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Abstract. Reviewing Laplace’s equation of gravitation from the perspec-
tive of D. Bernoulli, known as Poisson-equation, it will be shown that
Laplace’s equation tacitly assumes the temperature T of the mass sys-
tem to be approximately 0◦K. For temperatures greater zero, the grav-
itational field will have to be given an additive correctional field. Now,
temperature is intimately related to the heat, and heat is known to
be radiated as an electromagnetic field. It is shown to take two things
in order to get at the gravitational field in the low temperature limit:
the total square energy density of the source in space-time and a (mass-
less) field, which defines interaction as quadratic, Lorentz-invariant, and
U(4)-symmetric form, that restates the equivalence of inert and gravi-
tational energy/mass in terms of absolute squares. This field not only
necessarily must include electromagnetic interaction, it also will be seen
to behave like it.

1. Problem Statement
A system of N particles in spacetime in Newtonian mechanics is a system
that is to be defined by 3N location coordinates qk as well as a common time
coordinate and their associated 3N momentum coodinates pk as a function
of time. Mostly these systems are stably confined to a fixed region in space
over time like a drop of water or a stone. So, there will be many equations
of confinement, and to simplify the mathematical model, Bernoulli changed
that model by replacing the particles’ position with a spatial mass density
ρ(t) : R3 3 ~x 7→ ρ(~x(t)) ≥ 0. Laplace then took over that model and showed
that the gravitational force of a mass density ρ could be expressed as Poisson
equation ∆Φ = 4πGρ of a potential function Φ, the gravitational field and
the gravitational constant G, ∆ := ∂2

1 + ∂2
2 + ∂2

3 being the Laplace operator.
That marked the introduction of field as a concept into physics. What made
it both bold and dubious, was that it said that the field was to be the sheer
equivalent of the mass distribution. It was soon found out that the field was
to be an harmonic function of the space coordinates, which led to the famous
Laplace demon problem, and another problem then showed to be the lack
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of Lorentz covariance, giving evidence that the Laplace field of gravitation
cannot be correct.
However, there is much more to it: Both, Bernoulli and Laplace took it as
evident that a (smooth) mass distribution ρ(x) of N particles, which is con-
fined to a bounded region K ∈ R3 (for all times t), could be resolved at each
given time t into N disjoint bounded regions K1, . . . ,KN , containing a unique
particle, if only the particles would stay apart from eachother. With that, it
should be possible to replace ρ with the sum

∑
k ρk of smooth, non-negative

functions ρk of disjoint support and compact support, each (which means,
they all vanish outside a bounded set, e.g. K, and if one is greater zero at
some point x, then all the others must vanish at this point x). If so, the above
Poisson equation could be rewritten as a sum

∑
k ∆Φk =

∑
k 4πGρk of N

independent gravitational equations for each and every particle.
And indeed, mathematics proved this to be possible, now known as the par-
tion of unity (see e.g. [2, Ch.16]). That, on one side, means that even if all
particles are pointwise in nature, we can approximate these particles through
Bernoulli’s ingenious replacement of mass position by smooth mass densities.
On the downside, that shows that Laplace’s theory of gravitation must lack
generality, because in it, all the particles of a body are independent from
eachother: they just add up individually!
And this is incorrect, because it totally disregards the body’s kinetic energy:

The mass m of a body B at rest is to be defined to be equal to the total
energy of B. Now, if B was simply the sum of N individual oscillating particles,
then the total energy E is to be the square root of

∑
1≤k≤N m

2
kc

4 +(cmkvk)2,
where c is the speed of light, mk are the individual masses, and the vk are
the mean speeds of these masses, so that kinetic energy, a.k.a. ”temperature”,
always will add to the the total mass of B!

At the same time, this shows, that Bernoulli’s notion of expressing the
masses in terms of space-time densities j(t, ~x) = (ρ0(t, ~x), ρ0~v(t, ~x)) is inap-
propriate: Instead, j is to become necessarily the 4-vector of the square root
density of energy and momentum of the composed system, such that

< j, j >:= ‖j‖ :=
∫
R4

∣∣∣j2
0(x) + · · ·+ j2

3(x)
∣∣∣ d4x

equates (locally) to the square of energy, which then becomes the square
of the total energy of B, i.e. up to c2 is equal to the square of the inert mass m
of B. (So, j can be conceived as the macroscopically composed superposition
of local quantum states, which approximates the system’s particles.)

