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Abstract 

The many velocity gauge fields interaction Lagrangian density is extended to a continuous spectrum 

Lagrangian then quantized and normalized. The Euler-Lagrange equation is transformed to the Yang-

Mills field, curvature and integral operators. The Yang-Mills field operator quantization gives the 

equivalent Dirac equation, the integral operator quantization gives perturbation series similar to the 

path integral formulation of Quantum mechanics and the curvature operator gives the Einstein-Hilbert 

Lagrangian. In all quantization cases, the field form operators have mass eigenvalue. Finally, the 

normalization of the wave function gives the Lagrangian of massive particle Lagrangian with many 

different representations. 

 

I. Introduction 

 The many velocity gauge fields interaction Lagrangian density introduced in article [1] is extended 

to a continuous spectrum Lagrangian then quantized and normalized. First, the source terms in the 

Lagrangian density of 𝑁 interacting fields are included in the connection and summations are converted 

to integral over a small value 𝑑𝜖. Second, the solution of the Euler-Lagrange equation is converted to the 

Yang-Mills field, curvature and integral operators and quantized with mass eigenvalue. The Yang-Mills 

field operator quantization gives the Dirac equation, the quantization of the integral operator gives the 

perturbation series similar to the path integral formulation of Quantum mechanics and the curvature 

operator gives the Einstein-Hilbert Lagrangian. Finally, the normalization of the wave function gives the 

massive particle Lagrangian with many different representations.  

 

II. Lagrangian 

From the Lagrangian density in article [1], including the source term in the connection and summing 

over a small value 𝑑𝜖, the Lagrangian is evaluated to 

𝐿 = ∫ 𝑑𝜖 [𝛼𝜇 [𝜕𝜇 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝜙]

𝑇

[𝛼𝜈 [𝜕𝜈 +
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙]                                                                        (1) 

Solving the Euler-Lagrange equation for the Lagrangian in equation (1), yields 

𝛼𝜇𝑇
[𝜕𝜇 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝛼𝜈 [𝜕𝜈 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙 =

1

𝑖ℏ
∫ 𝑑𝜖 [𝛼𝜇𝑇𝜙𝜇𝛼𝜈 [𝜕𝜈 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙]                     (2) 
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III. Yang-Mills equations form 

Let us define the field 𝐹 and substitute in equation (2) as  

𝛼𝜈 [𝜕𝜈 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙 = 𝐹                                                                                                                                       (3) 

𝛼𝜇𝑇
[𝜕𝜇 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝐹 = 𝛼𝜇𝑇 1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇𝐹                                                                                                         (4) 

Equation (3) and (4) have the Yang-Mills equations form with source term, but they are different as they 

are operator identities to be quantized in the next sections. 

 

IV. Dirac equation form 

Let us quantize the differential operator in equation (4) by introducing the mass eigenvalue as 

𝛼𝜇𝑇
[𝜕𝜇 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝐹 = −

𝑚2𝑐2

ℏ2
𝜙                                                                                                                     (5) 

Defining the wave function as 

𝜓 = [
𝑖ℏ𝐹 

𝑚𝑐𝜙 
]                                                                                                                                                                  (6) 

Using equation (6), equations (3) and (4) can be written as 

𝑖ℏΓ𝜇 [𝜕𝜇 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜓 = 𝑚𝑐𝜓                                                                                                                            (7) 

Equations (7) is the equivalent to the Dirac equation with interaction term and different gamma 

matrices introduced in article [1]. 

 

V. Integral equation form 

Similarly to equation (5), an integral equation with mass eigenvalue part of the equation (4) is given 

by  

𝛼𝜇𝑇 1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇𝐹  = −

𝑚2𝑐2

ℏ2
𝜙                                                                                                                                  (8) 

From article [2], equations (8) can be written as 

𝑖ℏ

𝑚𝑐
∫ 𝑒−

𝑑𝜖
𝑚𝑐

𝜶∙𝝓𝐹 = 𝜙                                                                                                                                                 (9) 

Expending equation (9) in power series, yields 



𝑖ℏ

𝑚𝑐
∫ ∑

1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

= 𝜙                                                                                                                         (10) 

