
Reverse Qubits   

 

A group of scientists at the Niels Bohr Institute (NBI), University of Copenhagen, has 

figured out how to make spin qubits perform controlled backward rotations. [29] 

 

Researchers from Google and the University of California Santa Barbara have taken 

an important step towards the goal of building a large-scale quantum computer. [28] 

Physicists have shown that superconducting circuits—circuits that have zero 

electrical resistance—can function as piston-like mechanical quantum engines. The 

new perspective may help researchers design quantum computers and other devices 

with improved efficiencies. [27]  

This paper explains the magnetic effect of the superconductive current from the 

observed effects of the accelerating electrons, causing naturally the experienced 

changes of the electric field potential along the electric wire. The accelerating 

electrons explain not only the Maxwell Equations and the Special Relativity, but the 

Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin 

also, building the bridge between the Classical and Quantum Theories.   

The changing acceleration of the electrons explains the created negative electric field 

of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the 

Gravitational Force, giving a Unified Theory of the physical forces. Taking into 

account the Planck Distribution Law of the electromagnetic oscillators also, we can 

explain the electron/proton mass rate and the Weak and Strong Interactions.   

Since the superconductivity is basically a quantum mechanical phenomenon and 

some entangled particles give this opportunity to specific matters, like  

Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-

mediated electron pairing, we can say that the secret of superconductivity is the 

quantum entanglement.  
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Author: George Rajna  

The Quest of Superconductivity  
Superconductivity seems to contradict the theory of accelerating charges in the static electric 

current, caused by the electric force as a result of the electric potential difference, since a closed 

circle wire no potential difference at all. [1]  

On the other hand the electron in the atom also moving in a circle around the proton with a 

constant velocity and constant impulse momentum with a constant magnetic field. This gives the 



idea of the centripetal acceleration of the moving charge in the closed circle wire as this is the case 

in the atomic electron attracted by the proton. Because of this we can think about 

superconductivity as a quantum phenomenon. [2]  

Experiences and Theories  

Qubits put into reverse 
A group of scientists at the Niels Bohr Institute (NBI), University of Copenhagen, has figured out 

how to make spin qubits perform controlled backward rotations. This has never been shown 

before – and the journal Physical Review Letters, where the research has just been published, 

highlights the innovative discovery in the category "Editor's Suggestion." 

"I guess you can say that we have figured out how to run the qubits in both forward and reverse 

gear – under certain circumstances," says Ph.D. Filip Malinowski, Center for Quantum Devices 

(QDev) at the Niels Bohr Institute. 

Malinowski and QDev colleague Frederico Martins – who is now with the University of New South 

Wales, Australia – spearheaded the 'reverse project' which also included scientists from Purdue 

University, USA. The American scientists' role involved the production of extremely pure 

semiconductor crystals, which the NBI team needed as a foundation to build upon when putting 

together the specific 'environment' needed to force qubits into reverse. 

The NBI discovery should be seen in the context of quantum computers, the new and powerful 

next generation super computers that scientists all over the world – QDev being no exception – 

aspire to develop through various projects. 

In order to build a quantum computer you need qubits – and qubits differ from binary bits which 

are the backbone of contemporary computers. Binary bits can assume the values 0 or 1 and 

therefore – in principle – function as switches: they are either 'on," or they are 'off." 

Like classical bits, qubits can assume the values 0 and 1. However: qubits can also be in a state 

which represents 0 and 1 simultaneously, a so-called superposition. 

"We encode qubits in the direction that the electron spin is pointing - and process quantum 

information by rotating spins around different axes. Theoretically, forward and backward rotations 

yield different superposition states, but experimentally only forward rotations were possible up 

now," says Frederico Martins. 

Speed and precision 

The fact that qubits can be in a superposition state is what will enable a quantum computer – once 

it has been developed – to simultaneously undertake a truly large number of different calculations. 

