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Abstract  

A triangular plate-bending element with a new multi-resolution analysis (MRA) is proposed and 

a novel multiresolution element method is hence presented. The MRA framework is formulated 

out of a displacement subspace sequence whose basis functions are built out of scaling and 

shifting on the element domain of basic full node shape function. The basic full node shape 

function is constructed by means of extending the shape function triangle domain for a split node 

at the zero coordinates to the hexagon area enclosing the zero coordinates. As a result, a new 

split-full node notion is presented and a novel rational MRA concept together with the resolution 

level (RL) is constituted for the element. Via practical examples, it is found that the traditional 

triangular plate element and method is a mono-resolution one and also a special case of the 

proposed element and method. The meshing for the monoresolution plate element model is based 

on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous 

mathematical basis. The analysis clarity of a plate structure is actually determined by the RL, not 

by the mesh. Thus, the accuracy of a structural analysis is replaced by the clarity, the irrational 

MRA by the rational and the mesh model by the RL that is the discretized model by the integrated. 

The continuous full node shape function unveils secrets behind assembling artificially of 

node-related items in global matrix formation by the conventional FEM. 

Keywords: Triangular Plate-bending Element; Split Node; Full Node; Analysis Clarity; Displacement 

Subspace Sequence; Rational Multiresolution Analysis; Resolution Level 

 

1. Introduction 

Multi-resolution analysis (MRA) is a popular technique that has been applied in 

many domains such as the signal and image processing, the damage detection and 

health monitoring, the differential equation solution, etc. However, in the field of 

computational mechanics, the MRA has not been, in a real sense, fully utilized in the 

numerical solution of engineering problems either by the traditional finite element 

method (FEM)[1] or by other methods such as the wavelet finite element method 

(WFEM)[2, 3], the meshfree method (MFM)[4, 5], the natural element method 

(NEM)[6, 7] and isogeometric analysis method (IGAM) [8, 9],etc. 

As is commonly known of the FEM, owing to the invariance of node number a 

single finite element contains, the finite element can be regarded as a monoresolution 

one from a MRA point of view and the FEM structural analysis is usually not 

associated with the MRA concept. The MRA seems to be rarely used when the FEM 

is employed to numerical analysis. However, it is, in fact, by means of meshing and 

re-meshing in which a cluster of monoresolution finite elements with each split nodes 

are assembled together artificially that the rough MRA is executed by the FEM. As we 



can see, in overall analysis process of a structure by the FEM, there is no 

mathematical foundation for the traditional finite element meshing and the finite 

elements are assembled together artificially. The traditional finite element model has 

to be re-meshed until sufficient accuracy is reached, which leads to the low 

computation efficiency or convergent rate. The deficiency of the FEM becomes much 

explicit in the accurate computation of structural problems with local steep gradient 

such as material nonlinear [10, 11], local damage and crack [12, 13], impacting and 

exploding problems [14, 15].  

The great efforts have been made over the past thirty years to overcome the 

drawbacks of the FEM with many improved methods to come up, such as WFEM, 

IGAM, MFM and NEM etc, which open up a transition from the monoresolution 

finite element method to the multiresolution finite element method featured with an 

integrated element model. Although these MRA methods have illustrated their 

powerful capability and computational efficiency in dealing with some problems, they 

always have such major inherent deficiencies as the complexity of full node shape 

function construction by tensor-product or polynomial coefficient numerical 

simulating technique, the absence of the Kronecker property and the lack of a rigorous 

mathematical basis for the MRA, which make the treatment of element boundary 

condition complicated and the selection of element node layout empirical, that 

substantially reduce computational efficiency. Hence, these MRA methods have never 

found a wide application in engineering practice just as the FEM. In fact, they can be 

viewed as the intermediate products in the transition of the FEM from the 

monoresolution to the multiresolution. 

The deficiencies of all those MRA methods can be eliminated by the introduction 

of a new multiresolution element method in this paper. With respect to the plate 

element in the finite element stock, a new multiresolution triangular plate-bending 

element is formulated by a new MRA, which is constituted by scaled and translated 

version as subspace basis functions of the basic full node shape functions. The basic 

full node shape functions are then constructed from making a series of parallelograms 

to superimpose identical triangle-defined domains for split nodes around the origin of 

coordinates. Hence, the full node shape function construction is quite simple and clear. 

