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Abstract 

The analysis of the reversibility of quantum mechanics depends upon the choice of the 

time reversal operator for quantum mechanical states. The orthodox choice for the 

time reversal operator on QM states is known as the Wigner operator, T*, where * 

performs complex conjugation. The peculiarity is that this is not simply the unitary 

time reversal operation, but an anti-unitary operator, involving complex conjugation 

in addition to ordinary time reversal. The alternative choice is the Racah operator, 

which is simply ordinary time reversal, T. Orthodox treatments hold that it is either 

logically or empirically necessary to adopt the Wigner operator, and the Racah 

operator has received little attention. The basis for this choice is analysed in detail, 

and it is concluded that all the conventional arguments for rejecting the Racah 

operator and adopting the Wigner operator are mistaken. The additional problem of 

whether the deterministic part of quantum mechanics should be judged to be 

reversible or not is also considered. The adoption of the Racah operator for time 

reversal appears prima facie to entail that quantum mechanics is irreversible. 

However, it is concluded that the real answer to question depends upon the choice of 

interpretation of the theory. In any case, the conventional reasons for claiming that 

quantum mechanics is reversible are incorrect. 
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The Quantum Mechanical Time Reversal Operator. 

1. Introduction.  

Callender [1] argues for two contentious conclusions, both of which I support: that 

non-relativistic quantum mechanics is irreversible (non-time reversal invariant, or 

non-TRI for short), both in its probabilistic laws, and in its deterministic laws. 

These claims contradict the current assumptions in the subject. The first point, the 

irreversibility of the probabilistic part of quantum mechanics, is the most 

important for understanding irreversible processes, and was already argued 

convincingly some fifty years ago by Watanabe in 1955 [2], [3], as confirmed by 

Healey [4] and Holster [5], although it has been overlooked by most authorities on 

the subject, such as Davies [6], Sachs [7], and Zeh [8]. Similar points have also 

been made independently, notably by Schrodinger [9] and Penrose [10]. But I will 

not deal with this problem here, since I have examined it in detail elsewhere [5].  

Here I only examine Callender’s second claim, i.e. that the deterministic 

dynamics of quantum mechanics is also non-time reversal invariant.  The problem 

here is more subtle, and we will find that the orthodox analysis suffers from a 

number of deep-seated conceptual confusions. 

Callender [1], distinguishes between TRI (Time Reversal Invariance) and 

WRI (Wigner Reversal Invariance), the latter being generally interpreted as time 

reversal invariance in quantum mechanics, while the former is generally dismissed 

in quantum mechanics as logically incoherent. TRI is symmetry under the simple 

transformation: T: t-t alone. WRI is symmetry under the combined operation: 

T*, where T is the simple time reversal operator, and * is complex 

conjugation. Callender first observes that: 

 

“If one surveys the literature concerning this issue, one finds many arguments that attempt to 

blur the difference between WRI and TRI. Probably the most frequent claim is that in 

quantum mechanics the physical content is exhausted by the probabilities. As Davies puts it, 

‘a solution of the Schrodinger equation is not itself observable’ so Wigner’s operation can 

restore TRI while leaving ‘the physical content of QM unchanged’ [Davies 1964, 156].”  [1]  

p 262-263. 
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After briefly dismissing this kind of argument, Callender then observes: 

 

“This is not the place to go through all the misguided attempts to blur the distinction between 

WRI and TRI, but another popular argument claims that WRI is necessitated by the need to 

switch sign of momentum and spin under time reversal. Here the reply is that there is no such 

necessitation. In quantum mechanics, momentum is a spatial derivative (-i /x) and spin 

is a kind of ‘space quantisation’. It does not logically follow, as it does in classical mechanics, 

that the momentum or spin must change signs when t-t. Nor does it logically follow from 

t-t that one must change *.” [1], p. 263. 

 

These are indeed the two main kinds of reasons given for interpreting WRI as time 

reversal invariance. I will concentrate here on analyzing the second reason, which 

in one form or another is regarded as conclusive by most authorities. The first kind 

of reason, as Callender observes, generally appeals to invalid operationalist or 

positivist principles, and I will briefly return to this in the final section. But the 

second reason is the main concern here, because it appears to follow from a 

straightforward argument, which I will analyse in detail. This conventional 

argument, although widely accepted by quantum physicists, is unsound. The 

failure of this kind of argument reflects deeper misunderstandings both of the 

logic of time reversal and the interpretation of quantum mechanics.  

