A Simple Proof that $\zeta(2)$ is Irrational

Timothy W. Jones

January 13, 2018

Abstract

We prove that a partial sum of $\zeta(2) - 1 = z_2$ is not given by any single decimal in a number base given by a denominator of its terms. This result, applied to all partials, shows that there are an infinite number of partial sums in one interval of the form $X_{k^2} =$ [.(x - 1), .x] where .x is a single, non-zero decimal in a number base of the denominators of the terms of z_2 , here k^2 . Using this property we show that z_2 is contained in an open interval inside X_{k^2} . As all possible rational values of z_2 are the endpoints of these X_k intervals, z_2 must be irrational.

1 Introduction

Beuker gives a proof that $\zeta(2)$ is irrational [3]. It is calculus based, but requires the prime number theorem, as well as subtle $\epsilon - \delta$ reasoning. Here we give a simpler proof that uses just basic number theory.

We use the following notation: for n > 1,

$$z_n = \zeta(n) - 1 = \sum_{j=2}^{\infty} \frac{1}{j^n}.$$

2 Decimal intervals

Our aim in this section is to show that the reduced fractions that give the partial sums of z_n require a denominator greater than that of the last term defining the partial sum. Restated this says that partial sums of z_n can't be

expressed as a finite decimal using for a base the denominators of any of the partial sum's terms.

The first lemma is a little more difficult than an exercise in Apostol's Introduction to Analytic Number Theory [1, p. 23, problem 30], its inspiration. We prove the general case.

Lemma 1. The reduced fraction, r/s giving

$$s_k^m = \sum_{j=2}^k \frac{1}{j^m} = \frac{r}{s}$$
(1)

is such that 2^m divides s.

Proof. The set $\{2, 3, \ldots, k\}$ will have a greatest power of 2 in it, *a*; the set $\{2^m, 3^m, \ldots, k^m\}$ will have a greatest power of 2, *ma*. Also *k*! will have a powers of 2 divisor with exponent *b*; and $(k!)^m$ will have a greatest power of 2 exponent of *mb*. Consider

$$\frac{(k!)^m}{(k!)^m} \sum_{j=2}^k \frac{1}{j^m} = \frac{(k!)^m / 2^m + (k!)^m / 3^m + \dots + (k!)^m / k^m}{(k!)^m}.$$
 (2)

The term $(k!)^m/2^{ma}$ will pull out the most 2 powers of any term, leaving a term with an exponent of mb - ma for 2. As all other terms but this term will have more than an exponent of 2^{mb-ma} in their prime factorization, we have the numerator of (2) has the form

$$2^{mb-ma}(2A+B),$$

where $2 \nmid B$ and A is some positive integer. This follows as all the terms in the factored numerator have powers of 2 in them except the factored term $(k!)^m/2^{ma}$. The denominator, meanwhile, has the factored form

$$2^{mb}C$$

where $2 \nmid C$. This leaves 2^{ma} as a factor in the denominator with no powers of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then p^m divides s in (1).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such that rp = k, but by k > p > k/2, 2p > k making the existence of a natural number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

$$\frac{(k!)^m}{(k!)^m} \sum_{j=2}^k \frac{1}{j^m} = \frac{(k!)^m / 2^m + \dots + (k!)^m / p^m + \dots + (k!)^m / k^m}{(k!)^m}.$$
 (3)

As (k, p) = 1, only the term $(k!)^m/p^m$ will not have p in it. The sum of all such terms will not be divisible by p, otherwise p would divide $(k!)^m/p^m$. As $p < k, p^m$ divides $(k!)^m$, the denominator of r/s, as needed.

Theorem 1. If

$$s_k^m = \frac{1}{2^m} + \frac{1}{3^m} + \dots + \frac{1}{k^m} = \frac{r}{s},$$
 (4)

with r/s reduced, then $s > k^m$.

Proof. Bertrand's postulate states that for any $k \ge 2$, there exists a prime p such that k [4]. If <math>k of (4) is even we are assured that there exists a prime p such that k > p > k/2. If k is odd k-1 is even and we are assured of the existence of prime p such that k-1 > p > (k-1)/2. As k-1 is even, $p \ne k-1$ and p > (k-1)/2 assures us that 2p > k, as 2p = k implies k is even, a contradiction.

For both odd and even k, using Bertrand's postulate, we have assurance of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we have $2^m p^m$ divides the denominator of (4) and as $2^m p^m > k^m$, the proof is completed.