In addition, the proposed element method possesses a simple, clear and rigorous 

mathematical basis for MRA, which endows the proposed element with the resolution 

level (RL) that can be modulated to freely change the node number and position in the 

element, adjusting structural analysis accuracy accordingly. As a result, the proposed 

element method can bring about substantial improvement of the computational 

efficiency in the structural analysis when compared with the corresponding FEM or 

other MRA methods. 

2. Basic full node shape function 

As shown in Fig.1a.b, an arbitrary triangle plate element is set against a Carstesian 

coordinate system with the geometric configuration of the bottom sideline length as a, 

the height as h. Obviously, The analytical functions for the bottom sideline in the 

coordinate system can be written in dimensionless quantity as 
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For the other sideline (not one that goes through the coordinate origin) is assumed as 
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Where a,b are denoted as the horizontal and the vertical intercepts respectively. 

For the third is determined as 
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a. A triangular plate                   b. The mid-plane of the plate 

Fig 1. A triangular plate-bending element 

 Afterward, the transverse displacement 
ew  in z axis direction at an arbitrary point 

within the triangular plate element can be defined as 
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where iw , xi ,
yi  are the transverse, rotational displacements at node i of the element 

respectively in the Carstesian coordinate system. 
iN ，

xiN ， yiN are the conventional 

shape functions at the node i ( i =1,2,3)，which are defined on the domain D1 as 

follows 
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Based on the analytical functions for the three triangle sidelines obtained above, the 

following relationship can be gotten: 
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Obviously, there exists relationship L1 +L2+L3=1 

 

Fig 2. The extended hexagon domain enclosing a node at the coordinate origin 

As we can see in Fig.1b, the supporting domain (shaded area D1) of the triangular 

element contains only a part (blackened portion) of a full node, that means a full node 

is broken up into split nodes in the process of the traditional node shape function 

construction and all full nodes within the structural domain are thus discretized by 

meshing. In order to formulate a full node shape function or constitute an integrated 

computational model, the single triangle-defined domain for the split node should be 

extended to the hexagon area by means of successively building up a series of 

parallelograms to superimpose identical triangle-defined regimes around the 

coordinate origin. Subsequently, the node at the coordinate zero is enclosed by the 

hexagon domain (shaded area) as shown in Fig.2. The basic shape function for the full 

node (blackened node) at the coordinate origin can be defined as following: 
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where
iN ，

xiN ， yiN are the shape functions at the node i ( i =1,2,3)，which are defined 

on the domains of D1， 2D ， 3D ， 4D ， 5D ， 6D
 

corresponding to six split nodes around 

the coordinate origin respectively. 

  In light of the regular node shape function construction method by area coordinates 

for a triangular plate element, the six split node shape functions can be founded by the 

analytical functions for the six sidelines of the hexagon in the Carstesian coordinate 

system. Based on the analytical functions for three triangular sidelines (1), (2), (3), the 

three upper hexagon sideline functions are easily written as 
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Therefore, the three lower hexagon sideline function expressions can be easily 

obtained by shifting each upper sideline a distance along x,y axis respectively, that is 
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As a result, based on the hexagon sideline analytical functions, the split node shape 

functions on the domains of 2D ， 3D ， 4D ， 5D ， 6D  can be founded respectively as   
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in which there exist relationships 1 2 31 0, 1 0, 1 0L L L      , 1 2 3 1L L L   in 

the various domains of 2D ， 3D ， 4D ， 5D ， 6D  respectively. 

Up to now, the basic full node shape functions  ,x y ,  ,x x y ,  ,y x y for the 

triangular plate-bending element can be graphed respectively in Fig.3. 

 

a.
 

