Reverse Qubits

A group of scientists at the Niels Bohr Institute (NBI), University of Copenhagen, has figured out how to make spin qubits perform controlled backward rotations. [29]

Researchers from Google and the University of California Santa Barbara have taken an important step towards the goal of building a large-scale quantum computer. [28]

Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27]

This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories.

The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Excitonmediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

Contents

The Quest of Superconductivity	2
Experiences and Theories	3
Qubits put into reverse	3
Speed and precision	3

The car analogy	4
A building process	4
Superconducting qubit 3-D integration prospects bolstered by new research	5
Superconducting qubits can function as quantum engines	6
Conventional superconductivity	7
Superconductivity and magnetic fields	7
Room-temperature superconductivity	8
Exciton-mediated electron pairing	8
Resonating valence bond theory	8
Strongly correlated materials	8
New superconductor theory may revolutionize electrical engineering	9
Unconventional superconductivity in Ba ^{0.6} K ^{0.4} Fe ² As ² from inelastic neutron scattering	9
A grand unified theory of exotic superconductivity?	. 10
The role of magnetism	. 10
Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity	. 10
Significance	. 11
Superconductivity's third side unmasked	. 12
Strongly correlated materials	. 12
Fermions and Bosons	. 13
The General Weak Interaction	. 13
Higgs Field and Superconductivity	. 13
Superconductivity and Quantum Entanglement	. 15
Conclusions	. 15
References:	. 16

Author: George Rajna

The Quest of Superconductivity

Superconductivity seems to contradict the theory of accelerating charges in the static electric current, caused by the electric force as a result of the electric potential difference, since a closed circle wire no potential difference at all. [1]

On the other hand the electron in the atom also moving in a circle around the proton with a constant velocity and constant impulse momentum with a constant magnetic field. This gives the

idea of the centripetal acceleration of the moving charge in the closed circle wire as this is the case in the atomic electron attracted by the proton. Because of this we can think about superconductivity as a quantum phenomenon. [2]

Experiences and Theories

Qubits put into reverse

A group of scientists at the Niels Bohr Institute (NBI), University of Copenhagen, has figured out how to make spin qubits perform controlled backward rotations. This has never been shown before – and the journal *Physical Review Letters*, where the research has just been published, highlights the innovative discovery in the category "Editor's Suggestion."

"I guess you can say that we have figured out how to run the qubits in both forward and reverse gear – under certain circumstances," says Ph.D. Filip Malinowski, Center for Quantum Devices (QDev) at the Niels Bohr Institute.

Malinowski and QDev colleague Frederico Martins – who is now with the University of New South Wales, Australia – spearheaded the 'reverse project' which also included scientists from Purdue University, USA. The American scientists' role involved the production of extremely pure semiconductor crystals, which the NBI team needed as a foundation to build upon when putting together the specific 'environment' needed to force qubits into reverse.

The NBI discovery should be seen in the context of <u>quantum</u> computers, the new and powerful next generation super computers that scientists all over the world – QDev being no exception – aspire to develop through various projects.

In order to build a quantum computer you need qubits – and qubits differ from binary bits which are the backbone of contemporary computers. Binary bits can assume the values 0 or 1 and therefore – in principle – function as switches: they are either 'on," or they are 'off."

Like classical bits, qubits can assume the values 0 and 1. However: qubits can also be in a state which represents 0 and 1 simultaneously, a so-called superposition.

"We encode qubits in the direction that the electron spin is pointing - and process quantum information by rotating spins around different axes. Theoretically, forward and backward rotations yield different superposition states, but experimentally only forward rotations were possible up now," says Frederico Martins.

Speed and precision

The fact that qubits can be in a superposition state is what will enable a quantum computer – once it has been developed – to simultaneously undertake a truly large number of different calculations.

In order to carry out <u>qubit</u> research you have to work at very low temperatures – in the vicinity of absolute zero (-273.15 C) – the reason for that being that these conditions shield the qubits from various disturbances which may affect their level of performance, e.g. noise.