2. Background. The T-Reversed Theory.  

I note firstly that the problem has a longer history than Callender [1] appears to be 

aware of, and has previously been discussed in some detail by O. Costa de 

Beauregard [11] in the relativistic context. The viability of the T-operator appears 

to have been first advanced by Racah [12]. de Beauregard, also citing Watanabe 

and Jauch and Rohrlich [13], claims that the use of T for the time reversal operator 

is supported by Feynmann’s 'zigzag' model, which interprets anti-particles as 

'particles traveling backwards in time': 

 

While the well-known motion reversal operation  is obviously quite consonant with the 

Schrodinger advancing time, and the Tomonaga-Schwinger advancing s philosophy, the 

Racah time reversal operation T is generally discarded with little comment as being non-

physical. It can be consistently used, however, as recognized by Watanabe and by Jauch and 

Rohrlich. We intend to show here that (as defined in the framework of the Dirac electron 
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theory) T exactly is the geometrical reversal of the time axis which is appropriate in the four 

dimensional space-time geometry, and is thus naturally akin to the Feynmann zigzag 

philosophy. [11], p.524. 

 

I will follow de Beauregard and refer to the transformation: T: t-t applied to 

quantum states as the Racah operator, and the orthodox T* as the Wigner 

operator. de Beauregard’s analysis is extremely interesting, but it is about 

relativistic quantum mechanics, and he does not argue that T is appropriate in non-

relativistic quantum mechanics, or analyse the underlying logic of this choice in 

any detail, which is the aim here. I comment on his views in the final section.  

I will define the deterministic part of ordinary, non-relativistic quantum 

mechanics as ‘QM’, and the first point is that:  

 

Wigner Invariance: T*(QM) = QM, or equivalently:  T(QM) = *(QM) 

 

Racah Non-Invariance:  T(QM)   QM, and:  *(QM)   QM 

 

It is readily seen that the time dependant Schrodinger equation is unchanged by 

the transformation T*, but changed to an anti-symmetric form by T alone, and by 

* alone, by looking at the simple Schrodinger equation for a free particle, and its 

transformations:   

 

Theory:  Images of Schrodinger Equation:  Simple Solutions  

QM /t = i  /2m 2/x2 A exp((i/ )(px-p2t/2m)) 

T(QM) -/t = i /2m 2/x2 A exp((i/ )(px+p2t/2m)) 

T*(QM) -/t = -i  /2m 2/x2 A exp((i/ )(-px-p2t/2m)) 

*(QM) /t = -i /2m 2/x2 A exp((i/ )(-px+p2t/2m)) 

 

The ‘simple solution’ here represents a particle with a precise momentum and 

kinetic energy, but with no position defined. More realistically, free particles are 

‘wave packets’, represented by linear sums of simple solutions, with uncertainty in 

both momentum and position; but these have the same forms of transformation as 

illustrated by the simple solution, and the simple example suffices for the purposes 
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of this paper. The class of these simple solutions for T*(QM) is the same as for 

QM because p can be positive or negative. But the class of solutions for *(QM) 

(or equally T(QM)) is not the same as for QM because p2 must be positive. 

To see the main relationships between the transformations, we can take QM 

(or equivalently, T*(QM) ) to represent a class {} of solutions to the 

Schrodinger wave equation, and T(QM) (or equivalently, *(QM) ) to represent a 

‘dual’ class, {T}, of T-transformed solutions. These are disjoint classes. There is 

a perfect 1-1 correspondence between them, as illustrated in Fig. 1.  

 

Figure 1. 

Points in this Venn diagram represent logically possible complex-valued 

wave functions (mappings from points of space, r, to complex numbers, z). 

T-images are given by reflections in the horizontal dotted line.  

*-images are given by reflections through the center point.  

T*-images are given by reflections through the central vertical line.  

The top ellipse represents all the solutions to QM. This is identical to the set 

of solutions to: T*(QM). The bottom ellipse represents all the solutions to 

T(QM), which is identical to the set of solutions to *(QM). This is disjoint 

from QM.  

 

The wave functions in Fig. 1 have also been stratified into three kinds:  

 

 (All possible wave functions.) 

 

 QM   =   T*(QM) 

 

 A B C 

   .  . T* 

  

 

  

 T . . * 

 C’ B’ A’ 

 

 T(QM)  =  *(QM) 
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 A represents non-equilibrium thermodynamic processes (or retarded 

waves, dispersing from a centralized source). 

 B represents equilibrium thermodynamic processes (with maximum 

dispersion). 

 C represents non-equilibrium ‘anti-thermodynamic’ processes (or 

advanced waves, converging to a centralized source).  

 A’, B’, and C’ are the T-reversed images with the corresponding dispersion 

properties. Note that: T(A) = C’, while: *(A) = A’.  

 

The purely deterministic part of quantum mechanics allows solutions from A, B, 

and C. In reality, we do not find processes from C in our environment, only from 

A and B. This reflects the empirical fact that our world is rich in ‘irreversible 

processes’ on the classical scale. However, this is not explained by deterministic 

quantum mechanics, whether we adopt the Racah or the Wigner operator for time 

reversal, because both retarded and advanced waves are equally compatible with 

QM and with T(QM). (It is the irreversibility of the probabilistic part of quantum 

mechanics that is relevant to this; see [2], [3], [5]). 

