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I.Introduction.

1.1.Main results.
Let us remind that accordingly to naive set theory, any definable collection is a set.

Let R be the set of all sets that are not members of themselves. If R qualifies as a
member of itself, it would contradict its own definition as a set containing all sets that
are not members of themselves. On the other hand, if such a set is not a member of
itself, it would qualify as a member of itself by the same definition. This contradiction is
Russell’s paradox. In 1908, two ways of avoiding the paradox were proposed,
Russell’s type theory and Zermelo set theory, the first constructed axiomatic set
theory. Zermelo’s axioms went well beyond Frege’s axioms of extensionality and
unlimited set abstraction, and evolved into the now-canonical Zermelo–Fraenkel set
theory ZFC. "But how do we know that ZFC is a consistent theory, free of
contradictions? The short answer is that we don’t; it is a matter of faith (or of
skepticism)"— E.Nelson wrote in his paper [1]. However, it is deemed unlikely that
even ZFC2 which is significantly stronger than ZFC harbors an unsuspected
contradiction; it is widely believed that if ZFC and ZFC2 were inconsistent, that fact
would have been uncovered by now. This much is certain —ZFC and ZFC2 is immune
to the classic paradoxes of naive set theory: Russell’s paradox, the Burali-Forti
paradox, and Cantor’s paradox.
Remark 1.1.1.Note that in this paper we view (i) the first order set theory ZFC under

the
canonical first order semantics (ii) the second order set theory ZFC2 under the

Henkin



semantics [2],[3],[4],[5],[6].
Remark 1.1.2.Second-order logic essantially differs from the usual first-order

predicate
calculus in that it has variables and quantifiers not only for individuals but also for

subsets
of the universe and variables for n-ary relations as well [2],[6].The deductive calculus
DED2 of second order logic is based on rules and axioms which guarantee that the
quantifiers range at least over definable subsets [6]. As to the semantics, there
are two tipes of models: (i) Suppose U is an ordinary first-order structure and
S is a set of subsets of the domain A of U. The main idea is that the set-variables
range over S, i.e. 〈U,S  ∃XX  ∃SS ∈ S〈U,S  S.
We call 〈U,S a Henkin model, if 〈U,S satisfies the axioms of DED2 and
truth in 〈U,S is preserved by the rules of DED2. We call this semantics
of second-order logic the Henkin semantics and second-order logic with the
Henkin semantics the Henkin second-order logic. There is a special class of
Henkin models, namely those 〈U,S where S is the set of all subsets of A.
We call these full models. We call this semantics of second-order logic the full
semantics and second-order logic with the full semantics the full second-order logic.
Remark 1.1.3.We emphasize that the following facts are the main features of
second-order logic:
1.The Completeness Theorem: A sentence is provable in DED2 if and only if it

holds in
all Henkin models [2],[6].

2.The Löwenheim-Skolem Theorem: A sentence with an infinite Henkin model has
a

countable Henkin model.
3.The Compactness Theorem: A set of sentences, every finite subset of
which has a Henkin model, has itself a Henkin model.
4.The Incompleteness Theorem: Neither DED2 nor any other effectively
given deductive calculus is complete for full models, that is, there are
always sentences which are true in all full models but which are unprovable.
5.Failure of the Compactness Theorem for full models.
6.Failure of the Löwenheim-Skolem Theorem for full models.
7.There is a finite second-order axiom system ℤ2 such that the semiring
ℕ of natural numbers is the only full model (up to isomorphism) of ℤ2.
8. There is a finite second-order axiom system RCF2 such that the field
 of real numbers is the only (up to isomorphism) full model of RCF2.
Remark 1.1.4.For let second-order ZFC be, as usual, the theory that results

obtained
from ZFC when the axiom schema of replacement is replaced by its second-order
universal closure,i.e.