In order to carry out qubit research you have to work at very low temperatures – in the vicinity of 

absolute zero (-273.15 C) – the reason for that being that these conditions shield the qubits from 

various disturbances which may affect their level of performance, e.g. noise. 

https://phys.org/tags/quantum/
https://phys.org/tags/qubit/


"Our experiments were conducted at just 0.02 C above absolute zero. We were able to create this 

very low temperature thanks to special equipment in the QDev lab – a version of a cryostat, a so-

called dilution refrigerator," explains Filip Malinowski: 

"And when a quantum computer is eventually developed, it will most likely also include some 

version of a cryostat." 

The car analogy 

What are the possible practical implications of the fact that you can now force qubits into reverse – 

as shown by the NBI scientists? 

For one it makes it possible to carry out faster calculations of a given quantity of data than can be 

done relying on qubits equipped with just one – forward – gear. 

But it is also possible to choose precision over speed by letting the 'reverse qubits' work at a 

moderate pace in a – future – quantum computer. In that case the advantage will be calculations 

of increased precision, tells Filip Malinowski: "And as a consequence you will be able to avoid a lot 

of errors that would have to be corrected through additional computation." 

In order to understand just how much easier it suddenly becomes to control qubits once they have 

been supplied with a reverse gear, an analogy involving a car comes in handily, says associate 

professor Ferdinand Kuemmeth, head of the QDev team behind the discovery: 

"Imagine that you drive a car along a crowded street – the street where you live – and you wish to 

park it exactly in front of your door. This can be a daunting task, especially if there are a lot of cars 

– (noise, when we are talking qubits) – around you. And now imagine doing this without a reverse 

gear: If you overshoot slightly, you missed your chance, and it's hard to come up with a fix. The 

same is true with rotating qubits: If one overshoots slightly – which frequently happens due to the 

noisy environment – there was no way to rotate the qubit back – until now!" 

A building process 

The reverse function in qubits has been demonstrated in an experiment involving a quantum 

'environment' which the NBI scientists built on top of a tailor-made crystal – a sandwich-like 

structure delivered by Purdue University, made out of a material with extraordinarily uniform 

distribution of electrons. 

At the base of the 'environment' is the crystal structure – which the NBI scientists covered with a 

polymer. 

The next step was 'drawing' a pattern of grooves in the polymer layer, using a beam of electrons. 

Then the – now weakened – polymer was flushed away from the indicated pattern – laying the 

grooves open, like ditches. 

Finally the grooves on top of the crystal were filled with a metal to form electrodes, of which the 

smallest measured a mere 20 nanometer – and by applying different voltages to these electrodes it 

is possible to repel or attract electrons, ultimately placing individual electrons in specific positions. 



The NBI scientists used such a chip to accurately control the so-called exchange interaction – a 

fundamental interaction between electrons that can be used to force qubits into reverse – and 

how this is done is explained in more detail in the news graphic. 

Center for Quantum Devices, QDev – the lab where the research took place. Photo: Ola Jakup 

Joensen 

The condensed explanation centers around the fact that when two electron spins – one pointing 

upwards, the other downwards – are placed in the same confined space, they start rotating 

together, says Filip Malinowski: 

"In this case these electrons are qubits – and if we return to the car analogy, they will start rotating 

or moving forward. Until now the assumption has been that this was indeed the only direction in 

which they could possibly move – which is where our discovery comes in." 

The reverse function becomes reality when two oppositely pointing electron spins – qubits – are 

placed in a confined environment together with a lot of other electron pairs. 

Now – still at very low temperatures – it suddenly becomes possible to force qubits into reverse. 

Gallium arsenide – the material which the US-produced crystal is made of – plays a prominent role 

in the NBI experiment, but the technique will probably work equally well with a number of other 

semiconductors, says Filip Malinowski: 

"Especially silicon, which is essential to the chips found in our present generation processors – but 

silicon could also be used as a building material for quantum computers." [29] 

 

Superconducting qubit 3-D integration prospects bolstered by new research 
Researchers from Google and the University of California Santa Barbara have taken an important 

step towards the goal of building a large-scale quantum computer. 