"Our experiments were conducted at just 0.02 C above absolute zero. We were able to create this very low temperature thanks to special equipment in the QDev lab – a version of a cryostat, a so-called dilution refrigerator," explains Filip Malinowski:

"And when a quantum computer is eventually developed, it will most likely also include some version of a cryostat."

The car analogy

What are the possible practical implications of the fact that you can now force qubits into reverse – as shown by the NBI scientists?

For one it makes it possible to carry out faster calculations of a given quantity of data than can be done relying on qubits equipped with just one – forward – gear.

But it is also possible to choose precision over speed by letting the 'reverse qubits' work at a moderate pace in a – future – quantum computer. In that case the advantage will be calculations of increased precision, tells Filip Malinowski: "And as a consequence you will be able to avoid a lot of errors that would have to be corrected through additional computation."

In order to understand just how much easier it suddenly becomes to control qubits once they have been supplied with a reverse gear, an analogy involving a car comes in handily, says associate professor Ferdinand Kuemmeth, head of the QDev team behind the discovery:

"Imagine that you drive a car along a crowded street – the street where you live – and you wish to park it exactly in front of your door. This can be a daunting task, especially if there are a lot of cars – (noise, when we are talking qubits) – around you. And now imagine doing this without a reverse gear: If you overshoot slightly, you missed your chance, and it's hard to come up with a fix. The same is true with rotating qubits: If one overshoots slightly – which frequently happens due to the noisy environment – there was no way to rotate the qubit back – until now!"

A building process

The reverse function in qubits has been demonstrated in an experiment involving a quantum 'environment' which the NBI scientists built on top of a tailor-made crystal – a sandwich-like structure delivered by Purdue University, made out of a material with extraordinarily uniform distribution of electrons.

At the base of the 'environment' is the crystal structure – which the NBI scientists covered with a polymer.

The next step was 'drawing' a pattern of grooves in the polymer layer, using a beam of electrons.

Then the – now weakened – polymer was flushed away from the indicated pattern – laying the grooves open, like ditches.

Finally the grooves on top of the crystal were filled with a metal to form electrodes, of which the smallest measured a mere 20 nanometer – and by applying different voltages to these electrodes it is possible to repel or attract electrons, ultimately placing individual electrons in specific positions.

The NBI scientists used such a chip to accurately control the so-called exchange interaction – a fundamental interaction between electrons that can be used to force qubits into reverse – and how this is done is explained in more detail in the news graphic.

Center for Quantum Devices, QDev – the lab where the research took place. Photo: Ola Jakup Joensen

The condensed explanation centers around the fact that when two electron spins – one pointing upwards, the other downwards – are placed in the same confined space, they start rotating together, says Filip Malinowski:

"In this case these electrons are qubits – and if we return to the car analogy, they will start rotating or moving forward. Until now the assumption has been that this was indeed the only direction in which they could possibly move – which is where our discovery comes in."

The reverse function becomes reality when two oppositely pointing electron spins – qubits – are placed in a confined environment together with a lot of other electron pairs.

Now – still at very low temperatures – it suddenly becomes possible to force qubits into reverse.

Gallium arsenide – the material which the US-produced crystal is made of – plays a prominent role in the NBI experiment, but the technique will probably work equally well with a number of other semiconductors, says Filip Malinowski:

"Especially silicon, which is essential to the chips found in our present generation processors – but silicon could also be used as a building material for quantum computers." [29]

Superconducting qubit 3-D integration prospects bolstered by new research

Researchers from Google and the University of California Santa Barbara have taken an important step towards the goal of building a large-scale quantum computer.

Writing in the journal *Quantum Science and Technology*, they present a new process for creating superconducting interconnects, which are compatible with existing superconducting <u>aubit</u> <u>technology</u>.

The race to develop the first large-scale error-corrected quantum computer is extremely competitive, and the process itself is complex. Whereas classical computers encode data into binary digits (bits) that exist in one of two states, a quantum computer stores information in quantum bits (qubits) that may be entangled with each other and placed in a superposition of both states simultaneously.