∀XFuncX  ∀u∃∀rr ∈   ∃ss ∈ u ∧ s, r ∈ X, 1.1.1

where X is a second-order variable, and where FuncX abbreviates " X is a
functional
relation",see [7].
Designation 1.1.1. We will denote (i) by ZFC2

Hs set theory ZFC2 with the Henkin

semantics, (ii) by ZFC2
Hs set theory ZFC2

Hs  ∃Mst
ZFC2

Hs

and (iii) by ZFCst set theory
ZFC  ∃Mst

ZFC, where Mst
Th is a standard model of the theory Th.

Axiom ∃MZFC. [8]. There is a set MZFC and a binary relation  ⊆ MZFC  MZFC which
makes MZFC a model for ZFC.
Remark 1.1.3.(i)We emphasize that it is well known that axiom ∃MZFC a single

statement
in ZFC see [8],Ch.II,section 7.We denote this statement throught all this paper by

symbol ConZFC;MZFC.The completness theorem says that ∃MZFC  ConZFC.
(ii) Obviously there exists a single statement in ZFC2

Hs such that
∃MZFC2

Hs
 ConZFC2

Hs.
We denote this statement throught all this paper by symbol Con ZFC2

Hs;MZFC2
Hs

and

there
exists a single statement ∃MZ2

Hs
in Z2

Hs. We denote this statement throught all this
paper by
symbol Con Z2

Hs;MZ2
Hs

.

Axiom ∃Mst
ZFC. [8].There is a set Mst

ZFC such that if R is
〈x,y|x ∈ y ∧ x ∈ Mst

ZFC ∧ y ∈ Mst
ZFC

then Mst
ZFC is a model for ZFC under the relation R.

Definition 1.1.1.[8].The model Mst
ZFC and Mst

Z2
Hs

is called a standard model since the
relation ∈ used is merely the standard ∈- relation.
Remark 1.1.4.[8].Note that axiom ∃MZFC doesn’t imply axiom ∃Mst

ZFC.
Remark 1.1.6.Note that in order to deduce: (i) ~ConZFC2

Hs from ConZFC2
Hs,

and (ii) ~ConZFC from ConZFC,by using Gödel encoding, one needs something
more

than the consistency of ZFC2
Hs, e.g., that ZFC2

Hs has an omega-model M
ZFC2

Hs

or an

standard model Mst
ZFC2

Hs

i.e., a model in which the integers are the standard integers.To
put it another way, why should we believe a statement just because there’s a
ZFC2

Hs-proof of it? It’s clear that if ZFC2
Hs is inconsistent, then we won’t believe

ZFC2
Hs-proofs. What’s slightly more subtle is that the mere consistency of ZFC2 isn’t

quite enough to get us to believe arithmetical theorems of ZFC2
Hs; we must also

believe that these arithmetical theorems are asserting something about the standard
naturals. It is "conceivable" that ZFC2

Hs might be consistent but that the only

nonstandard models MNst
ZFC2

Hs

it has are those in which the integers are nonstandard, in
which case we might not "believe" an arithmetical statement such as "ZFC2

Hs is



inconsistent" even if there is a ZFC2
Hs-proof of it.

2.Derivation of the inconsistent definable set in set theory
ZFC2

Hs and in set theory ZFCst.

2.1.Derivation of the inconsistent definable set in set
theory ZFC2

Hs.
We assume now that Con Z2

Hs;Mst
Z2

Hs

.

Designation 2.1.1.Let ΓX be the collection of the all 1-place open wff of the set
theory

ZFC2
Hs.

Definition 2.1.1.Let 1X,2X be 1-place open wff’s of the set theory ZFC2
Hs.

