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Abstract.

One of the earliest attempts to understand the phenomenon of turbulence dated back to a theory of
L. F. RICHARDSON which later became enhanced by A. N. KOLMOGOROV. By the contents of this
theory turbulence is considered as an energy-transfer taking place in cascade*form between eddies of
various orders of magnitude. The transfer becomes started by unspecified disturbance-signals acting
on fibre-eddies and is further evaluated on account of the fibres stretching. This principally can
explain, that eddies of various sizes will be created in generations while energy is distributed along
these generations from the largest eddies down to the smallest. But it is impossible to determine the
cascade-structure and its development more detailed.

In order to step forward this way, one exemplified will have to be provided the number of eddies for
every cascade-generation, eddies sizes and their appropriate life-times, and a characteristic of the
disturbance-signal as well. For this reason an eddy as fibre is replace by a more complicated model of
an eddy as spinning sphere with surface-tension and with specified disturbance acting on it. Due this
extended model the decay of an eddy can be explained as a partitioning into equal parts in a self-
organizing balance tretween disturbance and a reaction forced by surface-tension. The eddy's life-
time is then obtained as proportional to the square of the eddy's radius and the rotation-phase of the
split-results as nearly doubled compared with the proper value before a split. The disturbance-signal
is specified by the sum of resonance-terms each of them prepared for acting on an eddy of proper size.
As final result of the extended eddy-model, the characterization of disturbance, the self-organizing
balance of acting forces and derived quantities, turbulence can be declared similar to other dynamical
systems as a controlled route of energy from order into chaos.

1. Introduction.

L. F. RICHARDSON [1] and A. N. KOLMOGOROV 12 , ...,71 conceptually related dissipation with
other macroscopic quantities of a turbulent flow. They started from the idea that a turbulent flow is
fed with energy on large scales, which is transported by decay of eddies through an order of
magnitudes to the smallest eddies where finally it is totally transformed into heat. This process is
called energy-cascade and starts with the following proportionality:

For an appropriate REITIOLDS-numb€r ,': , it can be written:

1.2, , i.'. :::: ,l ,t r:r i,.r .:,::.:::a;.. :;t:t:;r.:,:t'.ttia::.; :t:;::.::

:"

Thus the value of , r,',. measures the range of various length-scales within the turbulence. The
KOLMOGOROV-length represents the extent of a smallest eddy in the turbulence.

According to L. F. RICHARDSON, turbulent flows show a hierarchy of eddies, where the larger
ones are built in a preliminary creation-process of the turbulence. Afterward they decay successively
in a sequence of instabilities down to a minimal magnitude . .; of eddies. Here they finally are
disturbed and their energy is transformed into heat due to viscosity of the turbulent medium. During
this hierarchical process, eddies submit most of their energy to their followers, onlv a small part each
time is lost through dissipation. The hierarchy ends as soon as f lf becomes comparable with ',,'which
results in j"r :::- i ':.

Tangential-speed and extend of an eddy from the hierarchy may be i i! ;' : ,: )., : respectively. then
its energy is of the magnitude 'l' ärd its so-called eddy-turn-over-time , ,' is:

1.3. ;,.a',, :.
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On base of these quantities the rate of energy-transport is given by:

1.4.

Such an independence of transfer-rate r Irl , from viscosity . i'. can be explained - due to
RICHARDSON - by the stretching of an eddy.

Turbulence in this sense starts with a picture about eddy-fibres in a shear-flow (see H. E. Fiedler
lsl)'

4.1.1.

The smallest swelling-out of a fibre will stretch its length, strengthen its angular-speed ,'-, ., änd
shrink its cross-section ,' ,r,i appropriately to HtrLMHOLTZ's law:

I.5. : ':

The stretching-mechanism by itself can be explained in a following way:

^.7.2.

Given a fibre in z-direction with a rotation in the (r,y)-plain. As soon as it becomes stretched in z-
direction, its cross-section in (r,y)*plain and with it the appropriate rotat ic:n lY xu / and intensity
/w2 / willbe enlarged. Such an increase of intensity - on its side - will cause further stretching of the
fibre in the other space-directions. Thus stepping forward this way, the initiai swelling*out of the
fibre wiII finally have been resulted into an energy-cascade filling up the complete fluid-space. Such a
procedure can be visualized qualitatively by the following graph:
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All this together will result in angular-speed /w I andwith it /u2 I to such an extent that the
energy-transfer-rate remains quasi constant. Therefore the energy-cascade is assumed to be quasi
independent from the viscosity /"/of the turbulent medium. For the energy-transfer-rate f e f across
the energy -cascade approximately the following proportionality can be obtained:

1.6. e - u{u^/A)2.