Substituting equation (10) in the wave function in equation (6), gives 

𝜓 = 𝑖ℏ [

𝐹 

∫ ∑
1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

]                                                                                                                      (11) 

 

VI. Curvature Form 

Evaluating equation (2) with 

𝛼𝜇𝑇
𝛼𝜈 + 𝛼𝜈𝑇

𝛼𝜇 = 2𝜂𝜇𝜈                                                                                                                                           (12) 

∆= 𝜂𝜇𝜈 [𝜕𝜇𝜕𝜈 − 2 [
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝜕𝜈]                                                                                                                       (13) 

𝑅 = 𝛼𝜇𝑇𝛼𝜈 [𝜕𝜇 [
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] − [

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] [

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈]]                                                                             (14) 

Using equations (3), (12), (13) and (14), equation (2) can be evaluated to 

[∆ − 𝑅]𝜙 = 𝛼𝜇𝑇 1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇𝐹                                                                                                                                  (15) 

Quantizing the Laplace-Beltrami and Curvature operator as in equations (5) and (8) gives 

[∆ − 𝑅]𝜙 = −
𝑚2𝑐2

ℏ2
𝜙                                                                                                                                              (16) 

 

VII. Normalization 

Since 𝜓 †𝜓  is the probability density function, it is normalized as 

∫ 𝑑𝑥4𝜓 †𝜓 = 1                                                                                                                                                          (17) 

The variation of equation (17) yields 

𝛿 ∫ 𝑑𝑥4𝜓 †𝜓 = 0                                                                                                                                                      (18) 

Using equation (3) and (6) in differential form, equation (18) is solved by the Euler-Lagrange equation 

with the Lagrangian density 

𝓛 =
𝑚2𝑐2

ℏ2
𝜙†𝜙 + [𝛼𝜇 [𝜕𝜇 −

1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝜙]

†

[𝛼𝜈 [𝜕𝜈 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙]                                                      (19) 



Using equation (11) in integral form, equation (18) is solved by the Euler-Lagrange equation with the 

Lagrangian density 

𝓛 = [∫ ∑
1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

]

†

[∫ ∑
1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

] + 𝐹†𝐹                                                          (20) 

Combining differential and integral forms representation using equation (3) and (10) gives the 

Lagrangian density 

𝓛 = [∫ ∑
1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

]

†

[∫ ∑
1

𝑛!
[−

𝑑𝜖

𝑚𝑐
𝜶 ∙ 𝝓]

𝑛

𝐹

∞

𝑛=0

]

+ [𝛼𝜇 [𝜕𝜇 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝜙]

†

[𝛼𝜈 [𝜕𝜈 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙]                                                      (21) 

Using equation (3) and (10) without operators, equation (18) is solved by the Euler-Lagrange equation 

with the Lagrangian density 

𝓛 =
𝑚2𝑐2

ℏ2
𝜙†𝜙 + 𝐹†𝐹                                                                                                                                              (22) 

Using equation (16), (19) and (22) in curvature form, equation (18) is solved by the Euler-Lagrange 

equation with the Lagrangian density 

𝓛 = 𝜙†𝑅𝜙 − 𝜙†∆𝜙 + [𝛼𝜇 [𝜕𝜇 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜇] 𝜙]

†

[𝛼𝜈 [𝜕𝜈 −
1

𝑖ℏ
∫ 𝑑𝜖𝜙𝜈] 𝜙]                                              (23) 

𝓛 = 𝜙†𝑅𝜙 − 𝜙†∆𝜙 + 𝐹†𝐹                                                                                                                                     (24) 

Equations (19) to (24) are different representations of a charged massive particle Lagrangian density.  

 

VIII. Conclusion 

 In summary, the velocity gauge fields were quantized with Yang-Mills field, curvature and 

integral operators and normalized.  The Yang-Mills field operator quantization gave the equivalent Dirac 

equation, the integral operator gave perturbation series similar to the path integral formulation of 

Quantum mechanics and the curvature operator gave the Einstein-Hilbert Lagrangian. During 

quantization, it is shown that Yang-Mills field, curvature and integral operators have mass eigenvalue. 

Finally, the normalization for the wave function gave the Lagrangian of massive particle with many 

different representations.    
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