(i) We define now the equivalence relation  X  ⊂ ΓX  ΓX by

1X  2X  ∀X1X  2X 2.1.1

(ii) A subset X
Hs of ΓX such that 1X  2X holds for all 1X and 2X in

X,
and never for 1X in X and 2X outside X, is called an equivalence class

of
ΓX.
(iii)The collection of all possible equivalence classes of ΓX by ~, denoted ΓX/ X

ΓX/ X  XHs|X ∈ ΓX. 2.1.2

(iv) For any X ∈ ΓX let X  X ∈ ΓX|X  X denote the
equivalence class to which X belongs. All elements of ΓX equivalent to each

other
are also elements of the same equivalence class.
Definition 2.1.2.[9].Let Th be any theory in the recursive language ℒTh ⊃ ℒPA,where

ℒPA

is a language of Peano arithmetic.We say that a number-theoretic relation
Rx1, . . . ,xn of

n arguments is expressible in Th if and only if there is a wff Rx1, . . . ,xn of Th with the
free
variables x1, . . . ,xn such that,for any natural numbers k1, . . . ,kn, the following hold:

(i) If Rk1, . . . ,kn is true, then Th Rk1, . . . ,kn.

(ii) If Rk1, . . . ,kn is false, then Th Rk1, . . . ,kn.

Designation 2.1.2.(i) Let gZFC2
Hsu be a Gödel number of given an expression u of

the set theory ZFC2
Hs  ZFC2

Hs  ∃Mst
ZFC2

Hs

.



(ii) Let Fr2
Hsy,v be the relation : y is the Gödel number of a wff of the set

theoryZFC2
Hs

that contains free occurrences of the variable X with Gödel number v [8]-[9].

(iii) Note that the relation Fr2
Hsy,v is expressible in ZFC2

Hs by a wff Fr2
Hsy,v

(iv) Note that for any y,v ∈ ℕ by definition of the relation Fr2Hsy,v follows that

Fr2
Hsy,v  ∃!X gZFC2

HsX  y ∧ gZFC2
HsX   , 2.1.3

where X is a unique wff of ZFC2
Hs which contains free occurrences of the variable

X
with Gödel number v.We denote a unique wff X defined by using equivalence

(1.2.3)
by symbol y,X, i.e.

Fr2
Hsy,v  ∃!y,X gZFC2

Hsy,X  y ∧ gZFC2
HsX   , 2.1.4

(v) Let℘2
Hsy,v,1 be a Gödel number of the following wff:

∃!XX ∧ Y  X,where
gZFC2

HsX  y,gZFC2
HsX  , gZFC2

HsY  1.

(vi) Let PrZFC2
Hsz be a predicate asserting provability in ZFC2

Hs, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Definition 2.1.3. Let ΓX
Hs be the countable collection of the all 1-place open wff’s of

the set theoryZFC2
Hs that contains free occurrences of the variable X.

Definition 2.1.4. Let gZFC2
HsX  .Let ΓHs be a set of the all Gödel numbers of the

1-place open wff’s of the set theoryZFC2
Hs that contains free occurrences of the

variable X
with Gödel number v, i.e.

ΓHs  y ∈ ℕ|〈y, ∈ Fr2Hsy,v, 2.1.5

or in the following equivalent form:

∀yy ∈ ℕ y ∈ Γ  y ∈ ℕ ∧ Fr2Hsy,v .

Remark 2.1.1.Note that from the axiom of separation it follows directly that ΓHs is a
set
in the sense of the set theory ZFC2

Hs.
Definition 2.1.5.(i)We define now the equivalence relation  X  ⊂ ΓX

Hs  ΓX
Hs by

1X X 2X  ∀X1X  2X 2.1.6

(ii) A subcollection X
Hs of ΓX

Hs such that 1X X 2X holds for all 1X and
2X in

X
Hs, and never for 1X in X

Hs and 2X outside X
Hs, is an equivalence class of



ΓX
Hs.
(iii) For any X ∈ ΓX

Hs let XHs  X ∈ ΓX
Hs|X X X denote the

equivalence class to which X belongs. All elements of ΓX
Hs equivalent to each

other
are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of ΓX
Hs by ~X, denoted ΓX

