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The Simplest Elementary Mathematics Proving Method of  

Fermat's Last Theorem 
Haofeng Zhang  
Beijing, China 

 
Abstract: In this paper the author gives a simplest elementary mathematics method to solve the 
famous Fermat's Last Theorem (FLT), in which let this equation become a one unknown number 
equation, in order to solve this equation the author invented a method called “Order reducing 
method for equations” where the second order root compares to one order root and with some 
necessary techniques the author successfully proved Fermat's Last Theorem.  
 

1. Some Relevant Theorems 
There are some theorems for proving or need to be known. All symbols in this paper represent 
positive integers unless stated they are not. 
 
Theorem 1.1. In the equation of 
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                 (1-1) 

zyx ,,  meet yx ≠ , zyx >+  and if yx > then yxz >> .  
Proof: Let  

yx = , 
we have 

 nn zx =2  

and 

 zxn =2  

where n 2 is not an integer and x, z are all positive integers, so yx ≠ . Since 

 ( ) nnnn
n

n
n

nn zyxyCyxCxyx >++++=+ −−− 1111 ... , 

so we get 
 .zyx >+  

Since 

nnn zyx =+ ,  

so we have 

 nnnn yzxz >> ,  
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and get 
 yxz >>  

when  
yx > . 

 
Theorem 1.2. In the equation of (1-1), zyx ,,  meet  

 1),gcd(),gcd(),gcd( === zxzyyx . 

Proof: Since nnn zyx =+ , if ( ) 1,gcd >yx  then we have ( ) ( )[ ] nnnn zyxyx =×+ ,gcd11  

which causes ( ) 1,,gcd >zyx  since the left side contains the factor of ( )[ ]nyx,gcd  then the 

right side must also contains this factor but contradicts against (1-1) in which 1),,gcd( =zyx , 

so we have ( ) .1,gcd =yx  Using the same way we have 1),gcd(),gcd( == zyzx . 

 
Theorem 1.3. If there is no positive integer solution for  

 ppp zyx =+  

when 2>p  is a prime number then there is also no positive integer solution for  

 ( ) ( ) ( )kpkpkp zyx =+ . 

Proof: Since ppp zyx =+ has no positive integer solution, so there still no positive integer 

solution for 

( ) ( ) ( )pkpkpk zyx =+  

which means there is also no positive integer solution for  

 ( ) ( ) ( )kpkpkp zyx =+ . 

So we only need to prove there is no positive integer solution for equation (1-1) when n  is a 
prime number. 
 
Theorem 1.4. In the equation of (1-1), zyx ,,  meet  

 ininin zyx −−− >+  

where  
1≥> in . 

Proof: From equation (1-1), since 

 nnn zyx =+ , 

let yx > , so we have 
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from Theorem 1.1 we know yxz >> , so we have 

 ininin zyx −−− >+ . 

 
Theorem 1.5. In Figure 1-1, zyx ,,  of equation (1-1) meet 
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Figure 1-1  Graph for nnn zyx =+   

 

Proof: Obviously the meaning of 1222
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 is the slope of AB  is not greater 

than that of CD  and if 1222

111

=
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

 then the slope of AB  equals to that of CD .  

 
It is necessary to point out that there is a positive real number R  that meets equation 

 
dN
dz

dN
dy

dN
dx NNN

=+ , 

where 

 zzyyxx RRR lnlnln =+ , 

Obviously the “Slope” of NN yx +  equals to that of Nz  when RN = . There are three cases 

for R  in Figure 1-1 when 12,2 −≤<−−≤ nRnnR  and 1−> nR . If 2−≤ nR  then it 

is very clear that 1222
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possible and 1222
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 is also possible. If 1−> nR  then 
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 then are three cases have to be considered. The first case (Case I) is 

there is a positive real number 10 << r  for rn −  between 1−n  and n  whose slope equals 
to that of AB  which means 
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that can be explained by Figure 1-2 where DFAB // .  