The catch is that quantum states are extremely fragile, and any undesired interaction with the surrounding environment may destroy this quantum information. One of the biggest challenges in the creation of a large-scale quantum computer is how to physically scale up the number of qubits, while still connecting control signals to them and preserving these quantum states.

Lead author Brooks Foxen, from UC Santa Barbara, said: "There are a lot of unknowns when it comes to imagining exactly what the first large scale quantum computer will look like. In the superconducting <u>qubit</u> field, we're just now beginning to explore systems with 10s of qubits whereas the long-term goal is to build a computer with millions of qubits.

"Previous research has mostly involved layouts where control wires are routed on a single metal layer. More interesting circuits require the ability to route wiring in three dimensions so that wires may cross over each other. Solving this problem without introducing materials that reduce the quality of superconducting qubits is a hot topic, and several groups have recently demonstrated possible solutions. We believe that our solution, which is the first to provide fully superconducting interconnects with high critical currents, offers the most flexibility in designing other aspects of <u>quantum</u> circuits."

As superconducting qubit technology grows beyond one-dimensional chains of nearest neighbour coupled qubits, larger-scale two-dimensional arrays are a natural next step.

Prototypical two-dimensional arrays have been built, but the challenge of routing control wiring and readout circuitry has, so far, prevented the development of high fidelity qubit arrays of size 3x3 or larger.

Senior author Professor John M Martinis, jointly appointed at both Google and UC Santa Barbara, said: "To enable the development of larger qubit arrays, we have developed a process for fabricating fully superconducting interconnects that are materially compatible with our existing, high fidelity, aluminum on silicon qubits.

"This fabrication process opens the door to the possibility of the close integration of two superconducting circuits with each other or, as would be desirable in the case of superconducting qubits, the close integration of one high-coherence qubit device with a dense, multi-layer, signal-routing device." [28]

Superconducting qubits can function as quantum engines

Physicists have shown that superconducting circuits—circuits that have zero electrical resistance can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies.

The physicists, Kewin Sachtleben, Kahio T. Mazon, and Luis G. C. Rego at the Federal University of Santa Catarina in Florianópolis, Brazil, have published a paper on their work on superconducting qubits in a recent issue of Physical Review Letters.

In their study, the physicists explain that superconducting circuits are functionally equivalent to quantum systems in which quantum particles tunnel in a double-quantum well. These wells have the ability to oscillate, meaning the width of the well changes repeatedly. When this happens, the system behaves somewhat like a piston that moves up and down in a cylinder, which changes the volume of the cylinder. This oscillatory behavior allows work to be performed on the system. The researchers show that, in the double-quantum well, part of this work comes from quantum coherent dynamics, which creates friction that decreases the work output. These results provide a better understanding of the connection between quantum and classical thermodynamic work.

"The distinction between 'classical' thermodynamic work, responsible for population transfer, and a quantum component, responsible for creating coherences, is an important result," Mazon told Phys.org. "The creation of coherences, in turn, generates a similar effect to friction, causing a notcompletely-reversible operation of the engine. In our work we have been able to calculate the reaction force caused on the quantum piston wall due to the creation of coherences. In principle this force can be measured, thus constituting the experimental possibility of observing the emergence of coherences during the operation of the quantum engine."

One of the potential benefits of viewing superconducting qubits as quantum engines is that it may allow researchers to incorporate quantum coherent dynamics into future technologies, in particular quantum computers. The physicists explain that a similar behavior can be seen in nature, where quantum coherences improve the efficiency of processes such as photosynthesis, light sensing, and other natural processes.

