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Abstract: This paper further explores the structural similarities between the elementary quantum-

mechanical wavefunction (a·e
−i·θ

 = a·cosθ − i·a·sinθ) and circularly polarized electromagnetic waves to 

further tune a possible physical interpretation of the wavefunction. The interpretation that is offered 

analyzes the real and the imaginary part of the wavefunction as oscillations which each carry half of the 

total energy of the particle. These oscillations are perpendicular to each other, and the interplay 

between both may describe how energy propagates through space over time. The model is based on 

three fundamental premises: 

1. The dimension of the matter-wave field vector is force per unit mass (N/kg), as opposed to the 

force per unit charge (N/C) dimension of the electric field vector. This dimension is an 

acceleration (m/s
2
), which is the dimension of the gravitational field.  

2. This gravitational disturbance may cause a charged mass to move about some center, combining 

linear and circular motion. This interpretation may reconcile the wave-particle duality to some 

extent: fields interfere but if, at the same time, they do drive a pointlike particle, this may 

explain why, as Feynman puts it, “when you do find the electron some place, the entire charge is 

there.” This hybrid hypothesis is supported by an elegant yet simple derivation of the Compton 

radius of an electron. 

3. In light of the direction of the magnetic moment of an electron in an inhomogeneous magnetic 

field, the plane which circumscribes the circulatory motion of the electron should also 

comprise the direction of its linear motion. Hence, unlike an electromagnetic wave, the plane of 

the two-dimensional oscillation cannot be perpendicular to the direction of motion of our 

electron. 

Finally, this paper addresses an issue which has hampered other physical interpretations of the 

wavefunction: amplitude transformations when going from one representation (or reference frame) to 

another. Indeed, the author re-visits the original mathematical arguments here and shows that the 

proposed model, and the related physical interpretation of the wavefunction, are not incompatible with 

the key results and mainstream logic in this regard.  
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Introduction 

Mainstream physics textbooks usually stop short of offering geometric or physical interpretations of the 

wavefunction, and warn the student against viewing quantum states as being, somehow, real. However, 

recent discoveries —most notably CERN’s 2011-2012 ATLAS and CMS experiments, which observed a 

new particle in the mass region around 126 GeV which is consistent with the theoretical Higgs boson, 

and LIGO’s 2015-2017 detections of gravitational waves—have prompted many physicists to re-examine 

the nature of some core mathematical concepts in quantum theory
3
. 

Truth be told, despite their dislike of philosophers, physicists such as Richard Feynman and Stephen 

Hawking leave plenty of space—and have made major contributions to—a better understanding of how 

the wavefunction—and quantum states—may bridge reality and our perception of it. One of the best 

illustrations in this regard may well be Feynman’s “long and abstract side tour”—as he puts it in his 

Lecture on spin-1/2 particles
4
—in which he derives the transformation matrices to go from one 

representation to another. In fact, the thought experiments in this chapter come tantalizing close to a 

                                                                                                                                                                                           
2
 The Quantum-Mechanical Wavefunction as a Gravitational Wave, 26 September 2017 

(http://vixra.org/abs/1709.0390, accessed on 6 December 2017) 
3
 See, for example, Pusey, Barrett and Rudolph, On the reality of the quantum state, in: 

Nature Physics 8, 475–478, 2012 (https://www.nature.com/articles/nphys2309, accessed on 6 December 2017).  
4
 Feynman Lectures on Physics (http://www.feynmanlectures.caltech.edu/III_06.html, accessed on 6 December 

2017). Feynman’s Lectures will be used as a standard reference to mainstream physics throughout this paper and 

will, therefore be referenced elsewhere too. The references indicate the volume, chapter and section. For 

example, Feynman, III, 6-3 refers to Volume III, Chapter 6, Section 3).   
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physical interpretation not only of quantum states but also of the wavefunction of spin-1/2 particles. 

Hence, it is probably worthwhile to give an example of Feynman’s line of reasoning in this introduction.
5
 

In the illustration below (Feynman, III, 6-3), Feynman compares the physics of two beam splitters
6
 with a 

different relative orientation: in (a), the angle is 0°, while in (b) we have a (right-handed) rotation of 90° 

about the z-axis. He then proves—using geometry and logic only—that the probabilities and, therefore, 

the magnitudes of the amplitudes (denoted as C+ and C− and C’+ and C’− in the S and T representation 

respectively) must be the same, but the amplitudes must have different phases, noting—in his typical 

style, mixing academic and colloquial language—that “there must be some way for a particle to tell that 

it has turned a corner in (b).”  

Figure 1: A rotation of 90° about the z-axis 

 

The various interpretations of what actually happens here may shed some light on the heated 

discussions on the reality of the wavefunction—and of quantum states. We know, from theory and 

experiment, that the amplitudes are different. For example, for the given difference in the relative 

orientation of the two apparatuses (90°), we know that the amplitudes are given by C’+ = e
i·φ/2

·C+ = e
 

i·π/4
·C+ and C’− = e

−i·φ/2
·C+ = e

− i·π/4
·C− respectively.

7
 The more subtle question here is the following: is the 

reality of the particle in the two setups the same?  