 ,x y
                               

b.  ,x x y  

 

c.  ,y x y  

Fig.3.The basic full node shape functions  ,x y ,  ,x x y ,  ,y x y at the coordinate origin  

It is evident that the basic full node shape functions  ,x y ,  ,x x y ,  ,y x y are 

continuous and possess the Kronecker delta property as follows： 

-2

-1

0

1

2

-2

-1

0

1

2
0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1

0

1

2

-0.4

-0.2

0

0.2

0.4

-2
-1

0
1

2

-2

0

2

-0.4

-0.2

0

0.2

0.4



   
 

     

   
 

     

   
 

     

0,0
0,0 1 6 int 0 0

0,0 6 int 6 int
0 0 0

0,0
0,0 0 6 int 0 0

0,0 6 int 6 int
1 0 0

0,0
0,0 0 6 int 0 1

0,0 6 int 6 int
0 0 0

x

x x

x x x

y

y y

y y y

po s
x

po s po s

y x y

po s
x

po s po s

y x y

po s
x

po s po s

y x y


 

  


 

  


 

  


  


  

  
  


  



  

  
  


   



  
  

  















               （11） 

3. Displacement Subspace Sequence 

In order to carry out a MRA of a thin plate structure, the mutual nesting 

displacement subspace sequence for a plate element should be established. In this 

paper, a totally new technique is proposed to construct the MRA which is based on the 

concept that a subspace sequence (multi-resolution subspaces) can be formulated by 

subspace basis function vectors at different resolution levels whose elements-scaling 

function vector can be constructed by scaling and shifting on the domain  of the 

basic full node shape functions. As a result, the displacement subspace basis function 

vector at an arbitrary resolution level (RL) of 
1

2
(𝑚 + 1) × (𝑚 + 2) for a triangular 

membrane element is formulated as follows: 

 ,00 , ,m mm mm rs mm mm
    Ψ Φ Φ Φ                                   (12) 

where , , , ,/ /mn rs mm rs xmm rs ymm rsm m     Φ  is the scaling basis function vector, 

, = ( , )mm rs mx r my s    ,
, = ( , )xmm rs x mx r my s    ,

, = ( , )ymm rs y mx r my s    , m 

denoted as the positive integers, the scaling parameters in x ,y directions respectively. 

r, s as the positive integers, the node position parameters, that is 0,1,2,3r m  ,

0,1,2,3s m  , Here,    ,mx r a a      ,my s h h   , 1,x y D . 

It is seen from Eq. (11) that the nodes for the scaling process are equally spaced on 

the triangle domain 1D in x ,y directions respectively 

Scaling of the basic full node shape function and then shifting to other nodes 

a h s
r s h

m b m

  
  

  
, within the element domain 1D  m r s   will produce the 



various full node shape functions. 

Since the elements in the base functions are linearly independent with the various 

scaling and the different shifting parameters, the subspaces in the subspace sequence 

can be established, thus formulating a MRA framework, that is 

 1... ....m i mV V VW                                       (13a) 

 : :i iV span i Z Ψ                                           (13b) 

If 2I i , then i IV V                                       (13c) 

Thus, it can be found that the displacement subspace sequence mW can be taken for 

a solid mathematical foundation for the MRA framework and 1V  is equivalent to the 

displacement field for a traditional 3-node plane triangular element that is the reason 

why the traditional triangular plate element is regarded as a mono-resolution one and 

also a special case of the multiresolution triangular. 

Based the MRA established, the deflection of the triangular plate element in the 

displacement subspace at RL of 
1

2
(𝑚 + 1) × (𝑚 + 2) can be defined as follows  

e e

m m mw Ψ a                                                 (14) 
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the transverse and rotational displacements respectively at the element node
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It is obvious that the proposed multi-resolution element is a meshfree one whose 

nodes are uniformly scattered, node number and position fully determined by the RL. 

When the scaling parameter m=1(RL=
1

2
(2) × (3) = 1 × 3), that is a traditional 

3-node triangular plate element, eq. (14) will be reduced to eq. (4). 

 

4 Multiresolution triangular plate element  

The generalized function of potential energy in a displacement subspace at the 

resolution level of  
1

2
(𝑚 + 1) × (𝑚 + 2)  for a triangular plate element can be 

defined as  
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, E  is 

the material Young modulus, t  the thickness of the element,   the Poisson’s ratio, 

q distributed transverse loadings, Q  the lump transverse loadings. elastic modulus. 
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Substituting (13) into (14) and consolidating, we get 
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in which e

mK  is denoted as the element stiffness matrix; e

mf as the element 

distributed equivalent node force vector; e

mF  as the element concentrated equivalent 

node force vector. 