"Quantum machines may have applications in the field of quantum information, where the energy of quantum coherences is used to perform information manipulation in the quantum regime," Mazon said. "It is worth remembering that even photosynthesis can be described according to the working principles of a quantum machine, so unraveling the mysteries of quantum thermodynamics can help us to better understand and interpret various natural processes." [27]

Conventional superconductivity

Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper and Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called Cooper pairs, which are able to move through the crystal lattice without resistance when an electric voltage is applied. Even when the voltage is removed, the current continues to flow indefinitely, the most remarkable property of superconductivity, and one that explains the keen interest in their technological potential. [3]

High-temperature superconductivity

In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play. These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials. [8]

Superconductivity and magnetic fields

Superconductivity and magnetic fields are normally seen as rivals – very strong magnetic fields normally destroy the superconducting state. Physicists at the Paul Scherer Institute have now demonstrated that a novel superconducting state is only created in the material CeCoIn₅ when there are strong external magnetic fields. This state can then be manipulated by modifying the field direction. The material is already superconducting in weaker fields, too. In strong fields, however, an additional second superconducting state is created which means that there are two different superconducting states at the same time in the same material. The new state is coupled with an anti-ferromagnetic order that appears simultaneously with the field. The anti-ferromagnetic order from whose properties the researchers have deduced the existence of the superconducting state was detected with neutrons at PSI and at the Institute Laue-Langevin in Grenoble. [6]

Room-temperature superconductivity

After more than twenty years of intensive research the origin of high-temperature superconductivity is still not clear, but it seems that instead of *electron-phonon* attraction mechanisms, as in conventional superconductivity, one is dealing with genuine *electronic* mechanisms (e.g. by antiferromagnetic correlations), and instead of s-wave pairing, d-waves are substantial. One goal of all this research is room-temperature superconductivity. [9]

Exciton-mediated electron pairing

Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure (~500 GPa) should become superconducting at approximately room-temperature because of its extremely high speed of sound and expected strong coupling between the conduction electrons and the lattice vibrations (phonons). This prediction is yet to be experimentally verified, as yet the pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa. In 1964, William A. Little proposed the possibility of high temperature superconductivity in organic polymers. This proposal is based on the exciton-mediated electron pairing, as opposed to phonon-mediated pairing in BCS theory. [9]

Resonating valence bond theory

In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that attempts to describe high temperature superconductivity, and in particular the superconductivity in cuprate compounds. It was first proposed by American physicist P. W. Anderson and the Indian theoretical physicist Ganapathy Baskaran in 1987. The theory states that in copper oxide lattices, electrons from neighboring copper atoms interact to form a valence bond, which locks them in place. However, with doping, these electrons can act as mobile Cooper pairs and are able to superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped cuprates was in the Mott insulator nature of crystalline copper oxide. RVB builds on the Hubbard and t-J models used in the study of strongly correlated materials. [10]

Strongly correlated materials

Strongly correlated materials are a wide class of electronic materials that show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions or half-metallicity. The essential feature that defines these materials is that the behavior of their electrons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic structure of strongly correlated materials must include electronic correlation to be accurate. Many transition metal oxides belong into this class which may be subdivided according to their behavior, *e.g.* high-T_c, spintronic materials, Mott insulators, spin Peierls materials, heavy fermion materials, quasi-low-dimensional materials, etc. The single most intensively studied effect is probably high-temperature superconductivity in doped cuprates, e.g. La_{2-x}Sr_xCuO₄. Other ordering or magnetic phenomena and temperature-induced phase transitions in many transition-metal oxides are also gathered under the term "strongly correlated materials." Typically, strongly correlated materials have incompletely filled *d*- or *f*-electron shells with narrow

energy bands. One can no longer consider any electron in the material as being in a "sea" of the averaged motion of the others (also known as mean field theory). Each single electron has a complex influence on its neighbors.

[11]

New superconductor theory may revolutionize electrical engineering

High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically around atoms. Now two physicists propose that such behaviors – and superconductivity itself – can all be traced to a single starting point, and they explain why there are so many variations.