Writing in the journal Quantum Science and Technology, they present a new process for creating 

superconducting interconnects, which are compatible with existing superconducting qubit 

technology. 

The race to develop the first large-scale error-corrected quantum computer is extremely 

competitive, and the process itself is complex. Whereas classical computers encode data into 

binary digits (bits) that exist in one of two states, a quantum computer stores information in 

quantum bits (qubits) that may be entangled with each other and placed in a superposition of both 

states simultaneously. 

The catch is that quantum states are extremely fragile, and any undesired interaction with the 

surrounding environment may destroy this quantum information. One of the biggest challenges in 

the creation of a large-scale quantum computer is how to physically scale up the number of qubits, 

while still connecting control signals to them and preserving these quantum states. 

https://phys.org/tags/qubit+technology/
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Lead author Brooks Foxen, from UC Santa Barbara, said: "There are a lot of unknowns when it 

comes to imagining exactly what the first large scale quantum computer will look like. In the 

superconducting qubit field, we're just now beginning to explore systems with 10s of qubits 

whereas the long-term goal is to build a computer with millions of qubits. 

"Previous research has mostly involved layouts where control wires are routed on a single metal 

layer. More interesting circuits require the ability to route wiring in three dimensions so that wires 

may cross over each other. Solving this problem without introducing materials that reduce the 

quality of superconducting qubits is a hot topic, and several groups have recently demonstrated 

possible solutions. We believe that our solution, which is the first to provide fully superconducting 

interconnects with high critical currents, offers the most flexibility in designing other aspects 

of quantum circuits." 

As superconducting qubit technology grows beyond one-dimensional chains of nearest neighbour 

coupled qubits, larger-scale two-dimensional arrays are a natural next step. 

Prototypical two-dimensional arrays have been built, but the challenge of routing control wiring 

and readout circuitry has, so far, prevented the development of high fidelity qubit arrays of size 

3x3 or larger. 

Senior author Professor John M Martinis, jointly appointed at both Google and UC Santa Barbara, 

said: "To enable the development of larger qubit arrays, we have developed a process for 

fabricating fully superconducting interconnects that are materially compatible with our existing, 

high fidelity, aluminum on silicon qubits. 

"This fabrication process opens the door to the possibility of the close integration of two 

superconducting circuits with each other or, as would be desirable in the case of superconducting 

qubits, the close integration of one high-coherence qubit device with a dense, multi-layer, signal-

routing device." [28] 

Superconducting qubits can function as quantum engines  
Physicists have shown that superconducting circuits—circuits that have zero electrical resistance— 

can function as piston-like mechanical quantum engines. The new perspective may help 

researchers design quantum computers and other devices with improved efficiencies.  

The physicists, Kewin Sachtleben, Kahio T. Mazon, and Luis G. C. Rego at the Federal University of 

Santa Catarina in Florianópolis, Brazil, have published a paper on their work on superconducting 

qubits in a recent issue of Physical Review Letters.  

In their study, the physicists explain that superconducting circuits are functionally equivalent to 

quantum systems in which quantum particles tunnel in a double-quantum well. These wells have 

the ability to oscillate, meaning the width of the well changes repeatedly. When this happens, the 

system behaves somewhat like a piston that moves up and down in a cylinder, which changes the 

volume of the cylinder. This oscillatory behavior allows work to be performed on the system. The 

researchers show that, in the double-quantum well, part of this work comes from quantum 

coherent dynamics, which creates friction that decreases the work output. These results provide a 

better understanding of the connection between quantum and classical thermodynamic work.  

https://phys.org/tags/qubit/
https://phys.org/tags/quantum/


"The distinction between 'classical' thermodynamic work, responsible for population transfer, and 

a quantum component, responsible for creating coherences, is an important result," Mazon told 

Phys.org. "The creation of coherences, in turn, generates a similar effect to friction, causing a 

notcompletely-reversible operation of the engine. In our work we have been able to calculate the 

reaction force caused on the quantum piston wall due to the creation of coherences. In principle 

this force can be measured, thus constituting the experimental possibility of observing the 

emergence of coherences during the operation of the quantum engine."  