Feynman notes that, while “the two apparatuses in (a) and (b) are different”, “the probabilities are the 

same”. He refrains from making any statement on the particle itself: is or is it not the same? The 

common sense answer is obvious: of course, it is! The particle is the same, right? In (b), it just took a 

turn—so it is just going in some other direction. That’s all. However, common sense is seldom a good 

guide when thinking about quantum-mechanical realities. Also, from a more philosophical point of view, 

one may argue that the reality of the particle is not the same: something might—or must
8
—have 

happened to the electron because, when everything is said and done, the particle did take a turn in (b). 

It did not in (a).  

                                                           
5
 We will re-visit his argument and, hence, advise the reader not to skip this example. 

6
 Modified or ‘improved’ Stern-Gerlach apparatuses, as he terms it. 

7
 The amplitude to go from the down to the up state, or vice versa, is zero. 

8
 The difference between ‘might’ and ‘must’ here is, obviously, the difference between a deterministic and a non-

deterministic world view. 
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One may shrug this off as a moot point, but it is not. In fact, Feynman himself, despite his dislike of 

philosophers, does not shrug it off as a moot point. For example, he notes that, if we rotate the T 

apparatus by 360°, the system will, in effect, be indistinguishable from the zero-degree situation but 

that the amplitudes will also be different: C’+ = e
i·φ/2

·C+ = e
 i·π

·C+ = −C+   and C’− = e
−i·φ/2

·C+ = e
− i·π

·C− = −C−. 

Both amplitudes are multiplied by −1. Feynman says the following in this regard (Feynman, III, 6-3): “It is 

very curious to say that, if you turn the apparatus 360°, you get new amplitudes. They aren’t really new, 

though, because the common change of sign doesn’t give any different physics.” However, in a footnote, 

he acknowledges the reality of the situation might not be the same. Referring to a continuity 

assumption he had used earlier, he notes the following: “If something has been rotated by a sequency of 

small rotations whose net result is to return it to the original orientation, it is possible to define the idea 

that it has been rotated by 360°−as distinct from zero net rotation−if you have kept track of the whole 

history.” 

These are weird philosophical questions. Is an apparatus that has been turned 360° a different 

apparatus? Is an electron that takes a turn a different electron? Even if one’s answer to these questions 

is negative, one should not dismiss—or not out of hand, at least—the suggestion that the wavefunction 

must, somehow, represent something real. When everything is said and done, Einstein’s intuition that, if 

there is interference and diffraction, something must be interfering or diffracting, makes sense. This 

paper offers a tentative model to think of the wavefunction in this way. 

1. The flywheel model of an electron 

We explored the geometry of the wavefunction in a previous paper.
 9
  We noted the mathematical 

similarities between the elementary quantum-mechanical wavefunction (a·e
−i·θ

 = a·cosθ − i·a·sinθ) and a 

circularly polarized electromagnetic wave. Both consist of two plane component waves—a sine and a 

cosine function—as illustrated below. 

Figure 2: A circularly polarized wave 

 

                                                           
9
 The Quantum-Mechanical Wavefunction as a Gravitational Wave (http://vixra.org/abs/1709.0390, accessed on 6 

December 2017). 
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The analogy has some obvious, immediate and interesting implications. For example, assuming the 

dimension of the matter-wave field vector is force per unit mass (N/kg)—as opposed to the force per 

unit charge (N/C) dimension of the electric field vector—we were able to interpret Schrödinger’s wave 

equation as an energy diffusion equation, and we were also able apply the concept of the Poynting 

vector to the matter-wave. Most importantly, we were able to show that the probabilities must reflect 

energy densities. Last but not least, this physical interpretation of the wavefunction also explains 

relativistic length contraction.
10

  

We were encouraged to explore the geometry of the wavefunction because of another structural 

similarity, which we interpreted as an equivalence: the E = m·a
2
·ω

2
 and the E = m·c

2
 relations. The first 

captures the energy of an oscillation in two dimensions.
 11

 The second is Einstein’s mass-energy 

equivalence relation, whose mathematical shape encourages us to think of energy as a two-dimensional 

oscillation of mass.
12

  

A short recap may be useful here. We developed the metaphor of a twin-engined perpetuum mobile. 

Think of a 90° V-twin engine without petrol (Figure 3).
13

 With permanently closed valves, the air inside 

each cylinder compresses and decompresses as the piston moves up and down. It provides, therefore, a 

restoring force. As such, it will store potential energy—just like a spring—and the motion of the pistons 

will also reflect that of a mass on a spring: it is described by a sinusoidal function, with the zero point at 

the center of each cylinder. We can, therefore, think of the moving pistons as harmonic oscillators, just 

like mechanical springs.
14

    

                                                           
10

 For more detail, see the referenced paper. It is tempting to rehash the derived results here, but we will not do 

so. 
11

 The total energy (potential and kinetic) of one oscillator is given by E = m·a
2
·ω

2
/2. Hence, the energy of two 

oscillators adds up to E = E = m·a
2
·ω

2
.   

12
 The interpretation treats mass as a simple scalar field, which is entirely consistent with the Standard Model. To 

put it simply, mass is that what gets accelerated by a force. In that regard, our previous paper also includes some 

thoughts on the physical significance of the absolute nature of the speed of light. These thoughts can be 

summarized as follows. Einstein’s E = mc
2
 equation implies the ratio between the energy and the mass of any 

particle is always the same: 
���������
	��������

= �������
	������

= �������
	������

= ��� �������
	�� �������

= �� 

This reminds us of the ω
2
 = C

−1
/L or ω

2
 = k/m of harmonic oscillators once again. The key difference is that the ω

2
= 

C
−1

/L and ω
2
 = k/m formulas introduce two (or more) degrees of freedom. In contrast, c

2
= E/m for any particle, 

always. That is exactly the point: we can modulate the resistance, inductance and capacitance of electric circuits, 

and the stiffness of springs and the masses we put on them, but we live in one physical space only: our spacetime. 