Hs/ X

ΓX
Hs/ X  XHs|X ∈ ΓX

Hs. 2.1.7

Definition 2.1.6.(i)We define now the equivalence relation    ⊂ ΓHs  ΓHs in
the
sense of the set theory ZFC2

Hs by

y1  y2  ∀Xy1,X  y2,X 2.1.8

Note that from the axiom of separation it follows directly that the equivalence relation
   is a relation in the sense of the set theory ZFC2

Hs.
(ii) A subset 

Hs of ΓHs such that y1  y2 holds for all y1 and y1 in 
Hs,and never for

y1 in


Hs and y2 outside 
Hs, is an equivalence class of ΓHs.

(iii) For any y ∈ ΓHs let yHs  z ∈ Γ
Hs|y  z denote the equivalence class to

which y
belongs. All elements of ΓHs equivalent to each other are also elements of the same
equivalence class.
(iv)The collection of all possible equivalence classes of ΓHs by ~, denoted ΓHs/ 

ΓHs/   yHs|y ∈ Γ
Hs. 2.1.9

Remark 2.1.2. Note that from the axiom of separation it follows directly that ΓHs/ 
is a
set in the sense of the set theory ZFC2

Hs.
Definition 2.1.7.Let ℑ2

Hs be the countable collection of the all sets definable by
1-place
open wff of the set theory ZFC2

Hs, i.e.

∀YY ∈ ℑ2
Hs  ∃XXHs ∈ ΓX

Hs/ X  ∧ ∃!XX ∧ Y  X. 2.1.10

Definition 2.1.8.We rewrite now (2.1.10) in the following equivalent form

∀YY ∈ ℑ2
Hs  ∃XXHs ∈ ΓX

∗Hs/ X  ∧ Y  X, 2.1.11

where the countable collection ΓX
∗Hs/ X is defined by

∀XX ∈ ΓX
∗Hs/ X  X ∈ ΓX

Hs/ X  ∧ ∃!XX 2.1.12

Definition 2.1.9. Let 2
Hs be the countable collection of the all sets such that

∀XX ∈ ℑ2
HsX ∈ 2

Hs  X ∉ X. 2.1.13

Remark 2.1.3. Note that 2
Hs ∈ ℑ2

Hs since 2
Hs is a collection definable by 1-place



open wff

Z,ℑ2
Hs  ∀XX ∈ ℑ2

HsX ∈ Z  X ∉ X.

From (2.1.13) one obtains

2
Hs ∈ 2

Hs  2
Hs ∉ 2

Hs. 2.1.14

But (2.1.14) gives a contradiction

2
Hs ∈ 2

Hs ∧ 2
Hs ∉ 2

Hs. 2.1.15

However contradiction (2.1.15) it is not a contradiction inside ZFC2
Hs for the reason

that
the countable collection ℑ2

Hs is not a set in the sense of the set theory ZFC2
Hs.

In order to obtain a contradiction inside ZFC2
Hs we introduce the following

definitions.

Definition 2.1.10.We define now the countable set Γ∗Hs/  by

∀y yHs ∈ Γ
∗Hs/   yHs ∈ Γ

Hs/   ∧ Fr2Hsy,v ∧ ∃!Xy,X . 2.1.16

Remark 2.1.4. Note that from the axiom of separation it follows directly that Γ∗/ is a
set in the sense of the set theory ZFC2

Hs.
Definition 2.1.11.We define now the countable set ℑ2

∗Hs by formula

∀Y Y ∈ ℑ2
∗Hs  ∃y y ∈ Γ∗Hs/   ∧ gZFC2

HsX   ∧ Y  X . 2.1.17

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ2
∗Hs

is a
set in the sense of the set theory ZFC2

Hs.
Definition 2.1.12.We define now the countable set 2

∗Hs by formula

∀XX ∈ ℑ2
∗HsX ∈ 2

∗Hs  X ∉ X. 2.1.18

Note that from the axiom schema of separation it follows directly that 2
∗Hs is a set in

the
sense of the set theory ZFC2

Hs.
Remark 2.1.5.Note that 2

∗Hs ∈ ℑ2
∗Hs since 2

∗Hs is a definable by the following
formula

∗Z  ∀XX ∈ ℑ2
∗HsX ∈ Z  X ∉ X. 2.1.19

Theorem 2.1.1.Set theory ZFC2
Hs is inconsistent.

