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A standing wave consists of two identical waves moving in opposite direction. In a moving reference
frame, this standing wave becomes a traveling wave. Based on the principle of superposition, the
wavelengths of these two opposing waves are shown to be identical in any inertial reference frame.

According to Doppler Effect, a moving wave detector will detect two different frequencies on these
two waves. Consequently, the wave detector will detect different speeds from both waves due to the
same wavelength but different frequencies. The calculation of the speed of the microwave in the
standing wave is demonstrated with the typical household microwave oven which emits microwave
of frequency range around 2.45 GHz and wavelength range around 12.2 cm.

I. INTRODUCTION

The superposition of two waves produces either a trav-
eling wave or a standing wave. A standing wave in one
inertial reference frame becomes a traveling wave in an-
other inertial reference frame. The two waves that make
up the standing wave will acquire new properties in an-
other inertial reference frame. Property such as speed,
frequency or wavelength can be calculated with the prin-
ciple of superposition.

The results show that the wavelengths of both waves
are identical to each other in any inertial reference frame.
However, their speeds and frequencies differ from each
other.

II. PROOF

Consider one-dimensional interaction.

A. Superposition of Waves

Two waves overlaping with each other will result in a
new wave. Let wave 1 be

sin(k1x + w1t) (1)

and wave 2 be

sin(k2x + w2t) (2)

Apply principle of superposition to overlap both waves
to get a new wave

sin(k1x + w1t) + sin(k2x + w2t) (3)

Apply reparameterization to simplify calculation.

k1 =
k1 + k2

2
+

k1 − k2
2

(4)

k2 =
k1 + k2

2
+

k2 − k1
2

(5)

w1 =
w1 + w2

2
+

w1 − w2

2
(6)

w2 =
w1 + w2

2
+

w2 − w1

2
(7)

Let

f(x, t) =
(k1 + k2)x

2
+

(w1 + w2)t

2
(8)

g(x, t) =
(k1 − k2)x

2
+

(w1 − w2)t

2
(9)

Wave 1 can be written as

sin(k1x + w1t) = sin(f + g) (10)

Wave 2 becomes

sin(k2x + w2t) = sin(f − g) (11)

Superposition of both wave 1 and wave 2 produces

sin(f + g) + sin(f − g) (12)

= 2sin(f)cos(g) (13)

B. Standing Wave

A standing wave is formed by two identical waves mov-
ing in opposite direction. Both waves have the same fre-
quency, wavelength and amplitude.

w1 = w2 = w (14)

k1 = −k2 = k (15)

Superposition of both waves produces

2sin(f)cos(g) = 2sin(wt)cos(kx) (16)

The new wave is a standing wave cos(kx) with new am-
plitude 2sin(wt).
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C. Reference Frame

Let this standing wave be stationary in reference frame
F1. Let another reference frame F2 be in a relative mo-
tion to F1.

Every point in the standing wave moves with zero ve-
locity in F1. Therefore, every point moves with the same
velocity in F2.

A standing wave in F1

2sin(wt)cos(kx) (17)

becomes a traveling wave in F2.

2sin(w′t′)cos(k′x′ + u′t′) (18)

where
x’ is space coordinate in F2.
t’ is time coordinate in F2.
x’ and t’ are chosen so that

(x′, t′) = (0, 0) (19)

if

(x, t) = (0, 0) (20)

This traveling wave in F2 is made of two waves corre-
sponding to wave 1 and wave 2 in F1.

2sin(f ′)cos(g′) (21)

f ′(x′, t′) =
(k′1 + k′2)x′

2
+

(w′1 + w′2)t′

2
(22)

g′(x′, t′) =
(k′1 − k′2)x′

2
+

(w′1 − w′2)t′

2
(23)

Both equation (18) and equation (21) represent the
traveling wave in F2.

2sin(w′t′)cos(k′x′ + u′t′) = 2sin(f ′)cos(g′) (24)

Equation (24) demands

sin(w′t′) = sin(f ′) (25)

or

sin(w′t′) = cos(g′) (26)

Therefore, from equation (22) and (23),

k′1 + k′2 = 0 (27)

or

k′1 − k′2 = 0 (28)

The wavelengths of both waves in F2 are identical.

By the definition of standing wave, the wavelengths of
both waves in F1 are identical.

Therefore, the wavelengths of both waves in a
standing wave are identical in any inertial refer-
ence frames.

For two waves in oppostite direction,

k′1 + k′2 = 0 (29)

The traveling wave in F2 is

2sin(w′t′)cos(k′x′ + u′t′) = 2sin(f ′)cos(g′) (30)

= 2sin(
(w′1 + w′2)t′

2
)cos(

(k′1 − k′2)x′

2
+

(w′1 − w′2)t′

2
)

(31)
Therefore,

w′ =
w′1 + w′2

2
(32)

k′ =
k′1 − k′2

2
= k′1 = −k′2 (33)

u′ =
w′1 − w′2

2
(34)

D. Doppler Effect

Let a wave detector be stationary in F2.
According to Doppler Effect, this wave detector will

detect higher frequency in the wave moving toward the
wave detector. The frequency of wave moving away from
the wave detector will be lower to the wave detector.