There is a perfect isomorphism between the classes:  ↔ *, because  

and * differ only in the ‘direction of rotation’ of the imaginary phase of the 

wave (represented by the sign in the Schrodinger equation). This direction is not 

directly measurable – only the relative directions of the complex rotation of 

separate particles or systems are measurable, so we cannot combine waves from 

QM with waves from *(QM), when we combine different particles into composite 

systems (or we would get the wrong kinds of interference effects). But the choice 

to use the class QM rather than the class *(QM) (or equivalently T(QM)) to 

represent particles can be regarded as an arbitrary convention in the first place. If 

Schrodinger had chosen to use *(QM) instead of QM, then we would simply have 

to ‘reverse’ all the usual deterministic laws, by taking the appropriate images 

under * of the equations for energy, momentum, etc. In this sense, at least, *(QM) 

can be used to represent a perfectly sensible theory, isomorphic to QM.  

Now let us examine the deterministic laws satisfied by *(QM), or 

equivalently T(QM), rather than QM. The transformed wave equation is as given 
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above: it is anti-symmetric with the usual Schrodinger equation for QM. For the 

free particle in QM: 

 

(1) /t = i  /2m 2/x2 

 

In the T-transformed theory, we have instead:  

 

T(1) -/t = i /2m 2/x2 

 

This is obvious and well recognized. But what of the laws for the energy and 

momentum operators? These relate the classical properties of energy and  

momentum to the wave functions. In ordinary QM the key laws are:  

 

(2) H = i /t Kinetic Energy (zero potential) 

(3) P = -i  /x   Momentum 

 

Along with: 

 

(4) H = P2/2m    Classical Energy-Momentum Relation 

 

And then Eqs. 3 and 4 entail: 

 

(5) H = - 2/2m 2/x2    

 

Substituted in Eq. 2 this gives: - 2/2m 2/x2 = i  /t, which is just Eq. 1 

rearranged.   

Then what are the time reversed images of Eqs.2-4? For the ‘dual’ version 

*(QM), or equivalently T(QM), the operators should be given by:  

 

T(2) H* = -i /t Kinetic Energy (with zero potential) 

T(3) P* = i  /x   Momentum 

T(4) H* = P*
2/2m   Classical Energy-Momentum Relation 
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I have labeled these H* and P*, to make clear that these are distinct mathematical 

operators to H and P – they are what these operators defined as giving the classical 

energy and momentum transform to in the reversed theory.   

We will work through this in more detail later, but it is easy enough to see why 

these must be adopted. In *(QM), we take the wave: * to represent a particle with 

the same classical properties as  in QM – this is the basic isomorphism. 

Alternatively, in T(QM), T represents a particle with the time-reversed classical 

properties represented by  in QM. Now, for instance, consider the special solution, 

 stated earlier for QM. Using Eq.2 we have: H = E, with: E = p2/2m as the 

classical kinetic energy of the particle with the original wave function . We know 

that this is also the classical kinetic energy of the time reversed particle, represented 

by T, in the T-transformed theory T(QM). But the time differential term in (2) has 

the behavior: (T/t = -/t, so to obtain the correct result, we must define the 

classical kinetic energy operator H* for the time reversed theory by T(2) above, 

instead of by (2). (The same result follows by considering the wave *.) 

Similarly, using Eq.3 we have: P = p, where p is the classical momentum (in 

the x-direction) of the particle with the original wave function . We know that this is 

the negative classical momentum of the time reversed particle, represented by T. 

The space differential term in (3) has the behavior: (T/x = /x, so to obtain the 

correct result, we must define the classical momentum operator P* for the time 

reversed theory by T(3) above, instead of by (3). (Again, the same result follows by 

considering the wave *, which must have the same momentum in the theory *(QM) 

as  in QM, but the differential term in (3) has the behavior: (*/x = -/x). 

Thus, in the new theory, T(QM), we find that the ‘classical operator laws’ (2) 

and (3) are both ‘reversed’, to T(2) and T(3). By contrast, (4), giving the relation 

between momentum and kinetic energy, remains the same. And Eqs. T(3) and T(4) 

entail: 

 

T(5) H* = - 2/2m 2/x2    
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Substituted in T(2), this gives:  2/2m 2/x2 = i  /t, which is the T-reversal of 

(1), as required.  

Let us now turn to the key objection to using T as the time reversal operator.  

3. The key objection to using T for Time Reversal.  

The key objection is that T does not have the right formal properties to properly 

represent time reversal in QM, whereas T* does. In particular, it is said that T does not 

transform energy or momenta in the correct way for time reversal - for the energy of 

the reversed state of a particle must go be unchanged, whereas the momentum must 

reverse, but (it is said) the use of T to transform to time reversed wave functions does 

not satisfy this requirement. This point is repeated over and over again in different 

forms. It is common in ordinary text-books, e.g.:  

 

...we find that [the Heisenberg equation of motion] can be invariant only if 

THT-1 = -H 

This, however, is an unacceptable condition, because time reversal cannot change the 

spectrum of H, which consists of positive energies only. If T is taken to be anti-unitary [ie. 