Hence, the speed of light c emerges here as the defining property of spacetime – the resonant frequency, so to 

speak. We have no further degrees of freedom here. 
13

 We will resist a comparison between the efficiency and power of a Ducati Monster and a Harley-Davidson. ☺ 
14

 Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft, but that 

would require springs that would not be able to move sideways. 
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Figure 3: The V-2 metaphor 

 

This inspired us to think of a what we refer to as a flywheel model of an electron (or of a charged spin-

1/2 particle in general).
15

 Such flywheel model is also used in Feynman’s remarkable geometric 

interpretation (see Feynman, III, 17-4) of how a rotating electron might absorb the energy of a light 

beam. Other authors have also continued to explore the so-called Zitterbewegung interpretation of 

quantum mechanics.
16

 The Zitterbewegung—a term which was coined by Erwin Schrödinger himself—is, 

effectively, a local circulatory motion of the electron, which is presumed to be the basis of the 

electron’s spin and magnetic moment.  

Feynman’s illustrations—Figure 4 (a) and (b)—speak for themselves. Photons—and the electromagnetic 

wave itself—carry angular momentum. As such, we have a rotating electric field vector, which is 

denoted as a large ε (epsilon) here so as to not cause any confusion with the Ε that is used to denote 

energy (Figure 4-a). Hence, the tangential component of this field may drive the electron and, thereby, 

transfer energy to the electron  (Figure 4-b).  

Figure 4: Feynman’s flywheel model of an electron 

 

                                                           
15

 Jean-Louis Van Belle, The flywheel model of an electron, 19 November 2017 

(https://readingfeynman.org/2017/11/19/the-flywheel-model-of-an-electron/, accessed on 6 December 2017). 
16

 See, for example, David Hestenes, The Zitterbewegung Interpretation of Quantum Mechanics, in: Found. 

Physics., Vol. 20, No. 10, (1990) 1213–1232 

(https://pdfs.semanticscholar.org/ba8f/fcbacbe33a4819ec065e160a9f014ad9f634.pdf, accessed on 6 December 

2017) 
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We should note that, in Feynman’s model, the electron is assumed to be in some orbit around a nucleus. 

However, the author of this paper is of the opinion that the model may also be used to describe the 

motion of as stand-alone electron as a harmonic oscillator which can be driven by an external electric 

field.
17

  

It is probably worth to briefly recap Feynman’s mathematical argument here. Photons are spin-1 

particles, so the angular momentum will be equal to ± ħ. The total angular momentum of a polarized 

beam consisting of N photons will be equal to Jz = N·ħ.
18

 Now, the Planck-Einstein equation tells us that 

the energy of each photon is equal to E = ħ·ω = h·f. Hence, the total energy of the beam is equal to W = 

N·E = N·ħ·ω. Combining the W = N·ħ·ω and Jz = N·ħ equations, we get: Jz = N·ħ = W/ω. Now, a 

charge (read: the electron) will experience a force which is equal to F = q·ε, but only the tangential 

component needs to be taken into account. Hence, we write: F = q·εt.  

As our light beam—the photons—are being absorbed by our electron (or, in Feynman’s original 

argument, by the atom as a whole), it absorbs angular momentum, because there is a torque about the 

central axis. The relevant formulas for the angular momentum and the torque here are the usual ones: 

L = r×p and τ = r×F.
19

 Now, the time rate of change of the angular momentum of an object is the vector 

sum of all torques acting on it. Hence, if the torque is equal to τ = Ft·r = q·εt·r, then dJz/dt = q·εt·v. 

Now, energy is force over a distance distance and, therefore, it is easy to see that the following formula 

will capture the time rate of change of the energy of the electron
20

: dW/dt = q·εt·v. Taking the ratio of 

dW/dt and dJz/dt, we get the following interesting equation: 

���/�t
�W/�t = ���

�W = q · ε� · �
q · ε� · � = �

� = �
� ∙ ω = 1

ω 

Feynman then relates this to the Jz = N·ħ = W/ω formula, but our analysis has to parts way with his here, 

as Feynman seems to forget the (angular) frequency of the photons should not be equated to the 

(angular) frequency of the electron. Having said that, the analysis remains interesting. Feynman suggests 

to integrate dJz and dW over some time interval—which makes sense because W is, obviously, the 

energy that is carried by the beam in a certain time. Hence, if we integrate dW over this time interval, 

we get W. Likewise, if we integrate dJz over the same time interval, we should get the total angular 

momentum that our electron is absorbing from the light beam.  

                                                           
17

 We should quote Feynman himself in this regard: “We have often described the motion of the electron in the 

atom as a harmonic oscillator which can be driven into oscillation by an external electric field. We’ll suppose that 

the atom is isotropic, so that it can oscillate equally well in either direction. Then in the circularly polarized light, 

the x and the y displacements are the same, but one is 90° behind the other. The net result is that the electron 

moves in a circle.” (Feynman, III, 17-4) 
18

 A polarized beam presumably consists of photons that are all polarized in the same direction. 
19

 These products are vector cross-products, and the τ = r×F formula explains why we need to find 

the tangential component of the force (Ft), whose magnitude is equal to Ft = q·εt. 
20

 It may help to remind yourself of the fact that v is equal to ds/dt = Δs/Δt for Δt → 0, and to re-write the equation 

above as dW = q·εt·v·dt = q·εt·ds = Ft·ds. 