One of the potential benefits of viewing superconducting qubits as quantum engines is that it may 

allow researchers to incorporate quantum coherent dynamics into future technologies, in 

particular quantum computers. The physicists explain that a similar behavior can be seen in nature, 

where quantum coherences improve the efficiency of processes such as photosynthesis, light 

sensing, and other natural processes.  

"Quantum machines may have applications in the field of quantum information, where the energy 

of quantum coherences is used to perform information manipulation in the quantum regime," 

Mazon said. "It is worth remembering that even photosynthesis can be described according to the 

working principles of a quantum machine, so unraveling the mysteries of quantum 

thermodynamics can help us to better understand and interpret various natural processes." [27]  

Conventional superconductivity   
Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper and  

Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called 

Cooper pairs, which are able to move through the crystal lattice without resistance when an 

electric voltage is applied. Even when the voltage is removed, the current continues to flow 

indefinitely, the most remarkable property of superconductivity, and one that explains the keen 

interest in their technological potential. [3]  

  

High-temperature superconductivity  

In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at 

temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed 

that BCS theory alone cannot explain this phenomenon and that other effects are at play. These 

effects are still not yet fully understood; it is possible that they even control superconductivity at 

low temperatures for some materials. [8]  

Superconductivity and magnetic fields  
Superconductivity and magnetic fields are normally seen as rivals – very strong magnetic fields 

normally destroy the superconducting state. Physicists at the Paul Scherer Institute have now 

demonstrated that a novel superconducting state is only created in the material CeCoIn5 when 

there are strong external magnetic fields. This state can then be manipulated by modifying the field 

direction. The material is already superconducting in weaker fields, too. In strong fields, however, 

an additional second superconducting state is created which means that there are two different 

superconducting states at the same time in the same material. The new state is coupled with an 

anti-ferromagnetic order that appears simultaneously with the field. The anti-ferromagnetic order 



from whose properties the researchers have deduced the existence of the superconducting state 

was detected with neutrons at PSI and at the Institute Laue-Langevin in Grenoble. [6]  

  

Room-temperature superconductivity  
After more than twenty years of intensive research the origin of high-temperature 

superconductivity is still not clear, but it seems that instead of electron-phonon attraction 

mechanisms, as in conventional superconductivity, one is dealing with genuine electronic 

mechanisms (e.g. by antiferromagnetic correlations), and instead of s-wave pairing, d-waves are 

substantial. One goal of all this research is room-temperature superconductivity. [9]  

Exciton-mediated electron pairing  
Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure 

(~500 GPa) should become superconducting at approximately room-temperature because of its 

extremely high speed of sound and expected strong coupling between the conduction electrons 

and the lattice vibrations (phonons). This prediction is yet to be experimentally verified, as yet the 

pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa. In 1964, 

William A. Little proposed the possibility of high temperature superconductivity in organic 

polymers.  This proposal is based on the exciton-mediated electron pairing, as opposed to phonon-

mediated pairing in BCS theory. [9]  

Resonating valence bond theory  
In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that 

attempts to describe high temperature superconductivity, and in particular the superconductivity 

in cuprate compounds. It was first proposed by American physicist P. W. Anderson and the Indian 

theoretical physicist Ganapathy Baskaran in 1987. The theory states that in copper oxide lattices, 

electrons from neighboring copper atoms interact to form a valence bond, which locks them in 

place. However, with doping, these electrons can act as mobile Cooper pairs and are able to 

superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped 

cuprates was in the Mott insulator nature of crystalline copper oxide. RVB builds on the Hubbard 

and t-J models used in the study of strongly correlated materials. [10]  

Strongly correlated materials  
Strongly correlated materials are a wide class of electronic materials that show unusual (often 

technologically useful) electronic and magnetic properties, such as metal-insulator transitions or 

half-metallicity. The essential feature that defines these materials is that the behavior of their 

electrons cannot be described effectively in terms of non-interacting entities. Theoretical models 

of the electronic structure of strongly correlated materials must include electronic correlation to 

be accurate. Many transition metal oxides belong into this class which may be subdivided 

according to their behavior, e.g. high-Tc, spintronic materials, Mott insulators, spin Peierls 

materials, heavy fermion materials, quasi-low-dimensional materials, etc. The single most 

intensively studied effect is probably high-temperature superconductivity in doped cuprates, e.g. 