T* adopted], the * operator changes the i to -i [in the Heisenberg equation] and the trouble 

does not occur. (Gasiorowicz, [14], p.27).  

 

Or Messiah:  

 

We are thus led to define a transformation of dynamical variables and dynamical states, 

which we shall call time reversal, in which r and p transform respectively into r and -p. ... [ 

T* ] obviously satisfies [the] relations. Therefore we may take [ T* ] as our time reversal 

operator.  ([15], p.667). 

 

An expanded version of this argument goes: 

 

(i) The energy of a time reversed wave function must be the same as the original 

energy – i.e. the time reversed spectrum must be the original, positive, 

spectrum.  

(ii) The energy of a QM wave function is given by: H = i /t. 

(iii) However, T has the negative of the energy of , for, by (ii)

H(T = i  (T/t  
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   = -i /t 

   = -H 

contradicting (i).  

(iv) Hence T cannot be the time reversal operator. It does not have the right formal 

properties, since it reverses energy, which time reversal cannot do. 

(v) However, T* does uniquely have the appropriate formal properties.  

(vi) Hence T* is the only reasonable choice for time reversal.  

 

The problem with this argument is in step (iii), because the law: H = i /t 

represents the energy in quantum mechanics; but we are no longer considering 

quantum mechanics; we are transforming to the time reversed theory, T(QM).  And in 

this theory, the law for the energy operator transforms to its reverse: H = -i /t. 

Our wave function Tis not a QM wave function. It is not a QM wave function 

precisely because its energy equation is not the QM equation, as defined in (ii). The 

operator H in equation (ii) defines the classical correlate of energy for a QM wave 

function. Since T is not a QM wave function, why should we assume that the 

classical correlate of its energy is defined in the same way?  

Step (iii) looks convincing, but it is circular, because it only applies under the 

prior assumption that QM is time reversible, i.e., that each time-reversed- is also a 

QM wave function. On this assumption, then it would indeed be true that T cannot be 

the time reversal operator. I.e: If T obeys QM given that  obeys QM, then T is not 

the time reversal operator, because H = -H(T). However, this is equally stated as 

the converse fact: that if T is the time reversal operator, then QM is irreversible, 

because H = -H(T)! And this gives the correct conclusion which is simply that T 

is the time reversal operator and QM is irreversible.  

The orthodox analysis has fallen into a peculiar kind of circular fallacy in 

reasoning about this. What has not been recognized is the simple fact that when we 

take the transformed theory T(QM), we find that we naturally have to transform the 

classical-quantum correspondence principles along with the wave functions 

themselves, to obtain the empirical meaning of the theory. I examine an explicit 

treatment of this point next, to illustrate how weak the orthodox argument is.   
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4. Transforming the Classical-Quantum Correspondence Laws.   

The previous kind of argument against T is drawn out at length by Sachs [7], 

following Wigner. The key point of his argument is to distinguish the laws (2) and (3) 

as ‘definitions of kinematic variables’, and effectively to hold that since they are 

definitions (or logical truths), they cannot alter under time reversal. Sachs contrasts 

laws of this kind with ‘dynamic equations’, which can alter under reversal 

transformations. It is true that definitions or logical truths never alter under time 

reversal (or any general transformations). But the weakness in Sachs’ argument is that 

he fails to show that laws like (2) and (3) are definitions. He simply claims this 

without discussion. Sachs begins by making a distinction between: 

 

“…three elements of the formal structure we have come to expect to encompass all dynamic 

theories of physics. These are:  

A. The mathematical manifold within which the motions or states of the physical system are to 

be described.  

B A set of kinematic observables (measurable quantities whose definitions are independent of 

forces or interactions)…  

C. The general structure of the dynamic equations giving the causal relationships between the 

kinematic variables.” ([7], p.31).  

 

The critical distinction is between what Sachs calls the kinematic observables and the 

dynamic laws of quantum mechanics. He holds that the kinematic observables are 

defined by the general commutation relations, while the dynamics are determined by 

the laws governing the Hamiltonian operator, H. Having stated these (his equations 

3.3-3.6), he then observes a key principle in his analysis: 

 

“To establish the form of T we must impose two conditions: first, that it be a kinematically 

admissible transformation, and second, introducing the physical content, that it conform to the 

requirements of the correspondence principle – namely, operators representing classical 

kinematic observables must transform under T in a manner corresponding to classical motion 

reversal.” ([7], p.34) 

 

We should note to begin with that Sachs does not propose any direct definition of the 

time reversal transformation, but instead works through a set of indirect principles 

governing time reversal on the basis of what he supposes are general principles for the 
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formal interpretation of a physical theory. Yet he does not even try to give any 

justification for these general principles - he merely states them as if they are well-

known facts. And his procedure also contradicts the usual assumption that the concept 

of time reversal is objective: that the symmetry itself is conceptually defined 

independently of any given theory, and in analyzing the time reversal invariance of a 

particular theory we examine whether it objectively satisfies this symmetry. This 

symmetry is defined in all other branches of physics as symmetry under the 

transformation: T: t-t, but Sachs’ procedure instead requires us to define ‘time 

reversal’ in quantum mechanics in a special way that is ‘appropriate’ to quantum 

mechanics. There is a dangerous preconception involved here that the ‘appropriate’ 

definition should render quantum mechanics as a time reversal invariant theory. But 

this robs the notion of time reversal invariance of objectivity, because in his treatment, 

we can pick and choose among different definitions of what this symmetry means, 

until we find one that quantum mechanics satisfies. This is not a promising start. 