7 

 

Hence, because dJz = dW/ω, we do concur with Feynman’s conclusion: the total angular momentum 

which is being absorbed by the electron is proportional to the total energy of the beam, and the 

constant of proportionality is equal to 1/ω. However, and here we effectively part ways with Feynman’s 

analysis, we should remind ourselves that the ω in this constant is the angular frequency of the electron, 

not the angular frequency of our light beam.  

Let me put it differently: Feynman’s model seems to assume an electron at rest, so to speak, and then 

the beam drives it so it goes around in a circle with a velocity that is, effectively, given by the angular 

frequency of the beam itself. In contrast, our flywheel model pushes the analysis a bit further along, 

because we think of our electron of being a flywheel always—even at rest. Having said that, both 

models raises interesting questions. How and where is the absorbed energy being stored? What is the 

mechanism here? 

In Feynman’s analysis, the answer is quite simple: the electron did not have any motion before but does 

spin around after the beam hit it. So it has more energy now: it was not a tiny flywheel before, but it is 

now! In contrast, in our interpretation of the matter-wave, the electron was spinning around already, so 

where does the extra energy go now? The intuitive answer is simple: its velocity (v), and the radius r, 

should increase as the electron acquires more angular momentum. However, the analysis is, perhaps, 

not so simple, as we will show below. 

2. The radius of an electron 

Our flywheel model of an electron suggests that the real and the imaginary part of its wavefunction may 

be interpreted as two oscillations which each carry half of the total energy of the particle, and that the 

interplay between these two oscillations describe how energy propagates through space over time. To 

simplify the analysis, we should probably first consider a particle (think of an electron) at rest. Hence, p 

= 0 and the elementary wavefunction reduces to ψ = a·e
−i·θ

 = a·e
−i·E·t/ħ

. The E and t in the argument are, of 

course, the rest energy and the proper time of the electron and, hence, we should write them as E0 and 

t’, but let us not complicate the notation here. 

Note: The E and p in the argument of the wavefunction (θ = ω·t – k·x = (E/ħ)·t – (p/ħ)·x = (E·t – p·x)/ħ) are, 

of course, the energy and momentum as measured in the reference frame of the observer. Hence, we will 

want to write these quantities as E = Ev and p = pv = pv·v. If we then use natural time and distance units 

(hence, the numerical value of c is equal to 1 and, hence, the (relative) velocity is then measured as a 

fraction of c, with a value between 0 and 1), we can relate the energy and momentum of a moving object 

to its energy and momentum when at rest using the relativistic transformation formulas: Ev = γ·E0 and pv = 

γ·m0·v = γ·E0·v/c
2
. The argument of the wavefunction can then be re-written as: θ = [γ·E0/ħ]·t – 

[(γ·E0·v/c
2
)/ħ]·x = (E0/ħ)·(t − v∙x/c

2
)·γ = (E0/ħ)·t’. The γ in these formulas is, of course, the Lorentz factor, 

and t’ is the proper time: t’ = (t − v∙x/c
2
)/√(1−v

2
/c

2
).  Two essential points should be noted here: 

1. The argument of the wavefunction is invariant. There is a primed time (t’) but there is no 

primed θ (θ’): θ = (Ev/ħ)·t – (pv/ħ)·x = (E0/ħ)·t’. 

2. The E0/ħ coefficient pops up as an angular frequency: E0/ħ = ω0. We may refer to it 

as the frequency of the elementary wavefunction. 
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Hence, the angular velocity of both oscillations, at some point x, is given by ω = −E/ħ. Now, the energy 

of our particle includes all of the energy – kinetic, potential and rest energy – and must, therefore, be 

equal to E = mc
2
. We should now relate this to the m·a

2
·ω

2
 energy formula for the energy of our V-2 

perpetuum mobile.  

Let us first consider the amplitude of the oscillation (a). We equate this factor to the amplitude of the 

wavefunction, which is why we use the same notation (a). Indeed, if the oscillation of the real and 

imaginary parts of our wavefunction store the energy of our particle, then their amplitude should surely 

matter. In fact, the energy of an oscillation is, in general, proportional to the square of the amplitude: E 

∝ a
2
, which is consistent with the a

2
 factor in the E = m·a

2
·ω

2
 formula.  

Of course, we do have an added complication here: the Uncertainty Principle tells us that an actual 

particle should not be represented by the elementary wavefunction. We must build a wave packet for 

that: a sum of wavefunctions, each with their own amplitude ai, and their own angular frequency ωi = 

−Ei/ħ. Each of these wavefunctions will contribute some energy to the total energy of the wave packet. 