Compared to equation ll.4lthis will result in:

1.7. u{u,'/X)2 * u' /t =u2 lr.
During the extension of the energy-cascade each eddy partitions its energy /-u' / among the

followers, the energy of the followers therefore must be less than that of their predecessor. The value of
f u2 f decreases permanently in a propagating energy-cascade and in a similar way ll/does it too.
Thus finally - in the case of smallest eddies - the product /u.ll wlllbecome comparablewitk. lv l:
1.8. Re: u^"x/u * 1.

The values /A,u^,r^f of the smallest eddies in the turbulence are called KOLMOGOROV-scales,
they can be summarized in the following way:

1.9. x- (u3/€)1/a - Re-3/a"l

u^- {u'e}'/a - Re-'la'ut

r^* (uf e)'/2 - Re-t/2'rt.

KOLMOGOROV completed the theory of the energy-cascade, which formäIly was initiated by
RICHARDSON, with three additional hypotheses.
For eddies of /.\ < r <<t,/ statistical isotropy can be assumed. In addition lr,l of large eddies will show
in comparison with proper values of medium-eddies /r,<< r1f , t}rre letter will decay much faster. The
smallest eddies are in a statistical equilibrium. Under these aspects he came to his hypothesis of the
local isotropy:

H. 1. Far large REYNOLDS-numbers turbulent 'nzotions on smallest scales are .statisti,cally
i,sotropi,c and ui,ll erpi,re in stati,sti,cal er4wili,hri,umr (umi,aersal equ'i,li,bri,unz).

By the next hypothesis KOLMOGOROV expressed his opinion, that:

H.2. For large HEYNOLDS-nuynbers and, length*scales /, << I / statisti,cal quant'iti,es ui.ll anty
d,epertd, on three parameters - the lertgth-scale lr I itsel,f , the energy-transf er-rate lII I
and the ui,scos'itg /, I of th,e turbulent med,i,um.

Eddies of length-scales lf >> ,l - from the so-called Inertial-range * will remain nearly untouched
by viscosity /v/ . Those eddies will obtain their energy-influx nearly totally from their larger
predecessors and will deliver it nearly completely to their smaller followers of universal equilibrium.
Thus, for the statistics of these length-scales, energy-transfer is not decisive. In essence of this
KOLMOGOROV formulated his final hypothesis:

H.3. For l,arge REYNOLDS*numbers for scales /l >> , > Xf stati,sti.cal quantdties luuill haae
undaersal forms onlg d,epending on /e/ and /r/.

2. Model of an eddy's decay due to a disturbance acting on it.

The theory of RICHARDSON enhanced by KOLMOGOROV apparently disclosed some
deficiencies for instance with respect to the number and sizes of followers coming into existence as
consequences of a predecessor's decay, the individual life*times of the various members in the cascade
and last but least a characteristic of the disturbance-signal. This information however is needed in
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order to determine an appropriate cascade-structure, which then enables a statement about the roper
development of the turbulence. The following discussions should be understood to appropriately
enhance the former theory in this way.

Inside a fluid an eddy is now considered as sphere /(Sr)r/with a spin /{1/as united angular-
momentum of its particle-set. The form of sphere is chosen because it possesses the smallest surface
for an enclosed volume. A time-dependent f.orce f q1(t)/ as disturbance may act on the eddy from
outside trying to deform l$\r/ into another volume with increased surface. This will cause a reaction
/ gr(t) I parallel to I gy(t) I due to the surface -tension (consequence of the fluid*visc osity /u l).

^.2.1

The competing forces will influence each other and thus should be considered coupled together in a
self-organizing system, appropriately in the following way:

2.t dq1/d,t: -^l.gt-a.gz.gt ---+ d,qy/d,t: -7.et-&.ez.er {- 7,6: d"arrupi,ng-parameters

2.2 d,q2ld,t: -ö"qz+b.tq)' ---) d,q2ldt: -6.q2+b.(qr)' &, b : coupli,ng*parameters.

With respect to lq1{t) I and /qr{t) I one should make use of the so-called adiabatic approximation (see
H. HAKtrN [10]):

2.3 ö>>7 --+ d,q2fd,txA,

Due to relation l2.2lthis will result in:

2.4 qz = ö-'.b.(q)2.

Equation /2.4/ can be interpreted as: f q2/ must follow f q1/ immediately, lqr/ lnas become enslaved try
/qr/ (H. HAKEN [r0]). On the other han.d lq2l will react oL lhl back again via equation /2.1/ wirln
the consequence:

2.5 d,q1/ d,t : -j.et-d-1.a.b.(gr)3.

By equation /2.5 / force f q1f is expressed by the dynamics of a so-called unharmonic oscillator -
which depending on the conditions -:
2.6 [(y > o)] V [(t < 0) fi (d-1.a.b) > 0]

possesses two qualitatively distinct stability- modes:

2.7 lpo:0] V lqtrz: *(lryi' 6 l@"b)]1r21.