So, for z_2 , we have the following.

Definition 1.

$$D_{k^2} = \{0, 1/k^2, \dots, (k^2 - 1)/k^2\} = \{0, .1, \dots, .(k^2 - 1)\}$$
 base k^2

Corollary 1.

$$s_n^2 \notin \bigcup_{k=2}^n D_{k^2}$$

Proof. This is an immediate consequence of Theorem 1.

+1/4						
+1/9	+1/4	+1/4	+1/4	+1/4	 +1/4	
$\notin D_4$	+1/9	+1/9	+1/9	+1/9	 +1/9	
	$\notin D_9$	+1/16	+1/16	+1/16	:	
		$\notin D_{16}$	+1/25	+1/25	:	
			$\notin D_{25}$	+1/36	:	
				$\notin D_{36}$		
					$+1/(k-1)^2$	
					$+1/k^{2}$	
					$\notin D_{k^2}$	
						·

Table 1: A list of all rational numbers between 0 and 1 modified to exclude them all via partial sums of z_2 .

The result of applying Corollary 1 to all partial sums of z_2 is given in Table 1. The table shows that adding the numbers above each D_{k^2} , for all $k \ge 2$ gives results not in D_{k^2} or any previous rows' such sets. So, for example, 1/4+1/9 is not in D_4 , 1/4+1/9 is not in D_4 or D_9 , 1/4+1/9+1/16 is not in D_4 , D_9 , or D_{16} , etc.. That's what Corollary 1 says. Note that every rational $a/b \in (0, 1)$ is included in at least one D_{k^2} . For example, $ab/b^2 = a/b$, a < band so $a/b \in D_{b^2}$.

3 Lower bounds

In consideration of Table 1, all partials from some point on are in an interval that partitions [0, 1].

Lemma 3. For every natural number k greater than 1, there exists a first natural number N_k such that

$$s_n^2 \in ((x-1)/k^2, x/k^2)$$
(5)

for all $n > N_k$.

Proof. We know $0 < z_2 < 1$. For a given k > 1, we can partition the interval [0, 1]:

$$\bigcup_{j=1}^{k} \left[\frac{j-1}{k^2}, \frac{j}{k^2} \right] = [0, 1].$$

Also, as no partial equals an endpoint and s_n^2 is a strictly increasing, convergent sequence, there will be an endpoint that separates those intervals with a finite number of partials in it from the one with an infinite number, a tail of the series. The lemma is thus established.

Definition 2. For a given k, the interval that satisfies Lemma 3 is X_k .

4 Upper bounds

In this section

$$\Xi_n = \bigcup_{j=2}^n D_{j^2}.$$

and $S_n = s_n^2$.

Lemma 4. For S_n and k < n there exists a minimum x/k^2 such that $S_n < x/k^2$.

Proof. Using Theorem 1, $S_n \notin \Xi_n$ and the result follows.

Lemma 5. For every k there exists an x/k^2 such that for all $n > \max\{N_k, k\}$ $[S_n, x/k^2]$ is an interval.

Proof. This follows from Table 1 and Theorem 1.

5 z_2 is irrational

Theorem 2. z_2 is irrational.

Proof. The following is a nested sequence of intervals:

 $[S_2, x_4/4] \supset [S_3, x_9/9] \supset \cdots \supset [S_n, x_{n^2}/n^2] \supset \ldots,$

where the right endpoints represent the best approximations in Ξ_n as given by Lemma 5.

The intersection of these intervals gives z_2 [2]. As all right endpoints are excluded, z_2 must be irrational.

6 Conclusion

This result for the irrationality of z_2 can be generalized; Theorem 1 gives a result for the general case; Corollary 1 and Table 1 and the subsequent lemmas can be easily modified for any n > 2.

References

- T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
- [2] T. M. Apostol, *Mathematical Analysis*, 2nd ed., Addison Wesley, Reading, Massachusetts, 1974.
- [3] F. Beukers, A Note on the Irrationality of $\zeta(2)$ and $\zeta(3)$, Bull. London Math. Soc., **11**, (1979), 268–272.
- [4] G. H. Hardy, E. M. Wright, R. Heath-Brown, J. Silverman, and A. Wiles, An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, London, 2008.
- [5] K. Knopp, Theory and Application of Infinite Series, Dover, 1990.