La2-xSrxCuO4. Other ordering or magnetic phenomena and temperature-induced phase transitions 

in many transition-metal oxides are also gathered under the term "strongly correlated materials." 

Typically, strongly correlated materials have incompletely filled d- or f-electron shells with narrow 



energy bands. One can no longer consider any electron in the material as being in a "sea" of the 

averaged motion of the others (also known as mean field theory). Each single electron has a 

complex influence on its neighbors.  

[11]  

New superconductor theory may revolutionize electrical engineering  
High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as 

electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically 

around atoms. Now two physicists propose that such behaviors – and superconductivity itself – can 

all be traced to a single starting point, and they explain why there are so many variations.  

  

An "antiferromagnetic" state, where the magnetic moments of electrons are opposed, can lead to 

a variety of unexpected arrangements of electrons in a high-temperature superconductor, then 

finally to the formation of "Cooper pairs" that conduct without resistance, according to a new 

theory. [22]   

  

  

  

Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic 

neutron scattering  

In BCS superconductors, the energy gap between the superconducting and normal electronic states 

is constant, but in unconventional superconductors the gap varies with the direction the electrons 

are moving. In some directions, the gap may be zero. The puzzle is that the gap does not seem to 

vary with direction in the iron arsenides. Theorists have argued that, while the size of the gap 

shows no directional dependence in these new compounds, the sign of the gap is opposite for 

different electronic states. The standard techniques to measure the gap, such as photoemission, 

are not sensitive to this change in sign.   



But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan 

Rosenkranz, led an international collaboration to perform neutron experiments using samples of 

the new compounds made in Argonne's Materials Science Division, and discovered a magnetic 

excitation in the superconducting state that can only exist if the energy gap changes sign from one 

electron orbital to another.   

"Our results suggest that the mechanism that makes electrons pair together could be provided by 

antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives 

direct evidence that the superconductivity is unconventional."   

Inelastic neutron scattering continues to be an important tool in identifying unconventional 

superconductivity, not only in the iron arsenides, but also in new families of superconductors that 

may be discovered in the future. [23]  

   

A grand unified theory of exotic superconductivity?  

The role of magnetism  
In all known types of high-Tc superconductors—copper-based (cuprate), iron-based, and so-called 

heavy fermion compounds—superconductivity emerges from the "extinction" of 

antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned 

spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their 

lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.  

However if the interactions between electrons that cause antiferromagnetic order can be 

maintained while the actual order itself is prevented, then superconductivity can appear. "In this 

situation, whenever one electron approaches another electron, it tries to anti-align its magnetic 

state," Davis said. Even if the electrons never achieve antiferromagnetic order, these 

antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This 

antiferromagnetic influence is universal across all these types of materials," Davis said.  

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of 

electrons to eventually pair up with anti-aligned spins—a condition necessary for them to carry 

current with no resistance. The complicating factor has been the existence of many different types 

of "intertwined" electronic phases that also emerge in the different types of high-Tc 

superconductors—sometimes appearing to compete with superconductivity and sometimes 

coexisting with it. [24]  

  

  

Concepts relating magnetic interactions, intertwined electronic orders, and 

strongly correlated superconductivity  
Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated 

by repulsive electron–electron interactions, so that the symmetry of the pair wave function is 

other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that 

are the proximate cause of such SC are more typically drivers of commensurate magnetism. 



Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this 

type of unconventional superconductivity to emerge. Importantly, however, intervening between 

these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are 

frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic 

essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. 