To calculate the contribution of each wave to the total, both ai as well as Ei will matter. However, we do 

not perceive this as a major constraint at this point of the analysis. Consider the following logic. What is 

Ei? Ei will vary around some average E, which we can associate with some average mass m = E/c
2
. Hence, 

the analysis becomes more complicated, but a formula such as the one below might make sense:  

E =  # m� ∙ %�� · ω�� = # E�
�� ∙ %�� · E��

ħ�  

We can re-write this as:  

��ħ� = ∑ %�� ∙ E�'

E ⟺ ��ħ�E = # %�� ∙ E�' 

We may look at this equation as some sort of physical normalization condition when building up the 

Fourier sum.
21

 Of course, we should, preferably relate this to the mathematical normalization condition 

for the wavefunction. Our intuition tells us that the probabilities must be related to the energy densities, 

but how exactly? We have dealt with this matter in a previous paper
22

 and, hence, will refer the 

interested reader there, as we want to proceed with the main line of the argument here. 

To ground the analysis, we may consider the following. The frequency and angular frequency are, 

obviously, related through the f = ω/2π = (E/ħ)/2π = E/h formulas. Alternatively, and perhaps more 

elucidating, we get the following formula for the period of the oscillation: T = 1/f = h/E. This is 

interesting, because we can look at the period as a natural unit of time for our particle. This period 

                                                           
21

 The value of c
2
ħ

2
 is about 1×10

−51
 N

2
·m

4
. Let us also do a dimensional analysis: the physical dimensions of the E = 

m·a
2
·ω

2
 equation only make sense if we express m in kg, a in m, and ω in rad/s. We then get: [E] = kg·m

2
/s

2
 = 

(N·s
2
/m)·m

2
/s

2
 = N·m = J. The dimensions of the left- and right-hand side of the physical normalization condition 

are equal to N
3
·m

5
. 

22
 The Quantum-Mechanical Wavefunction as a Gravitational Wave (http://vixra.org/abs/1709.0390, accessed on 6 

December 2017). 
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is inversely proportional to the (rest) energy of the particle, and the constant of proportionality is h. 

Substituting E0 for m0·c
2
, we may also say it’s inversely proportional to the (rest) mass of the particle, 

with the constant of proportionality equal to h/c
2
. The period of an electron, for example, would be 

equal to about 8×10
−21

 s. That is very small, and it only gets smaller for larger objects ! But what does all 

of this actually mean? 

At first sight, the analogy between our flywheel model of an electron and the V-twin engine seems to be 

complete: the 90 degree angle of our V-2 engine makes it possible to perfectly balance the pistons and 

we may, therefore, think of the flywheel as a (symmetric) rotating mass, whose angular momentum is 

given by the product of the angular frequency and the moment of inertia: L = ω·I. Of course, the 

moment of inertia (aka the angular mass) will also depend on the shape of the flywheel and the mass 

distribution. We have two obvious candidate formulas here: 

1. I = m·a
2
 for a rotating point mass m or, what amounts to the same, for a circular hoop of mass m 

and radius r = a. 

2. For a rotating (uniformly solid) disk, we must add a 1/2 factor: I = m·a
2
/2. 

How can we relate those formulas to the E = m·a
2
·ω

2
 formula? The kinetic energy that is being stored in 

a flywheel is equal to Ekinetic = I·ω
2
/2, so that is only half of the E = m·a

2
·ω

2
 product if we substitute I for I 

= m·a
2
. For a disk, we get a 1/4 factor, so that’s even worse.

23
 The issue may be cleared by noting that 

our flywheel model incorporates potential energy too. In fact, we should remind ourselves that the E 

= m·a
2
·ω

2
 formula adds the (kinetic and potential) energy of the oscillators. The essence of the 

metaphor is not the flywheel: the flywheel just transfers energy from one oscillator to the other. Hence, 

we should not include it in our energy calculations.  

The essence of our model is the two-dimensional oscillation which drives the electron, and which is 

reflected in Einstein’s E = m·c
2
 formula. That two-dimensional oscillation—the m·a

2
·ω

2
 = m·c

2
 ⇔ a

2
·ω

2
 = 

c
2
 equation—tells us that the resonant (or natural) frequency of the fabric of spacetime is given by 

the speed of light measured in units of a, as evidenced by the fact we can re-write the 

the a
2
·ω

2
 = c

2
 equation as ω = c/a: the radius of our electron appears as a natural distance unit here. 

                                                           
23

 Textbook models usually do not worry about a 1/2 factor in didactic models. For example, when deriving the size 

of an atom, or the Rydberg energy, even Feynman casually writes that “we need not trust our answer [to questions 

like this] within factors like 2, π, etcetera.” We do worry about them: factors like 2, 1/2, π or 2π are pretty 

fundamental numbers, and so they need an explanation. As for Feynman’s model of an atom, we suggest the ½ 

factor may be there because, when thermal motion does not come into play, electrons want to pair up: we should 

think of the Cooper pairs when explaining superconductivity. Likewise, the 1/2 factor in Schrödinger’s equation 

also has weird consequences (when substituting ψ for the elementary wavefunction, and doing the derivatives and 

deriving the conditions for the left- and right-hand side of the equation to be equal, one gets a weird energy 

concept: E = m·v
2
). This problem may also be solved when assuming we are actually calculating orbitals for a pair of 

electrons, rather than orbitals for just one electron only. 
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Now, if our electron is effectively spinning around, then we can calculate its tangential velocity as being 

equal to v = a∙ω = c.
24

 Now, if that is the case, we get a remarkably simple and elegant formula for the 

(reduced) Compton radius of an electron: 

c = a·ω = a·E/ħ = a·m·c
2
/ħ  ⇔ a = ħ/(m·c) ≈ 3.8616×10

−13
 m 

Now, I promised to answer the following question in the previous section: if the electron is spinning 

around already in this flywheel model—even when at rest —and it absorbs the energy of an incoming 

beam of light, where does the extra energy go? I already gave the intuitive answer: its velocity (v), and 

the radius r, should increase as the electron acquires more angular momentum. However, as its energy 

increases, ω = E/ħ must increase. At the same time, the velocity v = r·ω must still be equal to v = r·ω 