(We could leave out the integration over time t, though, by restricting
the integration of space of the source to its proper retarded and advanced
times, though.)

In all, the appropriate model for discussing gravity of particle systems
is that of time curves Ω : R 3 t 7→ Ω(t) := jt := (j0,t, . . . , j3,t), where the
jµ,t are to be smooth functions with compact support in space-time R4 for
each µ and t, such that their absolute squares,

∣∣jµ,t∣∣2, are the intensities of
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smooth, local energy-momentum packages of the particles in space and time,
as sketched below:

Having Ω : t 7→ jt ∈ L2(R4)4 in place, we can state:

Proposition 1.1. The total energy square of a system Ω : t 7→ jt at time t0,
which is at rest at t0 is given by E2 =< jt0 , jt0 >=

∑
µ

∫
R4

∣∣jµ,t0(x)
∣∣2 d4x.

2. Deriving gravity
It now shows up that there is nothing else than this notion of Ω needed to
discuss gravity:
If instead of inert masses mk, the system was made of electric charges, or
even hadronic baryons, or whatever could be idealistically thought of to re-
sult in massy particles, the energy-momentum distribution is already put as
a quadruple jt of complex-valued states, the absolute squares being their in-
tensities. (We’ll shortly see, why this is the case, but for the moment you
might look that up from any standard text on quantum field theory.)

So, whatever there might be in a bounded box B ⊂ R4 as observed from
an external system at some time t0 assumed to be at rest, E2 =< jt0 , jt0 >
turns out to be c4 times of the square of its (inert) rest mass!
With this, we then deduce by equivalence principle, that this inert square of
mass must be proportional to the square of gravitational mass, and to get
at the corresponding gravitational field, we just need to compare with the
covariant Maxwell equations, which readily rewrites into:

< jt0 ,�A >= Const < jt0 , jt0 >= Const E2, (2.1)

where � := ∂2
0−· · ·−∂2

3 is the wave operator, A the electromagnetic 4-vector
field, and Const a constant, which in Gaussian units is identically 1 along
with c.

Let’s now choose that constant differently, to be Const = −4πG, where
G is the positive gravitational constant, such that∑

µ

< jµ(x),�Aµ(x) >= −4πGE2. (2.2)
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Equation 2.2 then states nothing but the equivalence principle: It says that
Ω : t 7→ jt has included into the jt a gravitational interaction potential, which,
when squared and summed up, is to be proportional to E2 and is contracting
(due to negative sign of −4πG).

Theorem 2.1 (U(4)-Invariance). We now are in the position to explain, why
Ω : t 7→ jt suffices to describe gravitational interaction:
Because equation 2.2 becomes U(4)-invariant, with U(4) being the group of
unitary 4 × 4-matrices, just by letting the bra vector < jt| be the complex
adjoint of its ket vector |jt >. (This is also how we get at the non-negative
square E2 =< jt, jt >.) And, as is basic group theory knowledge, U(4) is
reducible and decomposes into a product of subgroups U(4) = U(2)× U(2)×
SU(3), where in turn U(2) = U(1) × SU(2) is the product of the phase
symmetry group U(1) and the spin group SU(2).

And the fact that the current standard model is a gauge theory based on
the symmetry group U(1)×SU(2)×SU(3), makes that theory embedded part
of the gravity equation 2.2, assigning a well-defined mass to all of the particles
of that standard model: The mass of the body is to be defined by squaring and
adding up the absolute values of square energy of all of its constituents!

Let’s harvest its direct consequences:

3. Gravitational Interaction
An immediate implication of the theorem is:

Corollary 3.1 (Phase Symmetry). The 4-vector streams Ω : t 7→ jt and the
4-vector potential are U(1)-invariant, i.e. phase invariant. In particular, any
space-like vector Ω : t 7→ jt is equivalent to its time-like counterpart iΩ : t 7→
ijt. Similarly, U(4)-symmetry allows to smoothly rotate elements contained
within the forward light cone into ones within the backward light cone, and
vice versa. In other words, it would to be an error to restrict consideration
of energy-momentum of the dynamic system to the positive-energetic time-
cone, only. Instead, we have to symetrically deal with the full set of space-time
elements of R4 outside the light cone Γ := {(t, ~x) ∈ R4 : t2 − ~x2 = 0}.