An "antiferromagnetic" state, where the magnetic moments of electrons are opposed, can lead to a variety of unexpected arrangements of electrons in a high-temperature superconductor, then finally to the formation of "Cooper pairs" that conduct without resistance, according to a new theory. [22]

Unconventional superconductivity in Ba^{0.6}K^{0.4}Fe²As² from inelastic neutron scattering

In BCS superconductors, the energy gap between the superconducting and normal electronic states is constant, but in unconventional superconductors the gap varies with the direction the electrons are moving. In some directions, the gap may be zero. The puzzle is that the gap does not seem to vary with direction in the iron arsenides. Theorists have argued that, while the size of the gap shows no directional dependence in these new compounds, the sign of the gap is opposite for different electronic states. The standard techniques to measure the gap, such as photoemission, are not sensitive to this change in sign. But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan Rosenkranz, led an international collaboration to perform neutron experiments using samples of the new compounds made in Argonne's Materials Science Division, and discovered a magnetic excitation in the superconducting state that can only exist if the energy gap changes sign from one electron orbital to another.

"Our results suggest that the mechanism that makes electrons pair together could be provided by antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives direct evidence that the superconductivity is unconventional."

Inelastic neutron scattering continues to be an important tool in identifying unconventional superconductivity, not only in the iron arsenides, but also in new families of superconductors that may be discovered in the future. [23]

A grand unified theory of exotic superconductivity?

The role of magnetism

In all known types of high-Tc superconductors—copper-based (cuprate), iron-based, and so-called heavy fermion compounds—superconductivity emerges from the "extinction" of antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.

However if the interactions between electrons that cause antiferromagnetic order can be maintained while the actual order itself is prevented, then superconductivity can appear. "In this situation, whenever one electron approaches another electron, it tries to anti-align its magnetic state," Davis said. Even if the electrons never achieve antiferromagnetic order, these antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This antiferromagnetic influence is universal across all these types of materials," Davis said.

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of electrons to eventually pair up with anti-aligned spins—a condition necessary for them to carry current with no resistance. The complicating factor has been the existence of many different types of "intertwined" electronic phases that also emerge in the different types of high-Tc superconductors—sometimes appearing to compete with superconductivity and sometimes coexisting with it. [24]

Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron—electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

Significance

This study describes a unified theory explaining the rich ordering phenomena, each associated with a different symmetry breaking, that often accompany high-temperature superconductivity. The essence of this theory is an "antiferromagnetic interaction," the interaction that favors the development of magnetic order where the magnetic moments reverse direction from one crystal unit cell to the next. We apply this theory to explain the superconductivity, as well as all observed accompanying ordering phenomena in the copper-oxide superconductors, the iron-based superconductors, and the heavy fermion superconductors. [25]

Shimojima and colleagues were surprised to discover that interactions between electron spins do not cause the electrons to form Cooper pairs in the pnictides. Instead, the coupling is mediated by the electron clouds surrounding the atomic cores. Some of these so-called orbitals have the same energy, which causes interactions and electron fluctuations that are sufficiently strong to mediate superconductivity.

This could spur the discovery of new superconductors based on this mechanism. "Our work establishes the electron orbitals as a third kind of pairing glue for electron pairs in superconductors, next to lattice vibrations and electron spins," explains Shimojima. "We believe that this finding is a step towards the dream of achieving room-temperature superconductivity," he concludes. [17]

Strongly correlated materials

Strongly correlated materials give us the idea of diffraction patterns explaining the electron-proton mass rate. [13]

This explains the theories relating the superconductivity with the strong interaction. [14]

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing. We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. [18] One of these new matter formulas is the superconducting matter.

Higgs Field and Superconductivity

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The specific spontaneous symmetry breaking of the underlying local symmetry, which is similar to that one appearing in the theory of superconductivity, triggers conversion of the longitudinal field component to the Higgs boson, which interacts with itself and (at least of part of) the other fields in the theory, so as to produce mass terms for the above-mentioned three gauge bosons, and also to the above-mentioned fermions (see below). [16]

The Higgs mechanism occurs whenever a charged field has a vacuum expectation value. In the nonrelativistic context, this is the Landau model of a charged Bose–Einstein condensate, also known as a superconductor. In the relativistic condensate, the condensate is a scalar field, and is relativistically invariant.