He follows this with a dense argument to show that the time reversal operator 

must be anti-unitary. This begins with a ‘derivation’ of  “the conclusion that T must 

include the operator K, which takes any complex number z into its conjugate 

complex” ([7], p.35). In the next main step he invokes another principle, that:  

 

“Another main requirement on a kinematically admissible transformation is that, in the absence 

of forces or interactions (i.e. in the absence of causal effects), the dynamic equations must be 

left invariant”. ([7], p.35).  

 

This allows him to conclude that “H0 [the Hamiltonian operator including only kinetic 

terms] is invariant under time reversal. ” ([7], p.36). But this already begs the question 

– in fact it directly rules out T immediately as a ‘kinematically admissible 

transformation’, because the dynamics equation, (1) for the free particle is not 

invariant under T. He then gives a further mathematical argument to conclude that the 

time reversal operator must be anti-unitary, and must be identified with the Wigner 

operator T* or TK. 

  

Sachs’ argument here is a confused piece of analysis, and it rests on a number of 

unproved assumptions. He appeals to a variety of ‘principles’ without justifying them. 

He has provided his own summary of mathematical arguments first put forward by 
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Wigner in 1932; but the conceptual basis for the underlying principles of time reversal 

remain opaque.  

The particular flaw in Sachs’ argument, and others of the same general kind, is 

the assumption that the form of the ‘kinematic laws’ (or the classical correspondence 

principles) of quantum mechanics must remain invariant under time reversal of the 

theory. He wants to allow that the form of dynamic laws in T(QM) (essentially the 

Schrodinger equation) are evaluated independently, on the basis of their mathematical 

structure plus the time reversal transformation on the states.  But the derivation of the 

‘appropriate’ time reversal transformation on states is obtained from the requirement 

that the ‘kinematic variables’ in the time reversed theory are defined by the same 

relationships as in the original theory.  

But why should this be so? If T(QM) is really an irreversible theory, then the 

time reversed wave functions will fail to obey the ordinary laws of quantum 

mechanics, and why shouldn’t they fail to obey what he (mistakenly, in my view) 

calls the ‘kinematic principles’ (i.e. the usual classical correspondence principles) of 

the theory?  

The kind of argument Sachs recounts is deeply ingrained in the current account 

of quantum theory. The problems stem from the complicated role of observable 

operators, like H and P, and their connection with classical counterparts. The problem 

involves the distinction between definitions and empirical or contingent laws. In the 

next section I will consider this problem, and show why the equations (2)-(4) cannot 

be simply regarded as definitions, and left invariant under time reversal. 

5. Definitions and Empirical or Theoretical Laws.  

A basic logical problem in physics arises from the practice of using implicit 

quantifiers on variables in the statements of laws of physical theories. This often 

creates a muddle between definitions, and empirical or theoretical laws. In the case of 

Eq.2, for instance, the term  is implicitly quantified. But compare the two following 

ways of interpreting the quantification:  

 

(6) (H = i  /t) Universal Quantifier 

 

Or alternatively: 
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(7) (QMH = i /t) Limited Quantifier 

 

Eq.6 is read with  ranging over all logically possible wave functions. Interpreted this 

way, it is a logical definition of H, and we could simply rewrite H as a mathematical 

operator:  

 

(8)  H = i /t 

 

Eq.7 is read instead as saying that for all wave functions, , that satisfy QM, the 

operator H has the property that: H = i /t. (We can expand this more formally 

if we like to: (QM  (H = i /t)), but (7) is easier to read).  

If the law (2) is intended as an empirical or theoretical law of QM, rather than 

merely as a definition, then this seems the natural reading.  

How do we choose between these two readings? It depends on whether we 

intend to interpret H as merely a ‘defined mathematical operator’ – in which case it is 

merely a short-hand notation for the term: i /t, and Eq.2 states a tautology – or 

alternatively, whether we intend H as an quantity with a definite physical 

interpretation, e.g. if: H = E , then E is the classical energy of the particle 

represented by .  

On the latter interpretation, (2) applies to all QM wave functions – but it does 

not apply to any possible wave function we can define. It is not a logical truth. It is 

part of the physical content of the theory of quantum mechanics.  