 

Figure 1-2 Graph of nnn zyx =+  when 1222
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and point F is between n-1 and n for Case I 
 

The second case (Case II) is there is a positive real number 10 << r  for rn −  between 
1−n  and 2−n  whose slope equals to that of AB  which means  

( )
r
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r
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111
2211 1 −−−−−

−−−− −
=

−
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that can be explained by Figure 1-3 where DFAB // .  
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Figure 1-3 Graph of nnn zyx =+  when 1222
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and point F is between n-2 and n-1 for Case II 
 

The third case (Case III) is there is a tangent line of curve nz  at D that is DFD'  whose slope 
equals to that of AB  which means  

1
2211

−=
−−−− =−−+ nN

N
nnnn

dN
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that can be explained by Figure 1-4 where DFDAB '// .  
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Figure 1-4 Graph of nnn zyx =+  when 1222
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and DFD'  is a tangent line of curve nz  for Case III 
 
Case I : In Figure 1-2 we have 
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If we treat r  as constant then 
r
rzzf

r
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1
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 is a “Monotonically increasing function”; if 

we treat z  as constant then 
r
rzrf
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−
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2)(

1

 is a “Monotonically decreasing function” that 

can be explained by Figure 1-5.  

 

Figure 1-5 Graph of 
r
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 when 5,4,3,2=z  

 

The reason why 
r
rzrf
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 is a “Monotonically decreasing function” is because: 
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For function 
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it is a “Monotonically decreasing function” since  
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For function  
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we give the plot of it in Figure 1-6, in which it shows that 0)(,0)( <≠ rgrg  that is because 
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which means )(rg  has no finite value to intersect axis r  and 0)(,0)( <≠ rgrg , since when 

10 << r  the value of )(rg  is less than 0 and )(zg  is a “Monotonically decreasing function” , 

so )(rf  is a “Monotonically decreasing function” when 10 << r (we have to say because we 

can not solve “Exponent equation” where the “Exponent” is the unknown number, so the 
solutions have to be found in numerical way, which is just “Function plot” does). 
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Figure 1-6 Graph of 
( )[ ]
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 when 100,5,4,3,2=z  

 
From (1-2) we know if z  (a positive real number) increases then the left side decreases and the 
right side also decreases. The minimum value for the right side is 
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From Theorem 1.8 we know 4≥z , so we get 
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where both sides plus 2−nz , in Figure 1-2 we know 

,111 BDzyx nnn =−+ −−−  

ACzyx nnn =−+ −−− 222 ,  
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there must exist a situation in Figure 1-2 when we increase z  (a positive real number) that 
causes  

1,, <>→ rACBDACBD ,  

so the left side is almost 0 but the right side is bigger than ( )13499 2 =+≥+ −nz , that is a 

contradiction which means there are no positive integer solutions of equation (1-1) at Case I. 
 
Case II : In Figure 1-3 we have 
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If we treat r  as constant then 
r

rzzf
r −−

=
−1)(  is a “Monotonically increasing function”; if 

we treat z  as constant then 
r

rzrf
r −−

=
−1)(  is a “Monotonically decreasing function” that 

can be explained by Figure 1-7.  

 

Figure 1-7 Graph of 
r
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r −−

=
−1)(  when 000100000000010,50,5,4,3,2=z  
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The reason why 
r
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in which from Theorem 1.8 we know 4≥z , so we have ( ) 01ln <+− zrr
z
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z
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and 0ln2 >zr . 

