, we can state that:

max (b2 + b) = (2m+ 2)2 + 2m+ 2 (8)

Operating,
max (b2 + b) = 4m2 + 10m+ 6 (9)

Thus, Lemma B is a�rming that:

lcm (3, 5, 7, . . . , 2m+ 1) > 4m2 + 10m+ 6 (10)

According to Lemma 5, we can a�rm that

min (lcm (3, 5, 7, . . . , 2m+ 1)) = (2m− 3)(2m− 1)(2m+ 1)

(2m− 3)(2m− 1)(2m+ 1) = 8m3 − 12m2 − 2m+ 3 (11)

Substituting on (10),

8m3 − 12m2 − 2m+ 3 > 4m2 + 10m+ 6 (12)

Operating, this expression is equivalent to:

8m3 − 8m2 − 12m− 3 > 0 (13)

It is easy to verify that this inequation has the following critic point:

m >
1

4
(3 +

√
21) (14)

For every m > 1
4 (3 +

√
21), the inequation holds true. As we have stated in

Lemma A that min (m) = 3, and 1
4 (3 +

√
21) < 3, then the inequation holds

true for every number of elements of set C equal or greater than 3.
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Subsequently, it is proved that the least common multiple of the last three
elements of set C is greater than b2 + b for every number of elements of set C
equal or greater than 3. Therefore, it is proved Lemma B.

� Lemma C. Regarding the minimum solution d of System A, we can a�rm
that either d = 0, d = 1, d ∈ C , or d > b2 + b.

According to the Generalization of the Chinese Remainder Theorem,

a ≡ d (mod lcm (3, 5, 7, . . . , 2m+ 1)) (15)

Where d is the particular solution to the system of congruences. Therefore, and
noting that a ∈ N, the general solution of the system of congruences such that
each element of set A is multiple of any element of set C can be expressed as

a = d+mcm (3, 5, 7, . . . , 2m+ 1)t ∀t ≥ 0 (16)

The minimum solution of the system of congruences can be found for t = 0.
Thus,

min (a) = d (17)

Therefore, if it is proved that min (d) > max (b2 + b), then a system of congru-
ences such that each element of set A is multiple of any element of set C can
not exist.

Considering the whole universe of possible sets C2, and considering Lemmas 5
and 6, we can reason:

� d is a solution of a System A if and only if

d ≡ r1 (mod c1)

d ≡ r2 (mod c2)

d ≡ r3 (mod c3)

...

d ≡ rk (mod ck) (18)

� Let it be | C2 |≥ 5. Considering Lemma 5, at least the three greatest odd
numbers of set C2 are coprime, and considering Lemma 6, set C2 contains
at least some other odd number coprime to this three numbers. This
elements of C2, as de�ned at the De�nitions section, are cp > co > cn >
cm, and dividing d, they leave the corresponding non negative residues
rp, ro, rn, rm.
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Then, solving the system of congruences, and as d ∈ N, it is clear that:

Step 1)

d = rp + (2m+ 1)xp | xp ∈ N (19)

Step 2)

Thus,
rp + (2m+ 1)xp ≡ ro (mod (2m− 1)) (20)

(2m+ 1)xp ≡ (ro − rp) (mod (2m− 1))

If we call the minimum multiplicative inverse of (2m+ 1) mod (2m− 1) as m1,

xp ≡ (ro − rp)m1 (mod (2m− 1) (21)

Thus, s1 = (ro − rp)m1 simpli�ed, as de�ned at the De�nitions section.

Subsequently,

d = rp + (2m+ 1)xp = rp + (2m+ 1) (s1 + (2m− 1)xo) =

= (rp + (2m+ 1)s1) + (2m+ 1)(2m− 1)xo | xo ∈ N (22)

Step 3)

Thus,

(rp + (2m+ 1)s1) + (2m+ 1)(2m− 1)xo ≡ rn (mod (2m− 3)) (23)

(2m+ 1)(2m− 1)xo ≡ (rn − (rp + (2m+ 1)s1)) (mod (2m− 3)) (24)

If we call the minimum multiplicative inverse of (2m+1)(2m−1) mod (2m−3)
as m2,

xo ≡ (rn − (rp + (2m+ 1)s1))m2 (mod (2m− 3)) (25)

Let us de�ne s2 as (rn − (rp + (2m+ 1)s1))m2 simpli�ed.