Here we introduce a model conceptual framework within which to understand the relationship 

between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its 

effectiveness in simultaneously explaining the consequences of AF interactions for the copper-

based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.  

Significance  

This study describes a unified theory explaining the rich ordering phenomena, each associated with 

a different symmetry breaking, that often accompany high-temperature superconductivity. The 

essence of this theory is an ”antiferromagnetic interaction,” the interaction that favors the 

development of magnetic order where the magnetic moments reverse direction from one crystal 

unit cell to the next. We apply this theory to explain the superconductivity, as well as all observed 

accompanying ordering phenomena in the copper-oxide superconductors, the iron-based 

superconductors, and the heavy fermion superconductors. [25]  



Superconductivity's third side unmasked  

  

Shimojima and colleagues were surprised to discover that interactions between electron spins do 

not cause the electrons to form Cooper pairs in the pnictides. Instead, the coupling is mediated by 

the electron clouds surrounding the atomic cores. Some of these so-called orbitals have the same 

energy, which causes interactions and electron fluctuations that are sufficiently strong to mediate 

superconductivity.   

This could spur the discovery of new superconductors based on this mechanism. “Our work 

establishes the electron orbitals as a third kind of pairing glue for electron pairs in 

superconductors, next to lattice vibrations and electron spins,” explains Shimojima. “We believe 

that this finding is a step towards the dream of achieving room-temperature superconductivity,” 

he concludes. [17]  

Strongly correlated materials  
Strongly correlated materials give us the idea of diffraction patterns explaining the electron-proton 

mass rate. [13]   

This explains the theories relating the superconductivity with the strong interaction. [14]  



Fermions and Bosons  
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the 

same thing. We can generalize the weak interaction on all of the decaying matter constructions, 

even on the biological too.  

The General Weak Interaction  
The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of 

Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes 

for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows 

the increasing entropy and decreasing information by the Weak Interaction, changing the 

temperature dependent diffraction patterns. The Fluctuation Theorem says that there is a 

probability that entropy will flow in a direction opposite to that dictated by the Second Law of 

Thermodynamics. In this case the Information is growing that is the matter formulas are emerging 

from the chaos. [18] One of these new matter formulas is the superconducting matter.  

Higgs Field and Superconductivity  
The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The 

specific spontaneous symmetry breaking of the underlying local symmetry, which is similar to that 

one appearing in the theory of superconductivity, triggers conversion of the longitudinal field 

component to the Higgs boson, which interacts with itself and (at least of part of) the other fields 

in the theory, so as to produce mass terms for the above-mentioned three gauge bosons, and also 

to the above-mentioned fermions (see below). [16]  

The Higgs mechanism occurs whenever a charged field has a vacuum expectation value. In the 

nonrelativistic context, this is the Landau model of a charged Bose–Einstein condensate, also 

known as a superconductor. In the relativistic condensate, the condensate is a scalar field, and is 

relativistically invariant.  

  

The Higgs mechanism is a type of superconductivity which occurs in the vacuum. It occurs when all 

of space is filled with a sea of particles which are charged, or, in field language, when a charged 

field has a nonzero vacuum expectation value. Interaction with the quantum fluid filling the space 

prevents certain forces from propagating over long distances (as it does in a superconducting 

medium; e.g., in the Ginzburg–Landau theory).  

A superconductor expels all magnetic fields from its interior, a phenomenon known as the 

Meissner effect. This was mysterious for a long time, because it implies that electromagnetic forces 

somehow become short-range inside the superconductor. Contrast this with the behavior of an 

ordinary metal. In a metal, the conductivity shields electric fields by rearranging charges on the 

surface until the total field cancels in the interior. But magnetic fields can penetrate to any 

distance, and if a magnetic monopole (an isolated magnetic pole) is surrounded by a metal the field 

can escape without collimating into a string. In a superconductor, however, electric charges move 

with no dissipation, and this allows for permanent surface currents, not just surface charges. When 

magnetic fields are introduced at the boundary of a superconductor, they produce surface currents 

which exactly  



neutralize them. The Meissner effect is due to currents in a thin surface layer, whose thickness, the 

London penetration depth, can be calculated from a simple model (the Ginzburg–Landau theory).  