Proof. From (2.1.18) and Remark 2.1.5 we obtain 2
∗Hs ∈ 2

∗Hs  2
∗Hs ∉ 2

∗Hs from
which immediately one obtains a contradiction 2

∗Hs ∈ 2
∗Hs ∧ 2

∗Hs ∉ 2
∗Hs.

2.2.Derivation of the inconsistent definable set in set



theory ZFCst.
Designation 2.2.1.(i) Let gZFCstu be a Gödel number of given an expression u of
the set theory ZFCst  ZFC  ∃Mst

ZFC.
(ii) Let Frsty,v be the relation : y is the Gödel number of a wff of the set

theoryZFCst

that contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation Frsty,v is expressible in ZFCst by a wff Frsty,v
(iv) Note that for any y,v ∈ ℕ by definition of the relation Frsty,v follows that

Frsty,v  ∃!XgZFCstX  y ∧ gZFCstX  , 2.2.1

where X is a unique wff of ZFCst which contains free occurrences of the variable
X
with Gödel number v.We denote a unique wff X defined by using equivalence

(2.2.1)
by symbol y,X, i.e.

Frsty,v  ∃!y,XgZFCsty,X  y ∧ gZFCstX  , 2.2.2

(v) Let℘sty,v,1 be a Gödel number of the following wff: ∃!XX ∧ Y  X,where
gZFCstX  y,gZFCstX  , gZFCstY  1.

(vi) Let PrZFCstz be a predicate asserting provability in ZFCst, which defined by
formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [8]-[9]).
Definition 2.2.1. Let ΓX

st be the countable collection of the all 1-place open wff’s of
the set theory ZFCst that contains free occurrences of the variable X.
Definition 2.2.2. Let gZFCstX  .Let Γst be a set of the all Gödel numbers of the
1-place open wff’s of the set theory ZFCst that contains free occurrences of the

variable X
with Gödel number v, i.e.

Γst  y ∈ ℕ|〈y, ∈ Frsty,v, 2.2.3

or in the following equivalent form:

∀yy ∈ ℕ y ∈ Γst  y ∈ ℕ ∧ Frsty,v .

Remark 2.2.1.Note that from the axiom of separation it follows directly that Γst is a
set
in the sense of the set theory ZFCst.
Definition 2.2.3.(i)We define now the equivalence relation  X  ⊂ ΓX

st  ΓX
st by

1X X 2X  ∀X1X  2X 2.2.4

(ii) A subcollection X
st of ΓX

st such that 1X X 2X holds for all 1X and 2X
in



X
st, and never for 1X in X

st and 2X outside X
st, is an equivalence class of

ΓX
st.
(iii) For any X ∈ ΓX

st let Xst  X ∈ ΓX
st|X X X denote the

equivalence
class to which X belongs. All elements of ΓX

st equivalent to each other are also
elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of ΓX
st by ~X, denoted ΓX

st/ X

ΓX
st/ X  Xst|X ∈ ΓX

st. 2.2.5

Definition 2.2.4.(i)We define now the equivalence relation    ⊂ Γst  Γst in the
sense of the set theory ZFCst by

y1  y2  ∀Xy1,X  y2,X 2.2.6

Note that from the axiom of separation it follows directly that the equivalence relation
   is a relation in the sense of the set theory ZFCst.
(ii) A subset 

st of Γst such that y1  y2 holds for all y1 and y1 in 
st,and never for y1

in


st and y2 outside 
st, is an equivalence class of Γst.