Subsequently,

d = (rp + (2m+ 1)s1) + (2m+ 1)(2m− 1) (s2 + (2m− 1)xn) =

= (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2)+(2m+1)(2m−1)(2m−3)xn | xn ∈ N
(26)
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Step 4)

Thus,

(rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2)+(2m+1)(2m−1)(2m−3)xn ≡ rm (mod (2m−k))
(27)

(2m+1)(2m−1)(2m−3)xn ≡ (rm − (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2)) (mod (2m−k))
(28)

If we call the minimum multiplicative inverse of (2m+1)(2m− 1)(2m− 3) mod
(2m− k) as m3,

xn ≡ (rm − (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2))m3 (mod (2m− k)) (29)

Let us de�ne s3 as (rm − (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2))m3 simpli-
�ed.

Subsequently,

d = (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2)+(2m+1)(2m−1)(2m−3) (s3 + (2m− k)xm)

d = (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2 + (2m+ 1)(2m− 1)(2m− 3)s3)+

(2m+ 1)(2m− 1)(2m− 3)(2m− k)xm | xm ∈ N (30)

Therefore, at least, the minimum particular solution for a set C2 such that
| C2 |≥ 5 is

min(d) = (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2 + (2m+ 1)(2m− 1)(2m− 3)s3)
(31)

Thus, if there are n numbers coprime two to two in set C2,

min(d) = rp+(2m+1)s1+(2m+1)(2m−1)s2+(2m+1)(2m−1)(2m−3)s3+ ...

...+ (2m+ 1)(2m− 1)(2m− 3)...(2m− k)sn−1 (32)

Let us analyze the range of values of rp and the set S = {s1, s2, s3, ..., sn−1}, in
order to prove Lemma C.

By de�nition, 1 ≤ rp ≤ 2m. As pointed at the De�nitions section, rp is 0 or
odd, and thus either rp = 0, or rp = 1, or rp ∈ C.

By de�nition, every element of set S is non negative, so it is clear that if sn≥3 6=
0, then min(d) ≥ (2m + 1)(2m − 1)(2m − 3), and as proved in Lemma B,
max (b2 + b) < (2m+1)(2m− 1)(2m− 3), so if sn≥3 6= 0, then min(d) > b2 + b
and Lemma C holds.
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By de�nition, s3 = (rm − (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2))m3 simpli-
�ed.

By de�nition, as it is a multiplicative inverse, m3 6= 0 and m3 - (2m−k). Thus,
s3 = 0 if and only if

rm − (rp + (2m+ 1)s1 + (2m+ 1)(2m− 1)s2) = 0 (33)

As m > 0, 2m+ 1 > rm and (2m+ 1) (2m− 1) > rm the only possible solution
for (36) would imply that s1 = 0, s2 = 0 and rp = rm. In this case, note that
min(d) = rp, so either d = 0, d = 1, or d ∈ C.

Subsequently, for all sets C2 such that | C2 |≥ 5, we can a�rm that the minimum
solution d of System A is either d = 0, d = 1, d ∈ C , or d > b2 + b.

It is easily veri�able that Lemma C holds also for | C2 |= 3 and | C2 |= 4.
According to Lemma A, it does not exist any set A such that each of its elements
is multiple of any element of a set C such that set C has less than three elements.
Therefore, Lemma C is demonstrated.

Subsequently, it is proved that the minimum particular solution to the system
of congruences is greater than b2+b for every number of elements of set C equal
or greater than 3.

Therefore, and according to Lemma B, a > b2+b ∀t ≥ 0; subsequently, a system
of congruences such that each element of set A is multiple of any element of set
C lower than b2 + b can not exist, as by de�nition a < b2 + b.

Subsequently, as there is not a solution for a system of congruences such that
each element of set A is multiple of any element of set C lower than b2 + b, it is
proved that it is impossible that each element of set A is multiple of an element
of set C.

