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Abstract

We prove that partial sums of ζ(n) − 1 = zn are not given by any

single decimal in a number base given by a denominator of their terms.
This result, applied to all partials, shows that partials are excluded

from an ever greater number of rational, possible convergence points.
The limit of the partials is zn and the limit of the exclusions leaves

only irrational numbers. Thus zn is proven to be irrational.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [3]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning. It
generalizes only to the ζ(3) case. Here we give a simpler proof that uses just
basic number theory (the easier chapters of Apostol and Hardy, [2, 4]) and
treats all cases at once.

We use the following notation: for integers n, n > 1,

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

2 Decimals using denominators

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
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partial sum’s terms. Lemma 1 is similar to Apostol’s chapter 1, problem 30.
See [5] for a solution to this problem.

Lemma 1. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (1)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (1) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (2)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.
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Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime
p such that k < p < 2k [4]. For even k, we are assured that there exists a
prime p such that k > p > k/2. If k is odd, k − 1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2npn divides the denominator of r/s and as 2npn > kn, the proof is
completed.

In light of this result we give the following definitions and corollary.

Definition 1.

Djn = {0, 1/jn, . . . , (jn − 1)/jn} = {0, .1, . . . , .(jn − 1)} base jn

Definition 2.
k⋃

j=2

Djn = Ξn
k

Corollary 1.
sn

k /∈ Ξn
k

Proof. Reduced fractions are unique. Suppose, to obtain a contradiction,
that there exists a/b ∈ Ξn

k such that a/b = r/s then b < s by Theorem
1. If a/b is not reduced, reduce it: a/b = a1/b1. A reduced fraction must
have a smaller denominator than the unreduced form so b1 ≤ b < s and this
contradicts the uniqueness of the denominator of a reduced fraction.

3 A Suggestive Table

The result of applying Corollary 1 to all partial sums of z2 is given in Table
1.1 The table shows that adding the numbers above each Dk2 , for all k ≥ 2
gives results not in Dk2 or any previous rows’ such sets. So, for example,
1/4 + 1/9 is not in D4, 1/4 + 1/9 is not in D4 or D9, 1/4 + 1/9 + 1/16 is not
in D4, D9, or D16, etc.. That’s what Corollary 1 says.

1Table 1 might remind readers of Cantor’s diagonal method. We don’t pursue this idea
in this article. See [7].
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+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper left of the partial.

Lemma 3.

lim
k→∞

Ξn
k =

∞⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in at least one Djn . This
follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so
a/b ∈ Dbn.

Loosely speaking, Lemma 3 says that for all the series zn the denominators
of their terms cover the possible rational convergence points and Corollary
1 says the partial sums of zn escape their terms.

4 Proof

We will designate the set of rational numbers in (0, 1) with Q(0, 1), the set
of irrationals in (0, 1) with H(0, 1), and the set of real numbers in (0, 1) with
R(0, 1). We use R(0, 1) = Q(0, 1) ∪ H(0, 1) and Q(0, 1) ∩ H(0, 1) = ∅ in the
following.

Theorem 2. zn is irrational.
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Proof. Idea: Corollary 1 implies sn
k ∈ R(0, 1) \Ξn

k . As limk→∞ sn
k = zn, using

Lemma 3, we have

zn ∈ R(0, 1) \ Q(0, 1) = H(0, 1). (3)

That is zn is irrational.
Details: Suppose, for some k, the closest an element of Ξn

k gets to sk is εj.
We know for this εj there exists a K, such that for all k > K, zn − sn

k < εj.
This implies that zn /∈ Ξn

k . We must increase k in Ξn
k to get within εj of

zn. If εj → 0, this process can never end and Ξn
k will exhaust all candidate

rationals. zn must be irrational.

Conclusion

It is worth remarking that the proof given here seems the only one that works.
Other types of proofs seem to get bogged down. One such is a squeeze action
proof by Sondow for e’s irrationality; see [6]. We note that R(0, 1)\Ξn

k consists
of a union of open intervals with rational endpoints given by elements of Ξn

k

and this is similar to the situation of e as developed in Sondow’s paper.
The catch is the intervals are much more complex than those for e; with
these migrating and overlapping intervals distances to endpoints of partial
sums can suddenly get very close to an endpoint and throw a wrench in
works. Yet another strategy is that of Cantor’s diagonal method (CDM) [7].
Like the proof given here, the central theme of applying CDM is define as

you eliminate simultaneously. The proof here combines Sondow with some
epsilon-delta idea to get the job done. Dedekind cuts are a third idea. We
note that Sondow’s proof could be given via referencing Dedekind cuts. But
alas without the combination of eliminate as you define with an epsilon delta
idea, the approach gets stymied fatally.

Speaking of epsilon-delta proofs, proving the general case using Apery’s
[1] central idea (Apery showed ζ(3) is irrational) seems hopelessly elusive
[8, 11]. Perhaps this is so because the combinatorial possibilities skyrocket
with increasing n in ζ(n); and the strategy of epsilon-delta proofs needs the
eliminate as you define key mentioned. Studying Apery’s proof and Beukers
simplifications of it the techniques for ζ(2) are mimicked for ζ(3) but are
more complicated. One suspects, with increasing n, modifications of these
two cases will be necessary and that the mechanics will grow too cumbersome.
It is not for a lack of trying. One sees reminders of Apery’s idea in the very
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difficult results of Rivoal and Zudilin [8, 11]; their results, that there are an
infinite number of n such that ζ(n) is irrational and at least one of the cases
5,7,9, 11 are irrational, are less than encouraging.

Using progressively finer sieves rather than a single yard stick to find the
gold seems to be the trick for both the proof given here and the one that uses
CDM. For very fine results for such numbers as ζ(n), you need sieves and a
dash of epsilon.
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[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer,
New York, 1976.

[3] F. Beukers, A Note on the Irrationality of ζ(2) and ζ(3), Bull. London

Math. Soc., 11, (1979), 268–272.

[4] G. H. Hardy, E. M. Wright, R. Heath-Brown, J. Silverman, and
A. Wiles, An Introduction to the Theory of Numbers, 6th ed., Oxford
University Press, London, 2008.

[5] G. Hurst, Solutions to Introduction to Analytic Number Theory by
Tom M. Apostol, Available at:
https://greghurst.files.wordpress.com/2014/02/apostol intro to ant.pdf

[6] T.W. Jones, Extending an Irrationality Proof of Sondow: From e to
ζ(n ≥ 2) (2019), available at http://vixra.org/abs/1903.0503.

[7] T.W. Jones, Using Cantor’s Diagonal Method to Show Zeta(2) is
Irrational (2019), available at
http://http://vixra.org/abs/1810.0335.

[8] Rivoal, T., La fonction zeta de Riemann prend une infinit de valeurs
irrationnelles aux entiers impairs, Comptes Rendus de l’Acadmie des

Sciences, Srie I. Mathmatique 331, (2000) 267-270.

[9] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill,
New York, 1976.

6



[10] J. Sondow, A geometric proof that e is irrational and a new measure of
its irrationality, Amer. Math. Mon. 113 (2006), 637-641.

[11] W. W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational,
Russian Mathematical Surveys, 56(4), (2001) 747–776.

7