(iii) For any y ∈ Γst let yst  z ∈ Γ
st|y  z denote the equivalence class to which y

belongs. All elements of Γst equivalent to each other are also elements of the same
equivalence class.
(iv)The collection of all possible equivalence classes of Γst by ~, denoted Γst/ 

Γst/   yst|y ∈ Γ
st. 2.2.7

Remark 2.2.2. Note that from the axiom of separation it follows directly that Γst/ 
is a
set in the sense of the set theory ZFCst.
Definition 2.2.5.Let ℑst be the countable collection of the all sets definable by

1-place
open wff of the set theory ZFCst, i.e.

∀YY ∈ ℑst  ∃XXst ∈ ΓX
st/ X  ∧ ∃!XX ∧ Y  X. 2.2.8

Definition 2.2.6.We rewrite now (2.2.8) in the following equivalent form

∀YY ∈ ℑst  ∃XXst ∈ ΓX
∗st/ X  ∧ Y  X, 2.2.9

where the countable collection ΓX
∗st/ X is defined by

∀XXst ∈ ΓX
∗st/ X  Xst ∈ ΓX

st / X  ∧ ∃!XX 2.2.10

Definition 2.2.7. Let st be the countable collection of the all sets such that

∀XX ∈ ℑstX ∈ st  X ∉ X. 2.2.11

Remark 2.2.3. Note that st ∈ ℑst since st is a collection definable by 1-place open
wff



Z,ℑst  ∀XX ∈ ℑstX ∈ Z  X ∉ X.

From (2.2.11) and Remark 2.2.3 one obtains directly

st ∈ st  st ∉ st. 2.2.12

But (2.2.12) immediately gives a contradiction

st ∈ st ∧ st ∉ st. 2.2.13

However contradiction (2.2.13) it is not a true contradiction inside ZFCst for the
reason
that the countable collection ℑst is not a set in the sense of the set theory ZFCst.
In order to obtain a true contradiction inside ZFCst we introduce the following

definitions.
Definition 2.2.8.We define now the countable set Γ∗st/  by formula

∀y yst ∈ Γ
∗st/   yst ∈ Γ

st/   ∧ Frsty,v ∧ ∃!Xy,X . 2.2.14

Remark 2.2.4. Note that from the axiom of separation it follows directly that Γ∗st/ 
is a
set in the sense of the set theory ZFCst.
Definition 2.2.9.We define now the countable set ℑst

∗ by formula

∀YY ∈ ℑst
∗  ∃yyst ∈ Γ

∗st/   ∧ gZFCstX   ∧ Y  X. 2.2.15

Note that from the axiom schema of replacement it follows directly that ℑst
∗ is a set in

the
sense of the set theory ZFCst.
Definition 2.2.10.We define now the countable set st

∗ by formula

∀XX ∈ ℑst
∗ X ∈ st

∗  X ∉ X. 2.2.16

Note that from the axiom schema of separation it follows directly that st
∗ is a set in

the
sense of the set theory ZFCst.
Remark 2.2.5.Note that st

∗ ∈ ℑst
∗ since st

∗ is a definable by the following formula

∗Z  ∀XX ∈ ℑst
∗ X ∈ Z  X ∉ X. 2.2.17

Theorem 2.2.1.Set theory ZFCst is inconsistent.
Proof. From (2.2.17) and Remark 2.2.5 we obtain st

∗ ∈ st
∗  st

∗ ∉ st
∗ from

which
immediately one obtains a contradiction st

∗ ∈ st
∗  ∧ st

∗ ∉ st
∗ .

