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Abstract

We prove that a partial sum of ζ(2) − 1 = z2 is not given by

any single decimal in a number base given by a denominator of its
terms. This result, applied to all partials, shows that partials are

excluded from an ever greater number of rational values. The limit of
the partials is z2 and the limit of the exclusions leaves only irrational

numbers. This is a set theoretical proof. We also give a topological
proof using nested intervals and Cantor’s intersection theorem.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [3]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning. Here
we give a simpler proof that uses just basic number theory.

We use the following notation: for n > 1,

zn = ζ(n) − 1 =

∞
∑

j=2

1

jn
.

2 Decimal intervals

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.
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The first lemma is a little more difficult than an exercise in Apostol’s In-
troduction to Analytic Number Theory [1, p. 23, problem 30], its inspiration.
We prove the general case.

Lemma 1. The reduced fraction, r/s giving

sm
k =

k
∑

j=2

1

jm
=

r

s
(1)

is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (2)

The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (2) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (1).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.
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The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (3)

As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.

Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · +

1

km
=

r

s
, (4)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [4]. If k of (4) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (4) and as 2mpm > km, the proof is
completed.

So, for z2, we have the following.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Corollary 1.

s2

n /∈

n
⋃

k=2

Dk2

Proof. This is an immediate consequence of Theorem 1.

The result of applying Corollary 1 to all partial sums of z2 is given in
Table 1. The table shows that adding the numbers above each Dk2 , for all
k ≥ 2 gives results not in Dk2 or any previous rows’ such sets. So, for example,

3



+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper right of the partial.

1/4+1/9 is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16 is not in
D4, D9, or D16, etc.. That’s what Corollary 1 says. Note that every rational
a/b ∈ (0, 1) is included in at least one Dk2 . For example, ab/b2 = a/b, a < b
and so a/b ∈ Db2 .

3 Set theoretical proof

In this and the next section

Ξn =
n

⋃

j=2

Dj2 .

and Sn = s2

n.
We will designate the set of rational numbers in (0, 1) with Q(0, 1). We

will designate the set of irrationals in (0, 1) with H(0, 1).

Theorem 2. z2 is irrational.

Proof. Theorem 1 implies the following

s2

n ∈ R \ Ξn.
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As
lim

n→∞

s2

n = z2

and
lim

n→∞

Ξn = Q(0, 1),

zn ∈ R \ Q(0, 1) = H(0, 1).

That is z2 is irrational.

4 Topological proof

In consideration of Table 1, all partials from some point on are in an interval
that partitions [0, 1].

4.1 Lower bound

Lemma 3. For every natural number k greater than 1, there exists a first

natural number Nk such that

s2

n ∈ ((x− 1)/k2, x/k2) (5)

for all n > Nk.

Proof. We know 0 < z2 < 1. For a given k > 1, we can partition the interval
[0, 1]:

k
⋃

j=1

[

j − 1

k2
,

j

k2

]

= [0, 1].

Also, as no partial equals an endpoint and s2

n is a strictly increasing, conver-
gent sequence, there will be an endpoint that separates those intervals with
a finite number of partials in it from the one with an infinite number, a tail
of the series. The lemma is thus established.

4.2 Upper bounds

Lemma 4. For Sn and k < n there exists a minimum x/k2 such that Sn <
x/k2.

Proof. Using Theorem 1, Sn /∈ Ξn and the result follows.
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Lemma 5. For every k there exists an x/k2 such that for all n > max{Nk, k}
[Sn, x/k2] is an interval.

Proof. This follows from Table 1 and Theorem 1.

4.3 z2 is irrational

Theorem 3. z2 is irrational.

Proof. The following is a nested sequence of intervals:

[S2, x4/4] ⊃ [S3, x9/9] ⊃ · · · ⊃ [Sn, xn2/n2] ⊃ . . . ,

where the right endpoints represent the best approximations in Ξn as given
by Lemma 5.

The intersection of these intervals gives z2 [2]. As all right endpoints are
excluded, z2 must be irrational.

5 Conclusion

This result for the irrationality of z2 can be generalized; Theorem 1 gives
a result for the general case; Corollary 1 and Table 1 and the subsequent
lemmas can be easily modified for any n > 2.
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