The Higgs mechanism is a type of superconductivity which occurs in the vacuum. It occurs when all of space is filled with a sea of particles which are charged, or, in field language, when a charged field has a nonzero vacuum expectation value. Interaction with the quantum fluid filling the space prevents certain forces from propagating over long distances (as it does in a superconducting medium; e.g., in the Ginzburg–Landau theory).

A superconductor expels all magnetic fields from its interior, a phenomenon known as the Meissner effect. This was mysterious for a long time, because it implies that electromagnetic forces somehow become short-range inside the superconductor. Contrast this with the behavior of an ordinary metal. In a metal, the conductivity shields electric fields by rearranging charges on the surface until the total field cancels in the interior. But magnetic fields can penetrate to any distance, and if a magnetic monopole (an isolated magnetic pole) is surrounded by a metal the field can escape without collimating into a string. In a superconductor, however, electric charges move with no dissipation, and this allows for permanent surface currents, not just surface charges. When magnetic fields are introduced at the boundary of a superconductor, they produce surface currents which exactly

neutralize them. The Meissner effect is due to currents in a thin surface layer, whose thickness, the London penetration depth, can be calculated from a simple model (the Ginzburg–Landau theory).

This simple model treats superconductivity as a charged Bose–Einstein condensate. Suppose that a superconductor contains bosons with charge q. The wavefunction of the bosons can be described by introducing a quantum field, ψ , which obeys the Schrödinger equation as a field equation (in units where the reduced Planck constant, \hbar , is set to 1):

$$i\frac{\partial}{\partial t}\psi = \frac{(\nabla - iqA)^2}{2m}\psi.$$

The operator $\psi(x)$ annihilates a boson at the point x, while its adjoint ψ^{\dagger} creates a new boson at the same point. The wavefunction of the Bose–Einstein condensate is then the expectation value ψ of $\psi(x)$, which is a classical function that obeys the same equation. The interpretation of the expectation value is that it is the phase that one should give to a newly created boson so that it will coherently superpose with all the other bosons already in the condensate.

When there is a charged condensate, the electromagnetic interactions are screened. To see this, consider the effect of a gauge transformation on the field. A gauge transformation rotates the phase of the condensate by an amount which changes from point to point, and shifts the vector potential by a gradient:

$$\psi \to e^{iq\phi(x)}\psi$$
$$A \to A + \nabla\phi.$$

When there is no condensate, this transformation only changes the definition of the phase of ψ at every point. But when there is a condensate, the phase of the condensate defines a preferred choice of phase.

The condensate wave function can be written as

$$\psi(x) = \rho(x) e^{i\theta(x)},$$

where p is real amplitude, which determines the local density of the condensate. If the condensate were neutral, the flow would be along the gradients of θ , the direction in which the phase of the Schrödinger field changes. If the phase θ changes slowly, the flow is slow and has very little energy. But now θ can be made equal to zero just by making a gauge transformation to rotate the phase of the field.

The energy of slow changes of phase can be calculated from the Schrödinger kinetic energy,

$$H = \frac{1}{2m} |(qA + \nabla)\psi|^2,$$

and taking the density of the condensate $\boldsymbol{\rho}$ to be constant,

$$H \approx \frac{\rho^2}{2m} (qA + \nabla \theta)^2.$$

Fixing the choice of gauge so that the condensate has the same phase everywhere, the electromagnetic field energy has an extra term,

$$\frac{q^2\rho^2}{2m}A^2.$$

When this term is present, electromagnetic interactions become short-ranged. Every field mode, no matter how long the wavelength, oscillates with a nonzero frequency. The lowest frequency can be read off from the energy of a long wavelength A mode,

$$E \approx \frac{\dot{A}^2}{2} + \frac{q^2 \rho^2}{2m} A^2$$

This is a harmonic oscillator with frequency

$$\sqrt{\frac{1}{m}q^2\rho^2}.$$

The quantity $|\psi|^2$ (= ρ^2) is the density of the condensate of superconducting particles.