2.3.Derivation of the inconsistent definable set in
ZFCNst.
Definition 2.3.1.Let PA be a first order theory which contain usual postulates of

Peano



arithmetic [9] and recursive defining equations for every primitive recursive function
as
desired.So for any (n  1)-place function f defined by primitive recursion over any

n-place
base function g and (n  2)-place iteration function h there would be the defining
equations:
(i) f0,y1, . . . ,yn  gy1, . . . ,yn, (ii) fx  1,y1, . . . ,yn  hx, fx,y1, . . . ,yn,y1, . . . ,yn.
Designation 2.3.1.(i) Let MNst

ZFC be a nonstandard model of ZFC and let Mst
PA be a

standard
model of PA.We assume now that Mst

PA ⊂ MNst
ZFC and denote such nonstandard model

of the set theory ZFC by MNst
ZFCPA. (ii) Let ZFCNst be the theory

ZFCNst  ZFC  MNst
ZFCPA.

Designation 2.3.2.(i) Let gZFCNstu be a Gödel number of given an expression u of
the set theory ZFCNst  ZFC  ∃MNst

ZFCPA.
(ii) Let FrNsty,v be the relation : y is the Gödel number of a wff of the set theory

ZFCNst

that contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation FrNsty,v is expressible in ZFCNst by a wff FrNsty,v
(iv) Note that for any y,v ∈ ℕ by definition of the relation FrNsty,v follows that

FrNsty,v  ∃!XgZFCNstX  y ∧ gZFCNstX  , 2.3.1

where X is a unique wff of ZFCst which contains free occurrences of the variable
X
with Gödel number v.We denote a unique wff X defined by using equivalence

(2.3.1)
by symbol y,X, i.e.

FrNsty,v  ∃!y,XgZFCNsty,X  y ∧ gZFCNstX  , 2.3.2

(v) Let℘Nsty,v,1 be a Gödel number of the following wff:
∃!XX ∧ Y  X,where

gZFCNstX  y,gZFCNstX  , gZFCNstY  1.
(vi) Let PrZFCNstz be a predicate asserting provability in ZFCNst, which defined by

formula
(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Definition 2.3.2. Let ΓX
Nst be the countable collection of the all 1-place open wff’s of

the set theory ZFCNst that contains free occurrences of the variable X.
Definition 2.3.3. Let gZFCNstX  .Let ΓNst be a set of the all Gödel numbers of the
1-place open wff’s of the set theory ZFCNst that contains free occurrences of the

variable X
with Gödel number v, i.e.



ΓNst  y ∈ ℕ|〈y, ∈ FrNsty,v, 2.3.3

or in the following equivalent form:

∀yy ∈ ℕ y ∈ ΓNst  y ∈ ℕ ∧ FrNsty,v .

Remark 2.3.1.Note that from the axiom of separation it follows directly that Γst is a
set
in the sense of the set theory ZFCNst.
Definition 2.3.3.(i)We define now the equivalence relation  X  ⊂ ΓX

Nst  ΓX
Nst by

1X X 2X  ∀X1X  2X 2.3.4

(ii) A subcollection X
st of ΓX

st such that 1X X 2X holds for all 1X and 2X
in

X
st, and never for 1X in X

Nst and 2X outside X
Nst, is an equivalence class

of ΓX
Nst.

(iii) For any X ∈ ΓX
Nst let XNst  X ∈ ΓX

Nst|X X X denote the
equivalence class to which X belongs. All elements of ΓX

st equivalent to each
other

are also elements of the same equivalence class.
(iv) The collection of all possible equivalence classes of ΓX

Nst by ~X, denoted ΓX
Nst/ X

ΓX
Nst/ X  XNst|X ∈ ΓX

Nst. 2.3.5

Definition 2.3.4.(i)We define now the equivalence relation    ⊂ ΓNst  ΓNst in
the
sense of the set theory ZFCNst by

y1  y2  ∀Xy1,X  y2,X 2.3.6

Note that from the axiom of separation it follows directly that the equivalence relation
   is a relation in the sense of the set theory ZFCNst.
(ii) A subset 

Nst of ΓNst such that y1  y2 holds for all y1 and y1 in 
Nst,and never for

y1 in


Nst and y2 outside 
Nst, is an equivalence class of ΓNst.