To illustrate the distinction further, consider the interpretation of the quantifier 

on Eq.1.  We could take it as either:  

 

(9) (/t = i  /2m 2/x2) 

 

Or:  

 

(10) (QM/t = i /2m 2/x2) 
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Now (9) cannot possibly be true, because there are wave functions that do not satisfy 

(9) – as we have seen with T for instance. Rather, (10) can be regarded as the 

definition of the class QM (for the limited simple theory of free 1-dimensional wave 

functions). But then, (10) by itself makes no reference to anything empirical. If we 

take (10) to define the class of theoretically possible wave functions in quantum 

mechanics, then we must engage additional laws like Eq.2-4, interpreted as empirical 

laws about measurable classical observables, to give us an empirical theory.  

Note also that we cannot take all three of Eq. 2-4 as definitions. For suppose 

we take 2 and 3 as definitions of the operators H and P. We cannot also take 4 as a 

definition, because, given (2) and (3) are definitions, (4) is simply not true of all 

logically possible s. In particular, it is easily checked that (4) is not true of the wave 

function: T= A exp((i/ )(px+ p2t/2m)).   

Instead, what must be intended is that, given that (2) and (3) are definitions of H 

and P, then the QM wave functions obey (4). Then (4) appears to be a contingent 

proposition, which is true of quantum mechanical wave functions, but not true in 

general.  

Given this interpretation of Eqs. 2-4, it is obvious that (2) and (3) are invariant 

under T, being simply mathematical definitions, but (4) is anti-symmetric under T. 

This means that the classical commutation relations for the time reversed theory, 

T(QM), contradict the relations in the original theory, QM – naturally enough, 

because QM is not T-invariant.  

Yet this is exactly what Sachs’ argument denies – or rather, his argument 

recognises that this would be the case if we adopted T for time reversal invariance, but 

he denies that it is possible for the relation (4) to alter under time reversal, and 

concludes that T cannot represent time reversal. Yet his only reason is that (2)-(4) are 

‘definitions of kinematic variables’, and cannot change under ‘admissible 

transformations’. This is simply wrong.  

To analyse the problem properly, we first have to interpret the meaning of the 

operators H and P and the laws (2)-(4). The general result of the analysis will not 

affected by this – we will find inevitably that QM is not TRI, but T is nonetheless a 

perfectly sensible transformation to apply to the theory QM. What the interpretation 

affects is the detailed view of the T transformations on the operators H and P, or on 
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the laws (2)-(4) – since if we interpret these in two different ways, they will naturally 

show different transformation properties.  

Perhaps the most sensible interpretation, in line with physicists’ normal practice, 

is to take (2)-(4) to be intended to represent empirical laws, and to take their 

transformations to be an alternative set of empirical laws. On this view, we can take H 

and P to be defined as mathematical operators, but we have to add something extra to 

Eq.2 and 3 to incorporate their contingent or empirical interpretation. What we add to 

(2) is an additional clause to the effect that:  

 

(2.Extra) If H = E then E would be the classically measured energy 

of the particle represented by .  

 

Now having defined H by (2), we can obtain its time reversed image, TH¸ by 

considering that T(2) and (2) are both definitions or tautologies, and calculating:  

 

 T(2)  ≡ T(H = i /t)  

 ≡  (TH = T(i /t))   

 ≡  (TH = -(i /t)).   

 

I.e. the definition of TH is:  

 

 TH  = -(i  /t) = -H  

 

Similarly for TP: 

 

 T(3)  ≡  T(P = -i /x)   

  ≡  (TP = T(-i /x) )   

  ≡  (TP = -i /x ) 

 

I.e. the definition of TP is: 

 

 TP  = -i /x  = P  
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There is no surprise in this. But to obtain the T reversal of (2.Extra), we have to 

reason further: what would the time reversal of this empirical law state? Here we meet 

a special and entrancing difficulty: there is no formal method of calculating such 

reversals, because there is no formal method of representing contingency in physics. 

This will be somewhat mysterious to physicists, but it is quite clear to modern 

intensional semanticists or logicians, because physics has only an extensional 

formalism, whereas the concept of contingency requires us to go to a deeper level of 

intensional semantics, where we formal devices for quantifying over ‘worlds’ or 

‘systems’ or something equivalent. (See papers in [16] for basic accounts of 

intensional logic). But no intensional formalism for physics is currently used, and 

consequently we cannot calculate the answer to our problem formally. Instead, we 

must do what physicists routinely do, and reason to the answer in an informal way.  

Let us suppose that ordinary QM is wrong, and T(QM) is correct instead, so that 

a real particle is not modeled by the QM wave function after all, but by the 

corresponding T(QM) wave function *.  

Then when we measure a particle as having a classical energy E, we are not 

measuring that: H = E for QM; instead we are measuring by an alternative 

operator, H*, where: H*(* = E(* for QM and *QM). But then it 

follows that, since H*(* = E(* and H = Ewe must identify: H* = -H = TH.  

This is what is represented by the law T(2) above. Similar reasoning gives us 

T(3), i.e. that: P* = -P = -TP. The relation T(4) follows similarly.  