Now, for µ = 0, . . . , 3 and jµ,t, which I recall is a smooth function of
compact support in space-time R4, let Fjµ,t(χ) =

∫
R4

1
(2π)2 e

−iχ·xjµ,t(x)d4x

be the Fourier transform of jµ,t, which exists as a well-defined analytic func-
tion, and is invertible by its inverse F−1 to jµ,t again, so from equation 2.2
we deduce

FA(χ) = (−4πG) 1
χ2

0 − · · · − χ3
3
Fjt(χ),

that is: jt 7→ A is the linear mapping S2jt with S2 being the Fourier trans-
formation of the multiplication operator Ŝ2 := 1

χ2
0−···χ3

3
.

So, S2jt := (−4πG)A is well-defined for each Ω :7→ jt, and therefore S :=
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(
∑
µ γµ∂µ)(−4πG) 1

2S2 is well-defined for each Ω : t 7→ jt, where the γµ are
the 4× 4-Dirac matrices, plus we get that S2 becomes the square of S.

For the purpose of simplicity, let’s drop the external time index from jt.
Again, for each µ, the mapping Θµ : jµ 7→ Aµ defines a linear mapping from
jµ ∈ C∞c (R4) to a functional which is defined ”outside the support supp(jµ)
of jµ”:
For x, y ∈ R4 let d(x− y) := (x− y)µ(x− y)µ ∈ R be the Minkowksi distance
of x and y, and with jµ ∈ C∞c (R4) and x ∈ R4 let

p(x, supp(j)) := min
0≤µ≤3

inf
y∈supp(jµ)

∣∣d(x− y)
∣∣ ∈ [0,∞),

which defines a seminorm on R4. With it, given j = (j0, . . . , j3) as above,
let Ξ(j) := {x ∈ R4 | p(x, supp(j)) > 0}, which is open in R4. Then Θ =
(Θ0, . . . ,Θ3) maps j to a quadrupel of functionals on C∞c (Ξ(j)) (as shown
subsequently). Let’s define the functional spaces above and see what the
seemingly undefined term < j,A >=< j, S2j > gives in terms of distribu-
tions:
Let K ⊂ R4 be the (compact) closure of a non-empty, open, and bounded sub-
set Ko ⊂ R4, and let Ξ(K) as above be the set of all x ∈ R4 with p(x,K) > 0,
which is an open, non-empty subset of R4. Ξ(K) itself is the union of a se-
quence X1, X2, . . . of compact regions of R4, which as K are the closures of
nontrivial, open sets Xo

l ⊂ R4. Given such a compact region X, the set of
all infinitely differentiable (complex-valued) functions with support in X is
a vector space C∞c (X), which becomes a complete locally convex, separable
space, when equipping it with the sequence of supremum norms for all its
n-th order partial derivatives (where n ≥ 0 is understood), see e.g. [2]. Then
the space C∞c (X)4 = C∞c (X) ⊕ · · · ⊕ C∞c (X) of quadruples (j1, . . . , j4) is a
(separable, complete) locally convex space, and so is its dual, C′∞c (X)4, the
space of continuous linear functionals on C∞c (X)4 (see again: [2]). This then
defines C′∞c (Ξ(K))4 as the union

⋃
l∈N C′∞c (Xl)4, giving it the finest locally

convex topology, for which the embeddings ι : C′∞c (Xl)4 → C′∞c (Ξ(K))4 are
continuous, which is called LF-space (see again: [2, Ch.13]).

Proposition 3.2. S and S2 are well-defined as linear mappings on C∞c (K)4

into C′∞c (Ξ(K))4, and < j, Sj >=< j, S2j >= 0 holds for each j ∈ C∞c (K)4.