(iii) For any y ∈ ΓNst let yNst  z ∈ Γ
Nst|y  z denote the equivalence class to

which y
belongs. All elements of ΓNst equivalent to each other are also elements of the same
equivalence class.
(iv)The collection of all possible equivalence classes of ΓNst by ~, denoted ΓNst/ 

ΓNst/   yNst|y ∈ Γ
Nst. 2.3.7

Remark 2.3.2. Note that from the axiom of separation it follows directly that
ΓNst/  is a
set in the sense of the set theory ZFCNst.
Definition 2.3.5.Let ℑNst be the countable collection of the all sets definable by



1-place
open wff of the set theory ZFCNst, i.e.

∀YY ∈ ℑNst  ∃XXNst ∈ ΓX
Nst/ X  ∧ ∃!XX ∧ Y  X. 2.3.8

Definition 2.3.6.We rewrite now (2.3.8) in the following equivalent form

∀YY ∈ ℑNst  ∃XXNst ∈ ΓX
∗Nst/ X  ∧ Y  X, 2.3.9

where the countable collection ΓX
∗Nst/ X is defined by

∀XXNst ∈ ΓX
∗Nst/ X  XNst ∈ ΓX

Nst/ X  ∧ ∃!XX 2.3.10

Definition 2.3.7. Let Nst be the countable collection of the all sets such that

∀XX ∈ ℑNstX ∈ Nst  X ∉ X. 2.3.11

Remark 2.3.3.Note that Nst ∈ ℑNst since Nst is a collection definable by 1-place
open
wff

Z,ℑNst  ∀XX ∈ ℑNstX ∈ Z  X ∉ X.

From (2.3.11) one obtains

Nst ∈ Nst  Nst ∉ Nst. 2.3.12

But (2.3.12) gives a contradiction

Nst ∈ Nst ∧ Nst ∉ Nst. 2.3.13

However a contradiction (2.3.13) it is not a true contradiction inside ZFCNst for the
reason
that the countable collection ℑNst is not a set in the sense of the set theory ZFCNst.
In order to obtain a true contradiction inside ZFCNst we introduce the following
definitions.

Definition 2.3.8.We define now the countable set Γ∗Nst/  by formula

∀y yNst ∈ Γ
∗Nst/   yNst ∈ Γ

Nst/   ∧ FrNsty,v ∧ ∃!Xy,X . 2.3.14

Remark 2.3.4. Note that from the axiom of separation it follows directly that
Γ∗Nst/  is
a set in the sense of the set theory ZFCst.
Definition 2.3.9.We define now the countable set ℑNst

∗ by formula

∀YY ∈ ℑNst
∗  ∃yyNst ∈ Γ

∗Nst/   ∧ gZFCNstX   ∧ Y  X. 2.3.15

Note that from the axiom schema of replacement it follows directly that ℑst
∗ is a set in

the
sense of the set theory ZFCNst.
Definition 2.3.10.We define now the countable set Nst

∗ by formula



∀XX ∈ ℑNst
∗ X ∈ Nst

∗  X ∉ X. 2.3.16

Note that from the axiom schema of separation it follows directly that Nst
∗ is a set in

the
sense of the set theory ZFCNst.
Remark 2.3.5.Note that Nst

∗ ∈ ℑNst
∗ since Nst

∗ is a definable by the following formula

∗Z  ∀XX ∈ ℑNst
∗ X ∈ Z  X ∉ X. 2.3.17

Theorem 2.3.1.Set theory ZFCNst is inconsistent.
Proof. From (2.3.16) and Remark 2.3.5 we obtain Nst

∗ ∈ Nst
∗  Nst

∗ ∉ Nst
∗ from

which one obtains a contradiction Nst
∗ ∈ Nst

∗  ∧ Nst
∗ ∉ Nst

∗ .
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