 According to the principal of minimums potential energy   0p mV  , the 

following element equilibrium equations can be obtained 
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in which the superscript denoted as the row number of the matrix and the subscript as 

the aligned element node numbering (r, s). In terms of the properties of the extended 

shape functions, we have 
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in which 
,cd rsk is the coupled node stiffness matrix relating the node (c, d) to (r, s). 
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where ix , iy is the local coordinate at the locations the lump loading acting on. 

5.Transformation Matrix 

In order to carry out structural analysis, the element stiffness and mass matrices e

mK

the loading column vectors e

mf , e

mF  should be transformed from the element local 

coordinate system (xoy) to the structural global coordinate system (XOY). The 

transforming relations from the local to the global are defined as follows:     

               
i e T e e
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i eT e
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where i

mK is the element stiffness matrix, i

mf , i

mF  the element loading column vectors 



under the global coordinate system. e

mT  is the element transformation matrix defined 

as follows； 
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The structural global stiffness, mass matrix mK , the global loading column vectors mf , 

mF can be obtained by splicing 

6. Numerical Example and Discussion  

6.1 Numerical Example  

Example 1. As shown in Fig.4, a two opposite edge simply supported and other two 

free 60
0 

skew plate with the geometric configuration of length L and the Poisson’s 

ratio 0.3   is subjected to the uniform transverse loading of magnitude q. Evaluate 

the deflection at the center point of the plate. 

L

L

60°

  

Fig. 4.  A skew plate 

         

l(a) The monoresolution discretized model    (b) The multiresolution integrated model  

Fig. 5  The computational model for the skew plate  

 

 



 

 

Table.1. the center point deflection for the skew plate(w=βqL
4
 /100Cb ) 

Element type 

Deflection(β) The proposed 

RL/RL/elem 

The conventional 

 (mesh) 

99/59 88 0.7781 

1313/713 1212  0.7863 

1717/917  1616  0.7894 

One BSWI [3] 0.7925 

Analytical [16] 0.7945 

 

The problem is usually tackled with regular meshes typified by a discretized model 

(split node) shown in Fig.5(a) These meshes are built of two-triangle rectangular 

mesh units and identified as Nx×Ny , which denote the number of subdivisions in the x 

and the y dimensions. The solution can also be found by the multiresolution 

triangular-bending elements typified by an integrated model (full node) shown in 

Fig.5(b). These nodes are uniformly scattered in the two multiresolution triangular 

elements ①,② denoted by the RL, which represents the density of node uniform 

distribution. In the analysis process, these two multiresolution elements are spliced 

together along the common intersection boundary and the analysis clarity can be 

modulated by means of adjusting the RL. In addition, the wavelet model (full node) is 

made up of one 2D BSWI (B-spline wavelet on the interval) element of the jth 

scale=3, the mth order =4 are also employed abbreviated as BSWI43 with the DOF of 

1111. The results are summarized in the table1.It can be seen that the conventional 

and the proposed element methods exhibit identical monotonic increasing 

convergence to the ’exact’ value with consistent mesh refinement and corresponding 

RL adjustment respectively.   

Although the BSWI43 is of high accuracy, when compared with the proposed, the 

deficiencies of the BSWI element are obvious as follows. In light of tensor product 

formulation of the multidimensional MRA framework, the DOF of a 

multi-dimensional BSWI element will be so drastically increased from that of a 

one-dimensional element in an irrational way, resulting in complex full node shape 

functions and substantial reduction of the computational efficiency. Secondly, due to 

the absence of Kronecker delta property of the tensor-product constructed shape 

functions, the special treatments should be taken to deal with the element boundary 

condition, which will bring about low computational efficiency. Thirdly, there exists 

no such a parameter as the RL with a clear mathematical sense. With respect to the 

proposed and the conventional, the RL adjusting is more rationally and efficiently to 

be implemented than the meshing and the re-meshing for the following two reasons. 