In the first case stable oscillations are performs with respect to the fix-point /pol , inthe second case
f paf becomes instable and bifurcates symmetrically into new stable*points f p1n2 f , eachbecoming
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the centre for subsequent oscillations. Therefore by the bifurcation of /pol is expressed, the sphere

/(S')r/ will be partitioned into smaller follower-spheres l(§r), A (St)r/, a process which can be
explained as follows.

For / q(t) / from outside I {52)r/ - instead of f 1 : constant f - a dampin g of / 7{t) I should be
expected , presumably of the following kind:

2.8 lry(rr) > 0] ---+ [7(tr) = 0] ---+ [z(rr) < 0].

Potential-curves for lV(q1$r) A y(qr( fu) I thenqualitatively may be visualized in a following way:

4.2.2

Deforming the potential-curve on the way , - ':' . , ,' ,:: ' s7i]l flatten the neighbourhood of ',,,
steadily, stability accordingly will be reached more slowly and finally will be exähanged by instability
at,-,, .Duringthisprocess,whichtakesatime ,: force :,,ri, willdeform toashapeof
surface with higher energy. As soon as the surface-energy has become high enough to build two times
the surface of i , ,i . . , this will occur at:

@/3).r.(r)3
-) T2vs: rr/(2)

r2vaxA.79.r1 -+ (S')rn, = 8.z.(rzus

= 15.69.(r1)2

(§'), = 4'rr'(r)2
--+ AO x3.t?.(r1

x12.57.(r,\2

(S')zur=
4/3).n.(r26)s

Sphere /(Su)tl will become partitioned symmetrically at /p, h pr/
volume ot /Yz.{53)1/.

After the split spin /fi1 will have been saved, thus for /(S3)2 fi
hold:

into spheres /(S*), ,{ (S3)r/ each

(5')ul following condition must

2.10 Jt:Jz*J-s +- Jz=Js.

Between the rotation-energies /ez,z/ ot /(53)2 V (S*)r/ ar:rJ /e1/ ot l(53)11 the following relationship
will exist:

e t=L/2.0t(wr) +-

--» e =Yz.n-(rr)'.(rr)' <-

0r=lT,annentu'm
of i,nerti,a

at= angular
uelocity

0t= K.(rt)z
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1/2.02us.(w2rs)2
?zus=ffwtnentuln

of i,nertia

r/z-n.(r26)'-(rruu)'
U)zvs= angular

ueloci,ty
€zvrx
rc.0.31. (11)'. (r r, r)'

rc.0.31.(r1)'-(rrr,

n.o.25.(r)'.(rr)'
(rrur)'= 0.8.(a.r1)2

b)zvgX 0.9.t 11

u)znz x 1.8.«r1
?zuz = n'(rrur\' (rrur)' = O.62.(r)2

e 2yg -- 
1/2.€1 ---+

r/+.n. (rr)2.(u,

This resr.rlts in:

2.L2 Jzrs= 0zuriIzrz --+ Jzuz= rc.(r26)2.w2rs --+ Jzrzx rc.0.62.(r1)2.0.9"r,,,, --+ Jzrsx 0.6"J1,

Energy /e oo/ - which has to be transferred by l{h(t) I in order to enlarge /(S'}r/ up to an
equivalent of l(9z)rnul -isproportionalto /AA/or /{r}2/.Thereforeasimilarrelationshipmusthold
for the proper life-time /f ((S')r) / (time of (,S3)r-existence):

2.L3 I((s')') - (".)'.

3. How a Disturbance-Signal acts on Splits in an Eddyt Decay-Process.

How a disturLrance-signal ls(t) I acts on the various splits in an eddy's decay, may be understood
in the following way.
The signal ItG)lmight Lre decomposed as follows:

3.1 s(r) = rr.=,rI-[hr(t)] = 13='1I-[(zi(r).qr(r))r.

As far as the functions /h iG) / will obey the conditions:

3.2 nf"fn,1tyat=A +- P:r((S3)j)

FOURIER-seriesofthefollowingkindareappropriatefor /hr{t):li$).lqt(t)li/,
3.3 lL jtt) = *=r_,rI"'[(Z(f ri-Z{f x)}.erp{zni."f'u"t}].

By the decomposition of an interval ll-fi, filr/ on the frequency-axis:

a complex entity /Z{f u)-Z(f )/ is associated with each interval llf r, f u*rl/. This entity contains all
information about amplitudes and phases from modes /eryt{2rri,.f'*.t) I in the frequency-range
/lfr,fo",l/.ViaWTENER-CHINTSCHIN-Theorem/\,TKIPEDIA/allentities /Z(f**)*Z(f)/"f
the sum in equation /3.3/may be associated with auto-correlations in the splitting-process, which on
their part will finally enable determinations of 11 ,/ and /(qrJi/ .

