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Abstract
Latent Dirichlet Allocation (LDA) is a generative model describing the observed data as being composed of a

mixture of underlying unobserved topics, as introduced by Blei et al. (2003). A key hyperparameter of LDA is the
number of underlying topics k, which must be estimated empirically in practice. Selecting the appropriate value
of k is essentially selecting the correct model to represent the data; an important issue concerning the goodness
of fit. We examine in the current work a series of metrics from literature on a quantitative basis by performing
benchmarks against a generated dataset with a known value of k and evaluate the ability of each metric to recover
the true value, varying over multiple levels of topic resolution in the Dirichlet prior distributions. Finally, we
introduce a new metric and heuristic for estimating k and demonstrate improved performance over existing metrics
from the literature on several benchmarks.

1 Introduction

Latent Dirichlet Allocation Latent Dirichlet Al-
location (Blei et al., 2003) (LDA) is a topic-modeling
algorithm suitable for clustering text data. The core
principle of LDA is that an observed document is a
mixture of some latent underlying topics. Each topic in
turn manifests itself as a mixture of some words of the
vocabulary of the documents.

Generative Model LDA describes each document to
be composed of observable words w1, w2, ..., wN , each
representing latent unobservable topics z1, z2, ..., zN .
As a generative hyperparameter, there are k underly-
ing topics throughout the corpus. Here, N is Poisson
distributed with some rate λ.

Every document d has a mixture of topics #”

θ drawn
from a Dirichlet compound multinomial distribution.

#”

θ ∼ Dirichlet( #”α ∈ Rk)
zi ∼ Multinomial( #”

θ )

Likewise, every topic j is a mixture of words from the
vocabulary #”

φj drawn also from a Dirichlet compound
multinomial distribution. Let W represent the size of
the vocabulary.

#”

φzi
∼ Dirichlet( #”

β ∈ RW)
wi | zi ∼ Multinomial( #”

φzi))

Here, #”α and #”

β are also hyperparameters.

Problem Description One major hurdle to estimat-
ing the θ and φ parameters is that the number of top-
ics hyperparameter k is assumed to be known a pri-
ori. Given a dataset in practice; however, this is typ-
ically not the case. Thus, the prevailing course of ac-
tion is estimate this quantity as a tuning parameter for
goodness-of-fit.

There are existing metrics for determining an esti-
mate k̂ (Griffiths and Steyvers, 2004; Cao et al., 2009;
Deveaud et al., 2014; Arun et al., 2010; Blei et al., 2003)
given a series of fitted LDA models. All of these meth-
ods require fitting the LDA model multiple times to
the same dataset along a series of candidate values of
k̂. Typically, though it is not required, the series of
points are regularly spaced.

In the original LDA paper by Blei et al. (2003), the
method of calculating perplexity (inverse of geometric
mean of logP (wi)’s) of a held-out test set is suggested.

Griffiths and Steyvers (2004) require the use of a
Gibbs sampler to estimate LDA parameters, and sam-
ples the posterior of the Gibbs sampler state at regular
intervals and chooses the k̂ that maximizes the har-
monic mean of the sampled log-likelihoods.

Cao et al. (2009) estimate the average cosine simi-
larity between topic distributions #”

φi,
#”

φj (i 6= j) and
chooses the value of k̂ that minimizes this quantity.

Arun et al. (2010) minimize the symmetric Kullback-
Liebler divergence between the singular values of the
matrix representing word probabilities for each topic
and the topic distribution within the corpus. How-
ever, Arun et al. (2010) claims that there is an order
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Figure 1: Representative draws from symmetric Dirich-
let distributions with α = 0.05, 0.5, 50 and eight categories
(n = 8)

on the singular values of the word-topic matrix, which
we find perplexing as singular value decomposition does
not produce an implied order of the singular values.

Deveaud et al. (2014) maximize the average Jensen-
Shannon distance between all pairs of topic distribu-
tions #”

φi,
#”

φj (i 6= j), much like Cao et al. (2009).

While there are several methods of determining the
optimal number of topics empirically in the literature, a
rigorous treatment of their effectiveness is lacking. The
present work aims to provide a quantitative measure-
ment of their effectiveness, and introduces an alterna-
tive metric with superior recovery properties.

Topic Separability The n-dimensional parameter
vector #”α of a Dirichlet distribution is known as a con-
centration parameter, and can be understood as the
weights on the vertices of a standard (n− 1) simplex in
Rn−1. In the particular case of the symmetric Dirichlet
distribution, all n elements of the parameter vector are
equal, and thus the symmetric Dirichlet distribution is
fully characterized by a single scalar parameter α.