= [ħ·/(m·c)]·(E/ħ) = c. So… If ω increases, but r·ω must equal the speed of light, then r must 

actually decrease. This is a weird but inevitable conclusion, it seems.
25

       

3. An interpretation of the matter-wave 

The model, the metaphor and its interesting implications do not answer the fundamental question: 

what is that rotating arrow? We cannot prove anything in this regard. We can only advance hypotheses, 

which may or may not sound reasonable to the reader. Our hypothesis is that it is, in effect, 

a rotating field vector. As such, it does resemble the electric field vector of a (circularly polarized) 

electromagnetic wave. However, our hypothesis also includes major differences. The following 

assumptions may be highlighted in particular: 

1. The (physical) dimension of the field vector of the matter-wave is different. We would like to 

associate the real and imaginary component of the wavefunction with a force per unit mass (as 

opposed to the force per unit charge dimension of the electric field vector). Of course, the 

newton/kg dimension reduces to the dimension of acceleration (m/s
2
), which is the dimension 

of a gravitational field. 

2. We suggest this gravitational disturbance, so to speak, does cause an electron to move about 

some center, and we suggest it may do so at the speed of light. In contrast, electromagnetic 

waves do not involve any mass: they’re just an oscillating field. Nothing more. Nothing less. This 

interpretation may reconcile the wave-particle duality to some extent. The field vectors 

interfere but, at the same time, they do drive a pointlike particle, which explains, as Feynman 

puts it, that “when you do find the electron some place, the entire charge is there.” (Feynman, 

III-21-4) 

                                                           
24

 As recent research suggests black holes may be spinning around at speeds approaching the speed of light (see, 

for example, https://phys.org/news/2014-02-fast-black-holes.html, accessed on 6 December 2017), this is a weird 

but interesting consequence of the model. 
25

 The author is grateful to Dr. Inés Urdaneta for the literature suggestions which may help solve this obvious issue 

in the interpretation. 
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3. The third difference is that the plane of the oscillation cannot be perpendicular to the direction 

of motion of our electron, because then we would not be to explain the direction of its magnetic 

moment, which is either up or down when traveling through a Stern-Gerlach apparatus (or, in a 

standardized reference frame, along the z-axis). 

The latter element of our model deserves some additional remarks. The basic point is the following: the 

direction of the angular momentum (and the magnetic moment) of an electron—or, to be precise, its 

component as measured in the direction of the (inhomogeneous) magnetic field through which our 

electron is traveling
26

—cannot be parallel to the direction of motion. On the contrary, it must be 

perpendicular to the direction of motion. In other words, if we imagine our electron as spinning around 

some center (see Figure 1), then the disk it circumscribes will comprise the direction of motion. 

Figure 5: Angular momentum and magnetic moment: the classical view 

 

We need to add another detail here, of course. As the readers will know, we do not really have a precise 

direction of angular momentum in quantum physics. While there is no fully satisfactory explanation of 

this, the classical explanation—combined with the quantization hypothesis—goes a long way in 

explaining this: an object with an angular momentum J and a magnetic moment μ that is not exactly 

parallel to some magnetic field B
27

, will not line up: it will precess—and, as mentioned, the quantization 

of angular momentum may well explain the rest.
28

 

We already mentioned the major implications of our model in this and our previous paper, and we 

intend to further explore them in future publications. Hence, to conclude this paper, we will want to 

address one major theoretical objection to our physical interpretation of the wavefunction. It is the 

following one and, we admit, it is a major objection—which is why we want to tackle it head-on
29

 : at 

                                                           
26

 We refer to the beam splitters, or modified Stern-Gerlach apparatuses, that are being used in the thought 

experiments which are used to derive the transformation coefficients for amplitudes. For more detail, see the 

introduction to this paper. 
27

 As elsewhere, the bold-face notation is used to denote vector quantities. 
28

 We have detailed our attempts in this regard in various posts on our blog (https://readingfeynman.org/, 

accessed on 6 December 2017). While these attempts are, admittedly, not fully satisfactory, they effectively do go 

a long way in relating angles to spin numbers.   
29

 While the author had acknowledged this undefended outpost in his first paper, he was surprised—positively—by 

the reactions to it. In fact, the encouragements of one reader prompted him to re-visit the, admittedly, “long and 
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first sight, our model would not seem to be compatible with the transformation formulas for amplitudes 

when switching reference frame, or representations as they are referred to in quantum mechanics. We 

wrote this paper to argue it is, and the next, last and final section of this paper will show why.  

Before we proceed, however, we would like to mention one more implication of our model. The 

elementary wavefunction is, apparently, left-handed. Indeed, we write: ψ = a·e
−i·θ

 = a·(cosθ − i∙sinθ). 