Withthispictureot /s(t)/inmind, itcanbeunderstoodhowafollower l$3)r/ot l{S')r/ instep /jl
of an eddy's decay will get the proper resonance-stimulation from /t(t) I for its split.
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4. The Route from Order into Chaos in an Eddy's Split-Cascade.

As soon as appropriate resonance-terms ,' ' - ,, r r , , from disturbance-signal will act on

the followers ,, : ." ' , . , and the followers of the followers ..., equivalent conditions are provided for
every split of the cascade. These splits will equivalently be performed as the one for Thus the
life-time of a sphere in ':', th generation of the cascade will be diminished by:

4.1

and the phase-speed will be nearly doubled:

All this together will draw a picture about an eddy's decay as controlled route from order into chaos

similar to many other dynamical systems described for instance by O-H. PLEITGEN, H. IÜRCONS,
D. sAUPtr [11].

5. Conclusion. ,

Due to the theory of L. F. RICHARDSON - successively enhancedby A. N. KOLMOGOROV *
turbulence is characterized as production of eddies in a hierarchical order. OnIy the largest of them are
created during initialization of the process, but aIl will successively decay by series of instabilities into
followers on decreasing orders of magnitude. This process transports energy along a cascade nearly
without dissipation. Only eddies on lowest hierarchical level will distinctively be influenced by viscous

dissipation and finally be destroyed by transformation of their energy into heat.
According to this theory the enerry-cascade will be started by disturbances on eddies of highest

Ievel which cause them to stretch in all directions. The initia,l stretching will continua§ create series
of followers on lower hierarchal levels with decreasing portions of energy. This is the concept of
cascading so far, but this picture lacks on details about decays, like numbers and sizes of followers
coming into existence and individual life-times in any specific case, artd on characteristics of
appropriate disturbance-signals as well. This information however is needed in order to determine an
appropriate cascade-structure, which then enables a statement about the proper development of the
turbulence.

In order to enhance the former process with respect to these deficiencies, the model of an eddy in a
fluid will be changed. The existing picture of an eddy is replaced by a spinning sphere whose surface is
exposed to a self-organizing balance between an outer disturbance-signal and a reaction-force of the
sphere due to its surface-tension (on account to the fluid's viscosity). An adiabatic approximation on
the forces damping-parameters makes the disturbance to become the leading-force of the system
while the reaction-force is enslaved and must follow the disturbance immediately. Due to these facts
the behaviour of the self-organizing system at variations of the disturbance could be best described by
the dynamics of an unharmonic oscillator, which is characterized by two different stability- modes.

Depending on the value of the disturbance damping-parameter oscillations with respect to a stable
fix-point bifurcate into a mode where the former fix-point loses its stability and becomes replaced by
two other symmetrically positioned stable fix- points. The bifurcation of the initial stability mode
with one fix-point into another one with two fix-points has to be interpreted by a split of the initial
sphere into two follower-spheres.

During this splitting-process disturbance transfers energ'y to the surface of the initial sphere -
and thereby deforms it - up to an energy-levels equal to the surface-energies of two follower-spheres
each with a half of the predecessor's volume. The split will save the initial spin and the follower-spins

Tt=2'r/wt
---+ Tru, /T.1=2.22 T*ulT*x2,22.

Tznz=4'trfa2n3
Tznsx  .r /(O.9
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of equal lengths will sum-up for the predecessor's spin. The rotation-energy of the initial sphere will
be equally partitioned among the followers which obtain individual spin-lengths of about 60% and
phase-velocities of about LLL% relative to the proper values of the predecessor. Thus after any split
rotation has nearly doubled its phase-speed. Split-energy of a sphere (due to enlargement of its
surface) and its life-time are supposed to be proportional to the square of sphere-radius.

A disturbance signal within the model's frame is appropriately Lre assumed as sum of resonance-
terms, each suitable for a split of a proper sphere. A term shall be product of a periodic function and an
associated time-dependent damping-parameter and may vanish by integration over an appropriate
time-period (life-time of a proper sphere). Due to the letter quality it can be decomposed into a
FOURIER-series with complex coefficients. Every coefficient willbe derived on base of an individual
set of frequency-modes. If the coefficients - which now principally contain all information about
amplitudes and phases of their proper modes - are formulated in a suitable way, the FOURIER-
series - which they belong to - will result in a periodic function and an associated damping-
parameter appropriate for the proper resonance.

Because each follower-sphere will now find its proper resonance-term for a split, it can and will go
through the same split-procedure with equivalent conditions as the predecessor did. This means,
starting from the split of the initial sphere, one obtains a series of subsequent follower-splits, each
nearly doubles phase-speed and shortens life-time by about a third compared to the proper
predecessor. This way a picture about an eddy's decay can be drawn as a controlled route of en'ergy
from order into chaos, similar to those of many other dynamical systems too.
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