The key interpretation of the parameter that decreas-
ing α causes the weight of the density function becomes
concentrated at the vertices of the simplex. When α in-
creases, the density function becomes concentrated in
the interior (Figure 1).

As a prior for the topic and word multinomial distri-
butions in LDA, a larger parameter value for the Dirich-
let prior produces poorly resolved topics; documents be-
come increasingly ambiguous about their topic mixture,
and topics increasingly share words with other topics.

2 Methods

Datasets The datasets used in the current work are
created as per the description of the generative model.
As the application of Gibbs sampling in LDA re-
quires symmetric prior hyperparameters (Griffiths and
Steyvers, 2004), we take the values α and β to be
0.05, 0.1, and 0.2, representing well-separated, sepa-
rated, and poorly separated topics, respectively. In all
three cases, both α and β are chosen to be equal.

To evaluate recovery of the number of topics at dif-
ferent levels of topic separability, datasets for different
values of k are generated for each set of hyperparame-
ters. In particular, the following values for k are chosen:

k = 10, 15, ..., 95, 100

Each dataset consists of 1000 documents sharing aW =
1000 word vocabulary. In each case, the chosen Poisson
rate parameter λ is 100. To mitigate spurious effects of
a single run, ten datasets are generated under each set
of conditions.

The following pseudo-code describes the generative
process algorithmically:

for d = 1 to 1000 do
sample N ∼ Poisson(λ)
for i = 1 to N do

sample z(d)
i ∼ Multinomial( #”

θ (d))
sample w(d)

i ∼ Multinomial( #”

φ(zi))
end

end

Model Fitting While the original paper by Blei
et al. (2003) describes the process of using Variational
Expectation-Maximization to accomplish inference of
the model parameters, we use instead the process of
Gibbs sampling as described in Griffiths and Steyvers
(2004) throughout the current work. In particular,
this allows the use of the metric defined in Griffiths
and Steyvers (2004). Computationally, we use the
topicmodels package from CRAN (Grün and Hornik,
2011), which relies on the GibbsLDA++ library (Phan
et al., 2008; Phan and Nguyen, 2007).

For each dataset, candidate values k̂ are chosen to be:

k̂ = 5, 10, 15, ..., 195, 200

The Gibbs sampling method of fitting LDA models is
applied to each combination of (α, β), k, and k̂. An
upper limit of 2000 iterations is used, and in the case
of Griffiths and Steyvers (2004), every 50th iteration is
sampled to prevent sampling from correlated states of
the Markov chain.
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To simulate the Dirichlet hyperparameters α and β
being unknown, we use α̂ = 50/k̂ and β̂ = 0.1 when
fitting the LDA as suggested in Griffiths and Steyvers
(2004).

Evaluation For each dataset, the estimated number
of topics k∗ is selected according to the criteria of each
metric. Values for the existing literature metrics are cal-
culated using code adapted from the ldatuning pack-
age on CRAN (Nikita, 2016). With each set of hyperpa-
rameters, we plot the estimated k∗ from each metric in
each run against the true value of k corresponding to
that dataset.

3 New Metric

We propose in the current work a new method to esti-
mate the value k̂. We use the same notation as found
in Blei et al. (2003):

θ
(d)
j = P (z = j | d) in document d

φ(j)
w = P (w | z = j)

Subsequently, we estimate the probability of an ob-
served document P (d) in the corpus (Heinrich, 2005):

πd ∝

∏
wi

∑
j

θ
(d)
j φ(j)

wi

 1
‖wi‖

Note that ∝ is used since there is no guarantee that the
sum of πd over all observed documents will be unity.
Normalization is induced by dividing each πd by

∑
d πd.

Using conditional probability:

P (z = j) =
∑

d

πdθ
(d)
j

P (w) =
∑
j,d

πdφ
(j)
w θ

(d)
j

P (z = j | w) = φ(j)
w

∑
d πdθ

(d)
j∑

j,d πdφ
(j)
w θ

(d)
j

And again:

P (d | z = j) =
πdθ

(d)
j∑

d

πdθ
(d)
j

Estimating the topic distribution for document d with

Figure 2: Leading principal minor of order 100 of a confu-
sion matrix. Darker cells indicate higher values.

words w1, w2, ..., wN using the above probabilities:

P̂ (z = j | d) ∝
∏
wi

P (z = j | wi)

=
∏
wi

(
φ(j)

wi

∑
d πdθ

(d)
j∑

j,d πdφ
(j)
wi θ

(d)
j

)

Again, ∝ is used since there is no guarantee that the
sum over topics j = 1, 2, ..., k̂ will be unity. Nor-
malization is again enforced by dividing through by∑

j P̂ (z = j | d). Subsequently, for any document d′ in
the corpus, calculate the confusion between document
d and d′ as:

P̂ (d′ | d) =
∑

j

[
P (d′ | z = j) · P̂ (z = j | d)

]

=
∑

j

[
πd′θ

(d′)
j∑

d πdθ
(d)
j

∏
wi

(
φ(j)

wi

∑
d πdθ

(d)
j∑

j,d πdφ
(j)
wi θ

(d)
j

)]

Define the confusion matrix C|k̂ under the candidate
number of topics k̂ element-wise as:

{cij |k̂} = P̂ (di|dj)

Each column #”cj |k̂ of C|k̂ represents the confusion of
document dj with all other documents of the corpus.
Consider that in the ideal case, there would be no con-
fusion, and so #”cj |k̂ = #”ej where #”ej is the jth elementary
basis vector of RD. Hence, the ideal confusion matrix
is simply the D ×D identity matrix:

{cij |k̂} = δij

Figure 2 displays the leading principal minor of order
100 of a confusion matrix as calculated using the steps
described above. The main diagonal visibly contains
more weight, emulating the identity matrix. Note that
while it is intuitive, the confusion matrix C|k̂ only sug-
gests that confusing document di with dj means also
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confusing document dj with di; it is not a truly sym-
metric matrix.

Finally, define the metric’s scoring function as the
average cosine similarity of the columns #”cj |k̂ with #”ej :

M(k̂) = 1
D

D∑
j=1

#”cj · #”ej

‖ #”cj‖2‖ #”ej‖2

= 1
D

D∑
j=1

cjj

‖ #”cj‖2

Elbow Heuristic While the optimum value k∗ may
be estimated visually using the elbow method for each
dataset, a simple approximate heuristic is provided be-
low for identifying k∗ automatically with the reasonable
assumption that the candidate values k̂ contains the
true value k. Ideally, k will be contained reasonably
interior in the set of k̂’s.

Suppose k̂ = k̂1, k̂2, ..., k̂n and that for each k̂i there is
a corresponding metric value M(k̂i). Fit a local regres-
sion (LOESS) using M(k̂i) against k̂i. A span of 0.75
works reasonably well here. We select the estimated
elbow k∗ as the maximum positive residual from this
regression:

k∗New2017 = max
1≤i≤n

[
M̂(k̂i)−M(k̂i)

]

4 Results

Figure 3 displays the estimated number of topics k∗
against the true number of topics k. The dark grey line
k∗ = k is underlaid to indicate a correct recovery of
the quantity k. A metric should ideally follow this line
exactly at all points; signifying correct estimation of k.

Immediately, it is evident that Arun et al. (2010) and
Deveaud et al. (2014) produce poor estimates through-
out. While Deveaud et al. (2014) identifies low k cor-
rectly in the case of α = β = 0.05, it grossly under-
shoots in all other situations. In contrast, Arun et al.
(2010) grossly overshoots at all tested values of k. Fur-
ther analyses will ignore these two metrics as they seem
to be uninformative on the majority of the generated
datasets.

For a closer look at the behaviors of each metric,
Figures 4, 5, and 6 display the actual metric values of
three remaining metrics averaged over the ten replicates
for each combination of k and k̂. The true value of k
is marked on each graph on the corresponding line as
an hollow circle, and the chosen k∗ for each metric is a
solid circle. Note that the displayed k∗ is not derived
after averaging the metric values, but is the average
of the k∗ of each dataset. A correct recovery of k (on

average) would thus be represented as the solid circle
being ’on-target’.

Figures 4, 5, and 6 have the effect of isolating the
effectiveness of the actual metric by smoothing out de-
viations caused by the idiosyncrasies of each dataset.

Well-Separated Case In the case of Dirichlet priors
α = β = 0.05 (Figure 4), Griffiths and Steyvers (2004)
recovers the true value of exactly for k = 35, 40, ..., 75,
with appreciable performance for larger values of k.
Cao et al. (2009) does similarly; exact recovery for
k = 25, 30, ..., 60 and similarly appreciable performance
for larger k. However, both these metrics display signs
of overfitting below their comfort zone, more severely so
for Griffiths and Steyvers (2004) than Cao et al. (2009).
The new metric proposed in this paper suffers much less
overfitting at low values of k, and maintains good per-
formance throughout the tested range of k. All three
metrics display initial signs of underfit as k exceeds 80,
particularly for Cao et al. (2009).

The new metric displays a clear kink at the true
number of topics. Further, for lower number of top-
ics k = 10, 15, 20, the curve displays a noticeable bump
after the kink with maxima consistent with the over-
fit pitfalls suffered by Griffiths and Steyvers (2004) and
Cao et al. (2009). The conclusion is that the new met-
ric is able to both identify the correct value of k here,
as well as provide evidence for potential overfit.