Proof. Without loss of generality, let’s assume −4πG ≡ 1. Let δ : C(R4) 3
f 7→ f(0) ∈ C be the Dirac-distribution (in 4 dimensions). Then �f = δ
is solved by f(x) = 1

(2π)4

∫
R4 e

ix·ξ −1
ξ2

0−ξ2
1−ξ2

2−ξ2
3
d4ξ, so for x ∈ Ξ(K) and j ∈

C∞c (K)4,

S2j(x) = 1
(2π)4

∫
R4×R4

e(ix−y)·ξ −1
(x0 − y0)2 − · · · − (x3 − y3)2 j(y)d4yd4ξ

is a well-defined complex functional on C∞c (Ξ(K))4, since for g ∈ C∞c (Ξ(K))4

g(x) ·
∫
f(x− y)j(y)d4y is integrable in x, due to inf

x∈supp(g)
p(x,K) > 0. And,

since j is infinitely differentiable, S2j is infinitely differentable on Ω(K).
(Because the 4 components jk of j satisfy

∫
|jk| d4y ≤ V ol(K) supy∈K

∣∣jk(y)
∣∣,
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S2 even defines a continuous mapping from C∞c (K)4 into C′∞c (Ξ(K))4.)
Along with S2, all its partial derivatives are well-defined too.
Hence, S = (

∑
0≤µ≤3 γµ∂µ)S2 is a well-defined mapping from C∞c (K)4 to

C′∞c (Ξ(K))4.
Lastly, < j, S2j >=< j, Sj >= 0 follows from the fact that every jµ ∈ C∞c (K)
is equal to zero outside of K, so in particular vanishes on Ξ(K). �

Remark 3.3. Physically, what the proposition tells, is that the field does not
interact with its own source.

With it, let Ω : t 7→ jt =
∑

1≤k≤N jk(t) be the sum of N time-curves of
smooth vector functions t 7→ j1(t), . . . , jN (t) ∈ C∞c (R4)4 of disjoint support
and of compact support at each instance of time as illustrated below:

That’s what an external observer would e.g. see, as he looks at our solar
system: at each time t = x0, he sees planets and sun as chunks of energy-
momentum distributions spatially staying apart of eachother. Dropping the
external parameter t again, equation 2.2 holds for the sum of energy mo-
mentum distributions j =

∑
k jk, and as such it includes the interaction

between all the N chunks jk (at ”retarded” times: note however, that the
composed system is distributed over space-time and the observer has no in-
formation on which particle point comes first). If instead the N chunks were
independently moving from eachother, we would see different distributions of
energy-momentum jfree,1, . . . , jfree,n, each moving in a straight line. What
we want is an interaction defining, non-positive, symmetric field operator
Ṽ 2 ≤ 0 on the energy momentum densities j capturing that interaction, i.e.
such that:

< j(t), j(t) >:=
∫
jfree(t, ~x)jfree(t, ~x)d3x

=< jfree(t), jfree(t) > + < jfree(t), Ṽ 2jfree(t) > .

With W defined such that Ṽ 2 = W 2, then W ∗ = −W , i.e. W is anti-
symmetric, and

< j(t), j(t) >=< jfree(t), (1 +W ∗)(1 +W )jfree(t) >,
where W ∗ denotes the adjoint of W , so

< j(t), j(t) >=< (1 +W )jfree(t), (1 +W )jfree(t) > .
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Let’s now simplify the calculation: Instead of demanding �S2(t, ~x) =
δ(t, ~x) for the Green’s function, let’s solve simply for �S2(t, ~x) = δ(t2 − ~x2).
The solution then is a distribution of function of time t and radius r, namely
of t2 − r2, allowing to express the solution in terms of the time parameter.
Now we know that −∆ 1

|~x| = 4πδ(~x), and we have δ(t2− r2) = δ(t+r)
2r + δ(t−r)

2r .
As is common, the convolution operator δ(t−r)

4πr is called ”retarded” (wave)
propagator S+(t), while δ(t+r)