For function 
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that 0)( ≠rg  and 0)( <rg  that is because: 
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which means )(rg  has no finite value to intersect axis r  and 0)(,0)( <≠ rgrg , since when 

10 << r  the value of )(rg  is less than 0 and )(zg  is a “Monotonically decreasing function”, 

so )(rf  is a “Monotonically decreasing function” when 10 << r . 
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Figure 1-8 Graph of 
( )

2

11ln)(
r
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 when 100,5,4,3,2=z  

 
From Figure 1-3 we know if z  (a positive real number) increases then r  also increases. From 
(1-3) we have 
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where both sides plus 2−nz , in Figure 1-3 we know 

,111 BDzyx nnn =−+ −−−  

ACzyx nnn =−+ −−− 222 ,  

there must exist a situation when we increase z  (a positive real number) that causes  

 1,1,, <→>→ rrACBDACBD ,  

so the left side is 

 ( ) ( ) 00222111 >=−+−−+ +
−−−−−− nnnnnn zyxzyx , 

when 1=r  the right side is 
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r
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=
−1)(  is a “Monotonically decreasing function”, so when 1<r , the right 

side is greater than 0, we can not have contradiction as Case I does. But Case II is still impossible, 
since in Figure 1-3, it is obvious that  
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ADECDE ∠<∠ , 
it is easy to prove that when 100>z  there are no positive integer solutions for equation (1-1) 
using the method of which we prove Theorem 1.6, when 3=n ( which is the worse case) we 
have 

( ) 0
2

230

21

1
0

99.179
100100

1arctan100100arctan360

1arctan
1

arctan360

>⎟
⎠
⎞

⎜
⎝
⎛

−
−−−=

⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=∠ −−

−

nn

nn

zz
zzCDE

, 

and 

 099.179>∠>∠ CDEADE , 

which means 0180, →∠∠ CDEADE  with 3,100 => nz , and CDEADE,  are almost 

lines that lead to the result of ACBD < , so this is a contradiction which means there are no 
positive integer solutions of equation (1-1) at Case II. 
 
Case III : In Figure 1-4 we have 

zz
dN
dzyxyx n

nN

N
nnnn ln1

1
2211 −

−=
−−−− ==−−+ , 

and 

 ( ) 2212211111 1lnln −−−−−−−−−− ++−=++−=−+ nnnnnnnnnn yxzzyxzzzzyx , 

that is impossible since for any positive integer solutions of equation (1-1) when z  increases 
then the left side is becoming smaller but the right side is becoming bigger(since from Theorem 

1.8 we know 4≥z , so ( ) 01ln >−z ) which is a contradiction, so there are no positive integer 

solutions of equation (1-1) at Case III. 
 

So from Case I, Case II and Case III we have the conclusion of 1222
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Theorem 1.6. There are no positive integer solutions for 

 nnn zy =+1 . 

Proof: Since  
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 ( )( )1221 ...1 −−−− ++++−=−= nnnnnn yzyyzzyzyz  

where 

 ( )⎩
⎨
⎧
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that causes z, y to be non positive integers, so there are no positive integer solutions for 

nnn zy =+1 . 

 
Theorem 1.7. There are no positive integer solutions for 

nnn zy =+2 . 

Proof: Since 
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then taking the least value for 3,2 == zy , we have 
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when 2>n  that is impossible. If  
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then 2>z  and taking the least value of 3,2 == zy , we get 

 jnnn 22...323 121 >++×+ −−−  

with 2>n  that is also impossible, so there are no positive integer solutions for 

nnn zy =+2 . 

 
Theorem 1.8. There are no positive integer solutions for equation (1-1) when ∞→n  and 

zyx ,,  in equation (1-1) meet 
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Proof: Since  nnn zyx =+ , let yx > , we get 
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so we have 
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which means there are no positive integer solutions for equation (1-1) when ∞→n . And 

according to Theorem 1.1, 1.6 we have 3,1,2 >>> zyx . 

 

2. Proving Method 
In equation (1-1), let 
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Since we reduce the order of equation so the method is called “Order reducing method for 
equations”. 
 
Let yx >  and 

⎩
⎨
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From (2-1) and (2-2) we have 
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the roots are 
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222

222

−−− −+
−−+−+±+

= nnn zyx
cebfcbacebfcebf

x ,            (2-3) 

and 

 111
2
1

2
1

2
1

2
1

2
1

−−−
−
−

−
−

−
−

−
−

−
−

−+
+

=
−+

+
= nnn

n
n

n
n

n
n

n
n

n
n

zyx
cezbfy

cba

fbecx .           (2-4) 

There are two cases for 22,cebf  when 22 cebf ≥  and 22 cebf < . 