Hence we obtain the natural time reversed theory, T(QM), as Eq. T(1)-T(4), 

using the alternative operators H* and P* to represent the real empirical content, with 

the implicit meaning that:  

 

T(2.Extra)  If H* = E then E would be the classically measured energy 

of the particle represented by . 

 

And similarly for the momentum relation.  

What we have obtained as the theory T(QM) is the natural ‘dual’ theory we 

would use if we choose to identify particle wave functions using the class of T-images 

of the usual QM wave functions that Schrodinger originally adopted, as illustrated in 
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Fig.1. The fact that this ‘dual’ theory exists and is equally as sensible as ordinary QM 

is hardly in dispute. It also seems natural that it correctly represents the time reversed 

image of ordinary QM. The arguments of Sachs and others that there is no coherent 

theory T(QM) are surely mistaken. But note the reason Callender gives in the second 

quotation above is also not correct: time reversal does reverse the classical property of 

momentum; the key point is that it transforms the form of the classical operators to do 

this. 

6. Positivistic Arguments against T.  

This brings us back, however, to the first reason mentioned by Callender in the  

quotations above for adopting T* as the time reversal operator, and I will briefly 

comment on this. Essentially, it now appears that the choice to use QM rather than 

T(QM) is arbitrary, because there is no way of measuring the wave functions directly, 

and we cannot distinguish whether a wave function is ‘really’  or * On the 

positivist view, the two theories, QM and T(QM), are indistinguishable in their 

physical predictions, and so they should be taken to represent the same theory.  

Two different kinds of arguments should be distinguished here. The first – and 

strongest - appeals to the ‘probability interpretation’ of quantum mechanics, in which 

physical reality is denied to the wave function altogether, and only the probabilities 

represented by the wave function are regarded as physically real. If this is correct, 

then the asymmetry between the theories QM and T(QM) is not a physical feature of 

the universe at all, because the wave functions are simply not physical things. But two 

points should be made. First, whether such an interpretation of quantum theory is 

ultimately sustainable is then the deeper question. I will not try to answer this here, 

except to observe that the popular arguments for this kind of interpretation are often 

based in turn on flimsy positivistic principles, and the problem of establishing an 

adequate ‘probabilistic interpretation’ is more difficult than it first seems, because the 

probabilities by themselves do not have enough detailed structure to represent the 

interference effects generated by superpositions of the complex wave functions. How 

do we dispense with the wave functions themselves, and yet retain the detailed 

information they represent that is required to predict interference effects correctly?  

Supposing this can be done, however, there is a second crucial point to be made 

here: this view does not deny that T, i.e. the Racah operator, represents time reversal 
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in quantum theory! Rather, it dissolves the physical difference between T and the 

Wigner operator, T*, by imposing an interpretation of quantum mechanics where the 

waves  and * are seen as physically identical – or as modeling the same physical 

reality. On this view, T should still be taken as the time reversal operator: the work of 

arriving at the conclusion that quantum mechanics is nonetheless time symmetric is 

really done by the interpretation of the wave function. This alerts us to the fact that 

whether (the deterministic part of) quantum mechanics is TRI is not solely dependant 

on adopting T, but also dependant on the interpretation of the physical reality of the 

wave function.  The orthodox account conflates these two points.  

A second kind of argument, however, is based on a more general kind of 

positivistic fallacy, which essentially involves arguing that the theories QM and 

T(QM) are observationally indistinguishable, and should therefore be regarded as the 

same theory. A version of the argument was given by Reichenbach:.  

 

There remains the problem of distinguishing between q,t) and q,-t). In order to 

discriminate between these two functions, we would first have to know whether [E = i /t  

or: E = -i /t ] is the correct equation. But the sign on the right in Schrodinger's equation 

can be tested observationally only if a direction of time has been previously defined. We use 

here the time direction of the macroscopic systems by the help of which we compare the 

mathematical consequences of Schrodinger's equation with observation. Therefore, to attempt a 

definition of time direction through Schrodinger's equation would be reasoning in a circle; this 

equation merely presents us with the time direction we introduced previously in terms of 

macrocosmic processes. ([17], pp. 209-210).  

 

Note that Reichenbach does not deny that: Tq,t) = q,-t) does in fact represent 

time reversal. Instead, he argues that the wave functions: q,t) and Tq,t) are 

observationally indistinguishable, and that this undermines the conclusion that QM is 

irreversible.  

A number of confusions can be found here, but there is one key point that needs 

to be made.  Suppose that we have a time asymmetric theory, T, which we regard as 

observationally indistinguishable from its reversal, TT. Positivistic reasoning suggests 

that T and TT are therefore identical theories. But we can construct a weaker theory: 

(T or TT)¸ i.e. the disjunction of T and its time reversal, TT, and this weaker theory is 
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obviously time symmetric. If we suppose that T and TT are logically equivalent – or 

have identical meanings - this would entail that T is identical to the theory (T or TT).  