This simple model treats superconductivity as a charged Bose–Einstein condensate. Suppose that a 

superconductor contains bosons with charge q. The wavefunction of the bosons can be described 

by introducing a quantum field, ψ, which obeys the Schrödinger equation as a field equation (in 

units where the reduced Planck constant, ħ, is set to 1):  

  

The operator ψ(x) annihilates a boson at the point x, while its adjoint ψ† creates a new boson at 

the same point. The wavefunction of the Bose–Einstein condensate is then the expectation value ψ 

of ψ(x), which is a classical function that obeys the same equation. The interpretation of the 

expectation value is that it is the phase that one should give to a newly created boson so that it will 

coherently superpose with all the other bosons already in the condensate.  

When there is a charged condensate, the electromagnetic interactions are screened. To see this, 

consider the effect of a gauge transformation on the field. A gauge transformation rotates the 

phase of the condensate by an amount which changes from point to point, and shifts the vector 

potential by a gradient:  

 

  

When there is no condensate, this transformation only changes the definition of the phase of ψ at 

every point. But when there is a condensate, the phase of the condensate defines a preferred 

choice of phase.  

The condensate wave function can be written as  

  

where ρ is real amplitude, which determines the local density of the condensate. If the condensate 

were neutral, the flow would be along the gradients of θ, the direction in which the phase of the 

Schrödinger field changes. If the phase θ changes slowly, the flow is slow and has very little energy. 

But now θ can be made equal to zero just by making a gauge transformation to rotate the phase of 

the field.  

The energy of slow changes of phase can be calculated from the Schrödinger kinetic energy,  

  

and taking the density of the condensate ρ to be constant,  

  
Fixing the choice of gauge so that the condensate has the same phase everywhere, the 

electromagnetic field energy has an extra term,  



  

When this term is present, electromagnetic interactions become short-ranged. Every field mode, 

no matter how long the wavelength, oscillates with a nonzero frequency. The lowest frequency can 

be read off from the energy of a long wavelength A mode,  

  

This is a harmonic oscillator with frequency  

  

The quantity |ψ|2 (=ρ2) is the density of the condensate of superconducting particles.  

In an actual superconductor, the charged particles are electrons, which are fermions not bosons. So 

in order to have superconductivity, the electrons need to somehow bind into Cooper pairs. [12]   

The charge of the condensate q is therefore twice the electron charge e. The pairing in a normal 

superconductor is due to lattice vibrations, and is in fact very weak; this means that the pairs are 

very loosely bound. The description of a Bose–Einstein condensate of loosely bound pairs is 

actually more difficult than the description of a condensate of elementary particles, and was only 

worked out in 1957 by Bardeen, Cooper and Schrieffer in the famous BCS theory. [3]  

   
  

Superconductivity and Quantum Entanglement  
We have seen that the superconductivity is basically a quantum mechanical phenomenon and 

some entangled particles give this opportunity to specific matters, like Cooper Pairs or other 

entanglements, as strongly correlated materials and Exciton-mediated electron pairing. [26]   

Conclusions  
Probably in the superconductivity there is no electric current at all, but a permanent magnetic field 

as the result of the electron's spin in the same direction in the case of the circular wire on a low 

temperature. [6]   

We think that there is an electric current since we measure a magnetic field.  Because of this saying 

that the superconductivity is a quantum mechanical phenomenon.   

Since the acceleration of the electrons is centripetal in a circular wire, in the atom or in the spin, 

there is a steady current and no electromagnetic induction. This way there is no changing in the 

Higgs field, since it needs a changing acceleration. [18]  



The superconductivity is temperature dependent; it means that the General Weak Interaction is 

very relevant to create this quantum state of the matter. [19]  

We have seen that the superconductivity is basically a quantum mechanical phenomenon and 

some entangled particles give this opportunity to specific matters, like Cooper Pairs or other 

entanglements. [26]   
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