Case A: If 22 cebf ≥ , from (2-3) when  

 
( ) ( ) ( )( )

222

222

−−− −+
−−+−+++

= nnn zyx
cebfcbacebfcebf

x , 

From Theorem 1.4 we know 0222 >−+=−+ −−− nnn zyxcba , so we have 

( )
222

2
−−− −+

+
≤ nnn zyx

cebfx , 

and also from Theorem 1.4 we have 0111 >−+ −−− nnn zyx , compare to (2-4) we get 

 
( )

222111

2
−−−−−− −+

+
≤

−+
+

nnnnnn zyx
cebf

zyx
cezbfy

. 

From Theorem 1.5 we know 1222

111

≤
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

, so we have 

 ( )cebfcezbfy +≤+ 2  

that is impossible since from Theorem 1.8 we know 2≥y  and 3>z .  

 
When  
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( ) ( ) ( )( )

222

222

−−− −+
−−+−+−+

= nnn zyx
cebfcbacebfcebf

x . 

we have 

222 −−− −+
+

≤ nnn zyx
cebfx , 

compare to (2-4) we get 

 222111 −−−−−− −+
+

≤
−+

+
nnnnnn zyx

cebf
zyx

cezbfy
. 

From Theorem 1.5 we have 

 cebfcezbfy +≤+  

that is impossible since from Theorem 1.8 we have already known 2≥y  and 3>z . 

Case B: If 22 cebf < , from (2-3) when  

 
( ) ( ) ( )( )

222

222

−−− −+
−−+++++

= nnn zyx
bfcecbacebfcebf

x , 

we can prove ( ) ( )( )222 bfcecbacebf −−+>+  since if not we have 

 ( ) ( )( )222 bfcecbacebf −−+≤+  

and 

 ( )[ ] ( )[ ] 0222 22 ≤+−++−+ cebacbfcebfcab  

that is impossible since 0>−+ cba  and ( ) .02,, >+−>> bacbcac  So we have 

 
( )( )

222

21
−−− −+

++
< nnn zyx

cebfx  

compare to (2-4) we get 

 
( )( )

222111

21
−−−−−− −+

++
<

−+
+

nnnnnn zyx
cebf

zyx
cezbfy

. 

From Theorem 1.5 we have 

 ( )( ) ( )cebfcebfcezbfy +<++<+ 5.221  

and 

 ( )cebfexcefxbf +<++− 5.2)()(  

that leads to 
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( ) 5.25.25.2 2222

<⎥
⎦

⎤
⎢
⎣

⎡
+
−

−=
+

−++
<

cebf
bfce

cebf
cebfcebfx  

where possible values for x  are 1, 2 but according to Theorem 1.6, 1.7 we know there are no 
positive integer solutions.  
 
When  

 
( ) ( ) ( )( )

222

222

−−− −+
−−+++−+

= nnn zyx
bfcecbacebfcebf

x  

is not possible since 0≤x . 
 
Now we have completely solved no positive integer solutions for equation (1-1) when 2>n  
using “Order reducing method for equations”. 
 

3. Conclusion 
Through the above contents we can see clearly that the proving of Fermat's Last Theorem is just a 
problem of elementary mathematics. “Order reducing method for equations” that the author 
invented is a very effective method in the proving of Fermat's Last Theorem and the author’s 
technique in which let y = x - f and z = x + e is a very important step for solving. 
 
Fermat's Last Theorem is a problem that has lasted for about 380 years. Proving methods are not 
important but the theorem’s correctness is very necessary because many useful inferences can be 
deduced that are obviously better than “conjectures”. 
 
The author has been working on proving of Fermat's Last Theorem for quite some times (231 days) 
without any reference and many methods have been thought about, for example “Method of prime 
factorization” but not work. So the author has already known that there are no ways to solve 
except “Solving high order equations” which is also an important aspect in solving other 
mathematic problems. 
 