Firstly, the RL adjusting is based on the MRA framework that is constructed on a 

solid mathematical basis while the meshing or remeshing, which resorts to the 

empiricism, has no MRA framework. Secondly, the stiffness matrix and the loading 

column vectors of the proposed element can be obtained automatically around the 



nodes while those of the traditional 3-node triangular plate-bending elements obtained 

by the artificially complex reassembling around the elements. Thus, the computational 

efficiency of the proposed element method is higher than the traditional one. In this 

way, the proposed plate element exhibits its strong capability of accuracy adjustment 

and its high power of resolution to identify details (nodes) of deformed structure by 

means of modulating its resolution level, just as a multiresolution camera with a pixel 

in its taken photo as a node in the proposed element. There appears no mesh in the 

proposed element just as no grid in a photo. Thus, an element of superior analysis 

accuracy surely has more nodes when compared with that of the inferior just as a 

clearer photo contains more pixels.   

 

6.2 Discussion 

Multiresolution analysis (MRA) can be viewed as a technique by which amount of 

element details that are exposed can be modulated at a request. The process of 

differential equation solution can be seen as one of structure node (detail) 

exposition.  In the numerical analysis field, the node number a large-sized element 

contains could be adjusted respectively in various manners by different methods. 

Those approaches can be classified into two categories，one is the discretized model 

method, featured with split node shape functions, such as the traditional FEM, the 

multigrid FEM, the adaptive refinement FEM, etc., another is the integrated model 

approach, characterized by full node shape functions, such as the wavelet FEM 

(WFEM), the traditional meshfree method (MFM), the traditional natural element 

method (NEM), isogeometric analysis method (IGAM) and the proposed 

multiresolution element method (MEM) etc. FEM applies the scheme of meshing and 

re-meshing, which is mainly relied on the empiricism, to adjust the element node 

number in a rough way, thus performing an irrational MRA; WFEM adopts the 

technique of cubic B-spline function tensor product to form the full node shape 

functions that are complicated to be numerically integrated and to be utilized to treat 

boundary conditions. MFM and NEM employ the strategy of prior artificial-selected 

element node layout which is also largely dependent on the empiricism. IGAM has 

some pitfalls like WFEM. In a word, all those above or other methods are short of the 

parameter-resolution level (RL) with a clear mathematical sense that can be easily 

used to fully alter total element node number and locate element node because they do 

not have a simple, clear and solid mathematical basis. However, MEM has such a 

simple, clear and rigorous mathematical basis that brings about the parameter RL to 

freely adjust total node number and locate nodes within the element. Hence, it can be 

said that WFEM, MFM, NEM, IGAM etc are the intermediate products in the 

transition of the traditional FEM from the monoresolution (discretized model) to the 

multiresolution (integrated model) and MEM consolidates all these irrational MRA 

approaches. 

7. Conclusion and Prospective 

A new multiresolution element method that has both high power of resolution and 



strong flexibility of analysis clarity is introduced into the field of numerical analysis. 

The method possesses such prominent features as follows: 

1. A new split-full node notion is presented and a novel technique is proposed to 

construct a simple and clear basic full node shape function for a triangular 

plate-bending element, which unveils the secrets behind assembling artificially of 

node-related items in global matrix formation by the conventional FEM.  

2. A mathematical basis for the MRA framework, that is the displacement subspace 

sequence, is constituted out of the scaled and shifted version of the basic full node 

shape function, which brings about the rational MRA concept together with the RL. 

3. The traditional 3-node triangular plate-bending element method is a 

monoresolution one and also a special case of the proposed. An element of superior 

analysis clarity surely contains more nodes when compared with that of the inferior.  

4. The RL adjusting for the multiresolution triangular plate-bending element model 

is laid on the rigorous mathematical basis while the meshing or remeshing for the 

monoresolution is based on the empiricism. The proposed element method can 

consolidate all corresponding irrational MRA approaches. Thus, the accuracy of a 

plane-bending analysis is replaced by the clarity, the irrational MRA by the rational, 

the mesh by the RL that is the discretized model by the integrated. 

5. A quite new concept is introduced into the FEM that the structural analysis clarity 

is actually determined by the RL-the density of node uniform distribution, not by the 

mesh. 

6. With advent of the new finite element method 
[17,18,19]

, the rational MRA will find 

a wide application in numerical solution of engineering problems in a real sense.  

The upcoming work will be focused on the treatment of interface between 

multiresolution elements of different RL. The interface may be extended to the 

bridging domain in which a transitional element could be used just as PS images of 

different RL. The transitional element could also be constructed by the technique of 

scaling and shifting of the basic full node shape function to virtual or real nodes. 
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