Now, surely, Nature cannot be bothered about our convention of measuring phase angles clockwise or 

counterclockwise. Also, the angular momentum can be positive or negative: J = +ħ/2 or −ħ/2. Hence, we 

would probably like to think that an actual spin-1/2 particle (think of an electron once more) may be 

represented by a wave packet consisting of left-handed as well as right-handed elementary waves. To be 

precise, we may think they either consist of (elementary) left-handed waves or, else, of (elementary) 

right-handed waves. An elementary right-handed wave would be written as: 

ψ = a·e
i·θ

 = a·(cosθ + i∙sinθ) 

Of course, the reader will immediately have the following question: how does that work out with the E·t 

argument of our wavefunction? Position is position, and direction is direction, but time? Time has only 

one direction. Right? 

Well… Yes and no. It has one direction, obviously, but Nature surely does not care how we count time: 

counting it like 1, 2, 3, etcetera or like −1, −2, −3, etcetera is just the same. If we count like 1, 2, 3, 

etcetera, then we write our wavefunction like: 

ψ = a∙cos(E·t/ħ) − i∙a∙sin(E·t/ħ)
30

 

If we count time like −1, −2, −3, etcetera then we can write it as: 

 ψ = a∙cos(−E·t/ħ) − i∙a∙sin(−E·t/ħ)= a∙cos(E·t/ħ) + i∙a∙sin(E0·t/ħ) 

We will leave it to the reader to further think about this. The point is: if we can have left- or right-

handed circular polarization of electromagnetic waves, we can have both for the matter-wave too. In 

fact, this should explain why we can have either positive or negative quantum-mechanical spin (+ħ/2 or 

−ħ/2). It is the usual thing: we have two mathematical possibilities here, and so we must have two 

physical situations that correspond to it.  

In what follows, we will write the elementary function as ψ = a·e
i·θ

. 

                                                                                                                                                                                           

abstract side tour” on transformations in Feynman’s Lecture, which resulted in this draft (or pre-publication) 

paper. 
30

 E is, once again, the rest energy of our particle. Hence this would be the (elementary) wavefunction in the 

reference frame of the particle itself. 
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4. Reference frames and transformations 

If the z-direction is the direction along which we measure the angular momentum (or the magnetic 

moment) of our electron, then the up-direction will be the positive z-direction. We will also assume that 

the y-direction is the direction of travel of our particle. Hence, we are, effectively, in the reference frame 

which Feynman (Lectures, III-6) uses to derive the transformation matrices for spin-1/2 particles (or for 

two-state systems in general). His ‘improved’ Stern-Gerlach apparatus—which may be referred to as a 

beam splitter—illustrates this geometry (see Figure 6). 

Figure 6: The reference frame of the measurement apparatus 

 

Our flywheel model assumes the magnetic moment—or the angular momentum, really—comes from an 

oscillatory motion in the x– and y-directions. To be precise, we imagine an oscillations in two (linear) 

dimensions simultaneously: one is given by the real component of the wavefunction, while the other is 

given by the imaginary component. When visualizing this, one may think of a polarized wave but one, 

somehow, needs to imagine that the circular motion is not in the xz-plane, but in the yz-plane.  

Now what happens if we change the reference frame, or the representation as it is referred to in 

quantum mechanics? We request the reader to abandon standard definitions for a while and think 

through the following logic. What do we mean by changing the reference frame? What is our reference 

frame? The reference frame is given by the measurement apparatus above, or by our perspective of it. 

Indeed, the apparatus gives us two directions: (1) the up direction, so that’s the positive direction of 

the z-axis, and (2) the direction of travel of our particle, which coincides with the positive direction of 

the y-axis. We want the reader to think about the relativity of these: our observation of what physically 

happens here does not give these two directions any absolute character, but the reader will have to 
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admit they are more than just some mathematical construct: when everything is said and done, we will 

have to admit that these two directions are real.
31

  

What is their reality? We request the reader to think through the following. Suppose that we are looking 

in the positive y-direction—so that’s the direction in which our particle is moving—then we might 

imagine how it would look like when we would make a 180° turn and look at the situation from the 

other side, so to speak. We do not change the reference frame (i.e. the orientation) of the apparatus 

here: we just change our perspective on it. Now, if we would want to change the reference frame 

because of our changed perspective (we are looking at the same thing from the back side, so to speak), 

we will probably want to keep the z-axis as it is—pointing upwards
32

—, and we will also want to re-

define the x– and y-axis using the familiar right-hand rule for defining a coordinate frame, so as to 

ensure we do not get in trouble when discussing the physics of the situation with a colleague. ☺ Hence, 

our new x-axis and our new y-axis will be the same as the old x- and y-axes but with the sign reversed. In 

short, we’ll have the following mini-transformation
33

: (1) z‘ = z, (2) x’ = −x, and (3) y’ = −y. 

Hence, if we are effectively looking at something real that was moving along the y-axis, in the positive 

direction, then it will now still be moving along the y’-axis, but in the negative direction. Hence, our 

elementary wavefunction e
iθ

 = cosθ + i·sinθ
34

 will transform into −cosθ − i·sinθ = cosθ − i·sinθ. It 

describes the same reality. It has to. We just changed our reference frame: we didn’t change reality. 