Semi-Separated Case When the separatedness be-
gins to decrease, at α = β = 0.1 (Figure 5), significant
deviations in the ability to recover k appear. The new
metric maintains superior recovery at lower values of
k, but suffers the same reduction as the other two at
higher k.

While the ’sweet spot’ for Griffiths and Steyvers
(2004) extends higher than the new metric, it is con-
siderably narrower. Cao et al. (2009) shows similar be-
havior.

Furthermore, the new metric demonstrates more reg-
ular spacing of the solid dots for k > 60 than the other
two metrics, which exhibit irregular jumps. This sug-
gests that the new proposed metric is more stable when
the dataset is drawn from a less separated distribution.

Least-Separated Case Finally, in the least sepa-
rated case considered in this paper (Figure 6), there is
a clear breakdown of topic number recoverability across
all three metrics.

The workable range for Griffiths and Steyvers (2004)
reduces considerably, and Cao et al. (2009) suffers a
less dramatic contraction. This paper’s metric gains
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similar characteristics as Griffiths and Steyvers (2004);
the pattern of underfit appears very similar. Both seem
to experience a moderate decrease in k∗ at k = 30/35

Additional Observations From Figure 3, Griffiths
and Steyvers (2004) appears to have the least sensitivity
to idiosyncracies in individual datasets; at each value
of k, the dots remain near the groupwise mean. For
Cao et al. (2009) and the new metric of this paper,
the variance increases outside of their effective recovery
ranges.

An interesting interpretation of the effects seen when
α = β = 0.1 is that adding incremental topics above
60 is not compatible with the nature of the generated
dataset. In other words, 1000 documents and a 1000-
word vocabulary simply cannot support more than 60
topics at this level of separability. Consequently, all
three metrics maybe preferring to merge similar top-
ics, with additional incremental topics serving only to
chain-link many topics into one large topic.

Extending this interpretation to the least-separated
case of α = β = 0.2, a similar effect is seen. though k∗
seems to stabilize at around 25 to 35 as k approaches
100. It stands to reason that a finite corpus of doc-
uments with a finite length and vocabulary will have
a limit of sustainable topics; much as the maximum
resolvable frequency is half the sampling rate in wave-
forms, there is an upper bound on the number of topics
carried in a corpus.

Additionally, Cao et al. (2009) overshoots relative to
Griffiths and Steyvers (2004) in the semi-separated case
but the converse becomes true in the least-separated
case. This seems to suggest a strong sensitivity to
poorly separated topics in the metric of Cao et al.
(2009); it remains to be seen how the behavior changes
at even higher values of the hyperparameters α and β.

5 Conclusion

We show in the present work that there is room for im-
proving upon existing metrics for identifying the opti-
mum number of topics in the literature of Latent Dirich-
let Allocation. This work also demonstrates Arun et al.
(2010) and Deveaud et al. (2014) erring significantly in
the direction of overfit and underfit, respectively. We
demonstrate our new metric to have superior recovery of
k when the true number of topics is low, outperforming
Griffiths and Steyvers (2004) and Cao et al. (2009) in
situations pervious to underfit, while maintaining com-
parable performance elsewhere.
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Figure 3: Comparison between fitted values k∗ and true values k across all five different tested metrics. The dark grey line
represents the 45◦ line k∗ = k. Headings for each of the three graphs denote the value of the Dirichlet hyperparameters α
and β. Each coloured dot represents the estimated value k∗

(·) of a single dataset for metric (·). Metric names are drawn from
the labels in the ldatuning package (Nikita, 2016).
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Figure 4: Computed metrics and estimated k∗ under Dirichlet hyperparameters α = β = 0.05. Each line represents an
average over 10 runs of each value of k. Lines are interpolated between the averages across all runs at each tested value k̂.
An open circle denotes the position of the true value of k on the corresponding line. A closed circle denotes the average of
the estimated k∗ across all runs for the corresponding line.
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Figure 5: Computed metrics and estimated k∗ under Dirichlet hyperparameters α = β = 0.1. Each line represents an
average over 10 runs of each value of k. Lines are interpolated between the averages across all runs at each tested value k̂.
An open circle denotes the position of the true value of k on the corresponding line. A closed circle denotes the average of
the estimated k∗ across all runs for the corresponding line.
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Figure 6: Computed metrics and estimated k∗ under Dirichlet hyperparameters α = β = 0.2. Each line represents an
average over 10 runs of each value of k. Lines are interpolated between the averages across all runs at each tested value k̂.
An open circle denotes the position of the true value of k on the corresponding line. A closed circle denotes the average of
the estimated k∗ across all runs for the corresponding line.
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