2r is termed advanced propagator S−(t). So,
4πδ(t2 − r2) = (1/2)S−(t) + (1/2)S+(t), (see e.g.: [1][Ch. 21-3]). It is now
commonly postulated that the advanced propagator S− was to be neglected,
as it was representing waves coming in from future to the past, which was
anti-causal, so that only the retarded propagator S− was to exist, and even
Feynman himself granted the advanced propagator only a virtual role as it
came to relativistic particle physics. So, (1/2)S−(t) + (1/2)S+(t) is replaced
by S+(t), which out of the sudden raises major problems and might not have
been the best idea:
What about reversibility? Since the time inverse maps the retarded prop-
agator into the the advanced propagator, this turns time inversion into an
anti-causal, not permitted operation - just to name one of the problems. Let’s
show the mathematical error with the casality argument:
By substitution z2 := t2 − r2, δ(t2 − r2) becomes δ(z2), and the convolution
of this with a function g(z′2) defines a z-shift of g, where z is the the eigen-
time: it is positive shift on the positive eigentime region and negative in the
negative half. According to relativity, these shifts are invariant in every in-
ertial system. Moreover, δ(z2) integrates to the Heaviside function w.r.t. the
variable z2, which, resubstituting space and time coordinates, is the charac-
teristic function of the light cone (which is zero on the spacelike region and
equal elsewhere). That’s the whole point: given a function g that depends
on t−r2, only, that function can be shifted in time on the light cone without
changing value.
Now, let’s say, we want to integrate δ(z2) w.r.t. z rather than z2. Then, be-
cause dz2 = 2zdz, we have

∫
δ(z2)dz =

∫ δ(z2)
2z dz2, and we get the divergent

factor 1
2z on top into the integrand. Note that, while dz now is positive for

negative z, the external derivative is negative for negative z, so the boundary
values of the integral

∫ δ(z2)
2z dz2 at zero cancel out when integrating along

the z axis from a negative z = −h to z = +h, and in fact the whole integral
from −h to +h vanishes, due to the symmetry of δ(z2). Next, note that for
a function g(z), which is invariant w.r.t. Ta2 : z2 7→ z2 − a2, the absolute
square |g|2 also is, so the invariant Ta2 could be the product U∗(ā)U(a) of a
unitary representation U : a 7→ U(a) of the translation group, and that could
now even be the translation of time, of which we know to be homogenous
and reversible in energy conserving, inertial systems. Then, the convolution
operator δ(t − a) shifts time by a constant a, δ(t + a) its inverse, and − 1

t+r
is the time inverse of 1

t−r . Further more, the Fourier transforms of δ(t − a)
and δ(t+a) are complex conjugates of eachother. That said, putting the time
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inverses to the bra-side of the complex inner product, the adjoint S∗+(t) of
S+(t) becomes equal to −S−(t), and we have (setting W := S):

< j(t), j(t) >=< (1 + S+(t))jfree(t), (1 + S+(t))jfree(t) >
=< jfree(0), (1 + S∗+(t) + S+(t) + S∗+(t)S+(t))jfree(0) >

=< jfree(0), (1− S−(t) + S+(t)− S−(t)S+(t))jfree(0) >,

where S+ − S− = 0 as shown above, and −S−S+ = − 1
(1π)2r2 . So, dropping

the bra side, we get j = (1+S+)jfree, where by definition jfree is constant in
time. Also, in the non-relativistic limit, the fluxes jk converge to zero, and as
the speed of light goes to infinity, −S+ approaches the gravitational potential
(up to a suitably to choose, constant factor).

Note that the interaction now is time-reversible. It is the result of a
radially radiated massless field proportional to the mass sources. That could
also be an electromagnetic field. How can that be?
Given a mass system, each particle emits such a field, and when it reaches
other particles, these targets gets a pull. Each target also pulls at the very
same time at the source particle, namely in the reverse instantanous direction
on the light cone. But, as this is backwards w.r.t. the Euclidean time axis,
that makes a push. Now, we don’t account the pushes to gravity, but we call
it kinetic energy or heat, that we in term associate with a distractive, ever-
expanding behavior. In the end, it’s the heat within our own solar system
that hinders the system from collapsing (via the centrifugal forces). Plus,
when it gets heat from the outside, it expands, while heat loss will contract
it.

In all, it was shown that gravity can be derived from the electromagnetic
field. It can be equated to the maximal amount of heat which the body can
stably contain.
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