But this cannot be correct. Certainly, T entails (T or TT), because any 

observational evidence for T is also evidence for: (T or TT). On the other hand, can 

we have evidence that T is true, whereas TT is not true, so that we can establish the 

stronger, non-TRI theory T by itself? The positivist account makes T and TT appear 

indistinguishable: for how can we distinguish whether we are really in a T-universe, 

or in a TT-universe? Assuming we cannot, we are led to take T to be equivalent to: T 

or TT. But this is not a valid argument: instead it is an illustration of a typical kind of 

fallacy inherent in positivist-empiricist conceptions of meaning. (Indeed, 

Reichenbach’s reasoning would remove the possibility of ever establishing a time 

asymmetric theory, because we could reduce any theory T to: (T or TT).) Such 

fallacies have deeply infected the subject, and they are only properly dispelled by 

tackling modern semantics seriously.  

This is not the place to analyse such fallacies, but there is a very important 

application to the present problem, which brings us back to the view of Costa de 

Beauregard, who argues that T is indeed the correct time reversal operator in 

relativistic quantum mechanics – but that this theory is nonetheless TRI or reversible 

(unlike the non-relativistic theory).  

Note that the disjunction: (QM or T(QM) ) should be read with the 

quantification:  

 

(QM or T(QM)) (that are physically realQM) or  

 (that are physically realT(QM)  

 

Now both QM and T(QM) taken separately do entail something very significant: that 

all 's of real objects have common time orientations (in their complex rotations).  

However, the genuine reversible variant of QM is not: (QM or T(QM)), but the 

weaker disjunction, which I will call QMA: 

 

QMA  (QM or T(QM) ) 

 



 21 

QMA allows mixtures and superpositions of wave functions with opposite directions 

of complex rotation. QMA contradicts both QM, and (QM or T(QM)), and is truly 

TRI.  

Now what is the evidence that QM, or (QM or T(QM)) is true, rather than 

QMA? It is the observation that ordinary particles always have a common relative 

time orientation. But this only appears necessary in non-relativistic QM. The 

interpretation of the T operation in non-relativistic quantum theory leaves particle 

types (e.g. electrons) as the same particle types (electrons), and only transforms the 

trajectories (not the charges), and in this case, QMA cannot be realistic – because we 

cannot have one electron that satisfies QM and another electron that satisfies T(QM). 

Costa de Beauregard’s suggestion [11] means that if we take T to transform particles 

(e.g. electrons) into their anti-particles (positrons), with anti-particles having the 

opposite direction of complex rotation, then the theory will have the form of QMA 

after all – since anti-particles do exist. What is wrong with taking electrons to satisfy 

QM, and positrons to satisfy T(QM) and T to transform the charges of particles, so 

that electrons transform to positrons – as Feynmann’s interpretation suggests?  

If de Beauregard’s arguments are correct, the fundamental transformations for 

the time reversal, charge reversal, and space reversal have been misconstrued. But 

while his arguments support the idea that T rather than T* is the time reversal 

operator, the conclusion is that relativistic quantum mechanics is nonetheless TRI, or 

reversible, because the correct interpretation is like QMA, which has a quite different 

logical structure to QM. But further discussion of this point of view is beyond the 

scope of this paper.  

 

7. Conclusions.  

The orthodox account of time reversal transformations in quantum theory presented 

authoritatively in a wide range of textbooks and specialized treatises is conceptually 

inadequate. The arguments typically put forward that T* rather than T must be 

adopted as the time reversal operator in quantum mechanics for logical reasons are 

mistaken. There is no reason to reject the T operator on such grounds. Alternative 

positivist arguments from the ‘indistinguishability’ of QM and T(QM) are also laden 

with errors. Arguments from the ‘probabilistic’ interpretation of the quantum wave 
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function are more serious, but they are not reasons to reject that T is the time reversal 

operator, only to conclude that the irreversibility of QM in this respect is not a 

physical feature of the universe - because this interpretation denies that the wave 

function is itself physical.  

These conceptual flaws in the account of time symmetry of quantum theory, 

when considered along with the decisive flaws in the account of time symmetry of the 

probabilistic component of quantum theory raised by Watanabe, Healey, Penrose, 

Callender, and Holster, should be a cause for deep concern. They show how poorly 

the conceptual foundations of quantum theory are understood. If there is any single 

culprit for this state of affairs, it is the complacency engendered by the positivist 

approach to conceptual analysis in physics. For despite being accepted as deeply 

inadequate by philosophers and logicians for over fifty years, positivism unfortunately 

remains as the central point of departure in many conceptual accounts of quantum 

physics, and is found at the center of the orthodox analyses of the subject of time 

reversal.  

T is indeed the time reversal operator in ordinary quantum mechanics, and this 

theory fails to be time reversal invariant unless we adopt the probabilistic 

interpretation. However the arguments of Costa de Beauregard show that relativistic 

quantum theory may be convincingly interpreted as being TRI by adopting the 

Feynmann interpretation of anti-particles as ‘particles traveling backwards in time’, 

i.e. by adopting the view that time reversal transforms particles into anti-particles. 

This view needs to be explored in more detail.  
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