Therefore, a stationary wave detector in F2 detects
different frequencies in both waves.

The speed of a wave is equal to its frequency multiplied
by its wavelength.

Due to the same wavelength but different
frquencies, the speeds of both waves differ in F2

but remain identical in F1.
Let the velocity of the wave detector in F1 be -V, then

the velocity of the traveling wave in F2 should be V.

u′

k′
= V (35)

From equation (34),

w′1 − w′2 = 2k′V (36)

From equation (32),

w′1 + w′2 = 2w′ (37)

Combine equation (36) and (37) to get

w′1 = w′ + k′V (38)
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w′2 = w′ − k′V (39)

The velocity of wave 1 in F2 is

v′1 =
w′1
k′1

=
w′1
k′

= V +
w′

k′
(40)

The velocity of wave 2 in F2 is

v′2 =
w′2
k′2

=
w′2
−k′

= V − w′

k′
(41)

The velocity and the speed of a wave to the
wave detector depends on the relative motion be-
tween the wave and the wave detector.

E. Time Transformation

The traveling wave in F2 diminishes if its correspond-
ing standing wave in F1 diminishes. Therefore,

sin(wt) = sin(w′t′) (42)

t

t′
=

w′

w
(43)

If there are two standing waves represented by wa and
wb in F1, the following condition should be satisfied by
wa and wb of arbitrary value.

w′a
wa

=
t

t′
=

w′b
wb

(44)

Therefore, t
t′ is a constant, Q, in F2 and is independent

of w.

t = t′Q (45)

Time in one inertial reference frame is propor-
tional to time in another inertial reference frame.

F. Wave Cavity

A standing wave can be formed inside an optical cavity
such as laser or a microwave cavity such as microwave
oven.

Consider the standing wave inside a typical household
microwave oven. The wavelength of the microwave emit-
ted by the microwave oven is typically between 12 cm
and 12.7 cm. The distance between two adjacent nodes
can be visibly measured to be about 6.2 cm on a layer of
chocolate or cheese.

Let the standing microwave be stationary in reference
frame F1. Let a wave detector move relatively toward the
microwave oven at a speed of V in F1. The wave detector
is stationary in F2.

According to Doppler Effect, the time for a single wave-
length to pass through the detector in F1

for W+ is

t+ =
L

C + V
(46)

and for W− is

t− =
L

C − V
(47)

where
W+ is the wave moving toward the detector.
W− is the wave moving away from the detector.
C is the speed of both W+ and W− in F1

L is the wavelength of both W+ and W− in F1

The corresponding time in F2 can be obtained from
equation (45)

t′+ =
t+
Q

=
L

(C + V )Q
(48)

t′− =
t−
Q

=
L

(C − V )Q
(49)

Let L’ be the wavelength of both W+ and W− in F2.
The speed of W+ in F2 is

L′

t′+
= (C + V )Q

L′

L
(50)

The speed of W− in F2 is

L′

t′−
= (C − V )Q

L′

L
(51)

G. Wavelength Transformation

As the wave detector moves through a full wavelength
of the standing wave in F1, a full wavelength of the trav-
eling wave passes through the wave detector in F2.

L

T
= V =

L′

T ′
(52)

T is the time required in F1 while T’ is the corresponding
time in F2.

L′

L
=

T ′

T
=

t′

t
=

1

Q
(53)

Q
L′

L
= 1 (54)

From equation (50), the speed of W+ in F2 is

L′

t′+
= (C + V )Q

L′

L
= C + V (55)

From equation (51), the speed of W− in F2 is

L′

t′−
= (C − V )Q

L′

L
= C − V (56)

The speed of microwave depends on the refer-
ence frame. It is identical to the speed of light in
F1. It is either greater or smaller than the speed
of light in F2.
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III. CONCLUSION

The speed of the microwave in a standing wave is a
relative value. It depends on the relative motion between
the standing wave and the wave detector. To the wave
detector, the microwave can be faster or slower than the
speed of light.

Based on the principle of superposition, the wave-
lengths of two opposing waves in the standing wave are
always identical to each other in any inertial reference
frame. This leads to one important fact that time in one
inertial reference frame is linearly proportional to time
in another inertial reference frame. A related fact is that
space in one inertial reference frame is linearly propor-
tional to space in another inertial reference frame.

Consequently, the resulting velocity of any wave by
transformation of reference frame is exactly the addition

of the velocity of the wave in the original inertial reference
frame to the relative velocity of the new inertial reference
frame.

The results from the principle of superposition matches
well with the conservation law of Translation Symmetry.
One is the conservation of simultaneity[1]. The other is
the conservation of distance[2].

Lorentz Transformation violates the conservation of si-
multaneity[1] and distance[2]. Therefore, Lorentz Trans-
formation is not a proper transformation in physics. Con-
sequently, any theory based on Lorentz Transformation
is incorrect in physics. For example, Special Relativ-
ity[2][4].

As a direct property of Translation Symmetry, both
time[5] and distance[2] are independent of reference
frame.
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