Of course, the mainstream physicist will shrug this off as nonsense, because the transformation matrix 

for an amplitude—and, hence, presumably, for a wavefunction
35

—for a rotation about the z-axis is the 

following one: 

Figure 7: Transformation matrix for a rotation about the z-axis 

 

                                                           
31

 The terms ‘relative’ and ‘absolute’ are ambiguous and, hence, we should probably avoid using them. One may 

object that the term ‘real’ and its opposite (unreal?) are ambiguous too but… Well… The reader is free to suggest 

better language. 
32

 We might refer to Kant here, but that would be too much of a philosophical digression. The point is: the 

mathematical idea of a three-dimensional reference frame is grounded in our intuitive notions of up and down, 

and left and right. In this regard, we advise the skeptical reader to think about the necessity of the various right-

hand rules and conventions that we cannot do without in math, and in physics. We elaborated on that in other 

posts on our physics blog. See, for example https://readingfeynman.org/2017/03/14/symmetries/, accessed on 6 

December 2017, 
33

 This transformation is not a regular one. In fact, its irregularity will explain the point we want to make here.  
34

 As mentioned above, we believe the ψ = a·e
i·θ

, as opposed to the ψ = a·e
−i·θ

, is an equally valid elementary 

wavefunction. They represent two distinct physical possibilities: spin up versus spin down, in this case. Hence, the 

reader may want to double-check the calculations for the ψ = a·e
−i·θ

 function.   
35

 The two concepts are not the same, obviously. We will come back to this in a moment. 
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Hence, if φ is equal to 180° (remember: we walked around the apparatus and, hence, the relevant angle 

is, effectively, 180°), then these e
iφ/2

 and e
−
i
φ/2

/√2 factors are equal to e
iπ/2

 = +i and e
−
i
π/2

 = 

−i respectively. Hence, our e
iθ

 = cosθ + i·sinθ wavefunction now becomes… 

Here we need to think about the difference between an amplitude and a wavefunction. Are they two 

different things? They are and they are not. The e
iθ

 = cosθ + i·sinθ is an elementary wavefunction which, 

we presume, describes some real-life particle—we talked about an electron with its spin in the up-

direction—while these transformation matrices are to be applied to amplitudes describing… Well… 

An up– or a down-state respectively. Hence, for all practical purposes, they are the same thing in this 

situation. But… Well… If the e
iθ

 = cosθ + i·sinθ wavefunction would describe an up-electron, then we still 

have to apply that e
iφ/2

 = e
iπ/2

 = +i factor, right? Hence, we get a new wavefunction that will be equal 

to e
iφ/2

·e
iθ

 = e
iπ/2

·e
iθ

 = +i·e
iθ

 = i·cosθ + i
2
·sinθ = sinθ − i·cosθ, right? 

 So how can we reconcile that with the cosθ − i·sinθ function we observe when walking around the 

apparatus? The cosθ − i·sinθ and the sinθ − i·cosθ functions are not very different but… Well… They are 

different. Same-same but different is not good enough here. How can we reconcile them? The answer is: 

we cannot. Hence, either my theory is wrong or… Well… Feynman—and the mainstream physicsts who 

shrugged our model off as nonsense—cannot be wrong, can they?  

They cannot. The answer is: Feynman, and the mainstream physicist, are not talking about the same 

situation. Our electron in the thought experiment does, effectively, make a turn of 180°, so it is going in 

the other direction now ! That is a different situation. It is different than what we did, and that is to just 

go around the apparatus and look at the situation from the other side.
36

 

Hence, the proposed model, and the related physical interpretation of the wavefunction, are not 

incompatible with the mainstream logic and accepted quantum math which—let us not forget—have 

been validated through countless experiments. 

Let us, to conclude this paper, think about the difference between the sinθ − i·cosθ and cosθ − i·sinθ 

functions. First, note that they will give us the same probabilities: the square of the absolute value of 

both complex numbers is the same. [It’s equal to 1 because we didn’t bother to put a coefficient in 

front.] Secondly, we should note that the sine and cosine functions are essentially the same. They just 

differ by a phase factor: cosθ = sin(θ + π/2) and −sinθ = cos(θ + π/2). Hence, we can write the following: 

sinθ − i·cosθ = −cos(θ + π/2) − i·sin(θ + π/2) = −[cos(θ + π/2) + i·sin(θ + π/2)] = −e
i·(θ + π/2)

 

Well… This is nice result. The e
−i·θ

 = cosθ − i·sinθ and e
i·(θ + π/2)

 = sinθ − i·cosθ functions differ by (1) a phase 

shift and (2) a minus sign in front of the argument. Hence, that is, apparently, what it takes to reverse 

the direction of an electron. 

  

                                                           
36

 It may take the reader a few moments to understand the argument. The mentioned articles on transformation 

and symmetries (see, for example, https://readingfeynman.org/2017/03/17/some-more-on-cp-and-cpt-

symmetry/, accessed on 6 December 2017) may help.  
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There are, of course, other ways to look at the matter
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combination of a rotation around the two other axes. Hence, we may want to think of a two

dimensional oscillation as an oscillation of a polar and azimuthal angle. 
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There are, of course, other ways to look at the matter—literally. For example, we can imagine two

circular rather than linear oscillations. Think of a tiny ball, for example,

whose center of mass stays where it is (see Figure 8). Any rotation – around any axis – 

combination of a rotation around the two other axes. Hence, we may want to think of a two

oscillation as an oscillation of a polar and azimuthal angle.  

Figure 8: Two-dimensional circular movement 
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to challenge the simplistic mainstream viewpoint on the reality of the wavefunction. Stating that it is a 

construct only without physical significance amounts to saying it has no meaning at all. 
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