In an actual superconductor, the charged particles are electrons, which are fermions not bosons. So in order to have superconductivity, the electrons need to somehow bind into Cooper pairs. [12]

The charge of the condensate q is therefore twice the electron charge e. The pairing in a normal superconductor is due to lattice vibrations, and is in fact very weak; this means that the pairs are very loosely bound. The description of a Bose–Einstein condensate of loosely bound pairs is actually more difficult than the description of a condensate of elementary particles, and was only worked out in 1957 by Bardeen, Cooper and Schrieffer in the famous BCS theory. [3]

Superconductivity and Quantum Entanglement

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing. [26]

Conclusions

Probably in the superconductivity there is no electric current at all, but a permanent magnetic field as the result of the electron's spin in the same direction in the case of the circular wire on a low temperature. [6]

We think that there is an electric current since we measure a magnetic field. Because of this saying that the superconductivity is a quantum mechanical phenomenon.

Since the acceleration of the electrons is centripetal in a circular wire, in the atom or in the spin, there is a steady current and no electromagnetic induction. This way there is no changing in the Higgs field, since it needs a changing acceleration. [18]

The superconductivity is temperature dependent; it means that the General Weak Interaction is very relevant to create this quantum state of the matter. [19]

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements. [26]

References:

- [1] https://www.academia.edu/3833335/The_Magnetic_field_of_the_Electric_current
- [2] <u>https://www.academia.edu/4239860/The Bridge between Classical and Quantum Mechan</u> <u>ics</u>
- [3] <u>http://en.wikipedia.org/wiki/BCS_theory</u>
- [4] <u>http://en.wikipedia.org/wiki/Meissner_effect#cite_note-3</u>
- [5] http://en.wikipedia.org/wiki/London_equations
- [6] Superconductivity switched on by magnetic field <u>http://phys.org/news/2013-12-</u>

superconductivity-magnetic-field.html#jCp

- [7] <u>http://en.wikipedia.org/wiki/Superconductivity</u>
- [8] http://en.wikipedia.org/wiki/High-temperature_superconductivity
- [9] <u>http://en.wikipedia.org/wiki/Room-temperature_superconductor</u>
- [10] http://en.wikipedia.org/wiki/Resonating_valence_bond_theory
- [11] http://en.wikipedia.org/wiki/Strongly_correlated_material
- [12] http://en.wikipedia.org/wiki/Cooper_pair
- [13] https://www.academia.edu/3834454/3_Dimensional_String_Theory
- [14] http://en.wikipedia.org/wiki/Color_superconductivity
- [15] http://en.wikipedia.org/wiki/Fermi surface
- [16] http://en.wikipedia.org/wiki/Higgs_mechanism
- [17] Superconductivity's third side unmasked <u>http://phys.org/news/2011-06-superconductivity-</u> side-unmasked.html#nRlv
- [18] https://www.academia.edu/4158863/Higgs_Field_and_Quantum_Gravity

- [19] https://www.academia.edu/4221717/General Weak Interaction
- [20] Einstein on Superconductivity http://arxiv.org/pdf/physics/0510251/
- [21] Conventional Superconductivity http://phys.org/news150729937.html#jCp
- [22] http://phys.org/news/2013-12-superconductor-theory-revolutionize-electrical.html#jCp
- [23] http://phys.org/news150729937.html#jCp
- [24] http://phys.org/news/2013-10-grand-theory-exotic-superconductivity.html#jCp
- [25] http://www.pnas.org/content/early/2013/10/09/1316512110.full.pdf+html
- [26] The Secret of Quantum Entanglement

https://www.academia.edu/7229968/The Secret of Quantum Entanglement

- [27] Superconducting qubits can function as quantum engines <u>https://phys.org/news/2017-10-</u> superconducting-qubits-function-quantum.html
- [28] https://phys.org/news/2017-11-superconducting-qubit-d-prospects-bolstered.html
- [29] https://phys.org/news/2017-12-qubits-reverse.html