Thus, the Non-Compliance assumption is false, and it is proved that at least
one number of the arithmetic progression Sa,b is prime.

Therefore, it is demonstrated the Conjecture.
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5 COROLLARIES

5.1 First corollary: Oppermann's Conjecture

Oppermann's Conjecture can be expressed as follows:

∀n > 1∈ N,∃Pa, Pb/n
2 − n < Pa < n2 < Pb < n2 + n (34)

As noted in the Introduction section, this is equivalent to the Conjecture proved,
for the cases a = b− 1 and a = b put together, so the Conjecture proof implies
directly Oppermann`s Conjecture proof.

5.2 Second corollary: Legendre's Conjecture

Legendre's Conjecture[4] states that for every natural number n, exists at least
a prime number p such that n2 < p < (n+ 1)2.

As (n + 1)2 = n2 + 2n + 1, and according to Oppermann's Conjecture proved,
we know that:

n2 < Pa < n2 + n < Pb < (n+ 1)2 (35)

Therefore,
n2 < Pa < Pb < (n+ 1)2 (36)

Therefore, it is demonstrated Legendre's Conjecture.

5.3 Third corollary: Brocard's Conjecture

Brocard's Conjecture[5] states that, if pn and pn+1 are two consecutive prime
numbers greater than two, then between p2n and p2n+1 exist at least four prime
numbers.

According to the conjecture's statement,

2 < pn < pn+1 (37)

As the minimum distance between primes is two, we can state that:

pn < M < pn+1 (38)

Where M is some natural number between pn and pn+1. Subsequently,

p2n < M2 < p2n+1 (39)

As M ≥ pn + 1, and according to the demonstrated Oppermann's conjecture,

p2n < Pa < p2n + pn < Pb < M2 (40)

15



Idem, as pn+1 ≥M + 1, and according to Oppermann's Conjecture proved,

M2 < Pc < M2 +M < Pd < p2n+1 (41)

Therefore,
p2n < Pa < Pb < Pc < Pd < p2n+1 (42)

Therefore, it is demonstrated Brocard's Conjecture.

5.4 Fourth corollary: Andrica's Conjecture

Andrica's Conjecture[6] states that for every pair of consecutive prime numbers
pn and pn+1,

√
pn+1 −

√
pn < 1

According to the demonstrated Oppermann's Conjecture, the maximum dis-
tance between pn and pn+1 is:

n2 + n+ 1 ≤ Pn < (n+ 1)2 < pn+1 ≤ n2 + 3n+ 1 (43)

It is easily veri�able that:√
n2 + 3n+ 1−

√
n2 + n+ 1 < 1 (44)

For every value of n. As n2 + 3n + 1 ≥pn+1, and Pn ≥ n2 + n + 1, then√
pn+1 −

√
pn < 1

Therefore, it is demonstrated Andrica's Conjecture.

5.5 Fifth corollary: a new maximum interval between ev-

ery natural number and the nearest prime number

According to the exposed in the fourth corollary, it can be stated that the
maximum distance between every natural number and the nearest prime number
will be:

n2 + 3n− (n2 + n+ 1) = 2n− 1 (45)

Therefore, and stating that:

n =
√
n2 + n+ 1 (46)

It can be determined that:

∀n ∈ N,∃Pa, Pb/(n− (2
√
n− 1)) ≤ Pa ≤ n ≤ Pb ≤ (n+ (2

√
n− 1)) (47)

And therefore, we can de�ne a new maximum interval between every natural
number and the nearest prime number as:

∀n ∈ N,∃P/n ≤ P ≤ (n+ (2
√
n− 1)) (48)
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5.6 Sixth corollary: the existence of in�nite prime num-

bers of the form n2 ± k/0 < k < n

According to the demonstrated Oppermann's Conjecture, it can be stated that
every prime number pi will be of the following form:

pi = n2 ± k/0 < k < n (49)

Subsequently, as it is widely proved the existence of in�nite prime numbers, and
every prime number can be expressed as n2 ± k/0 < k < n, then it is proved
the existence of in�nite prime numbers of the form n2 ± k/0 < k < n.
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