Bell's theorem refuted mathematically for Professor X.

Gordon Watson*

Abstract

Bringing an elementary knowledge of sums and averages to Bell (1964), we refute Bell's theorem.

1 Introduction

1.1. (i) With Bell-(#) denoting Bell 1964:(#), we label the formulas between Bell-(14)-(15): (14a)-(14c). (ii) We replace Bell's $P(\vec{a}, \vec{b})$ with E(a, b); etc. (iii). Sharing Bell's indifference (p.195)—ie, λ may be continuous or discrete (we can work with both)—we include both possibilities in (12). (iv) Thus, based on Bell-(1): $A_i = A(a, \lambda_i) = \pm 1$; etc. (iv) Like Bell (1964), we are bound by EPRB here.

1.2. (i) Taking math to be the best logic, it may flow for several lines before we comment. (ii) By absurd (\blacktriangle) we mean math-false. (iii) Its contrary here is QM-true (\blacksquare): for, given its success, QM is the gold-standard for results here. (iv) WM denotes our theory (wholistic mechanics) since 1989.

2 Analysis

Bell-(14a) =
$$E(a,b) - E(a,c) \Leftrightarrow E(a,b) = \frac{1}{n} \sum_{i=1}^{n} A_i B_i; E(a,c) = \frac{1}{m} \sum_{j=1}^{m} A_j B_j.$$
 (1)

$$= \frac{1}{n} \sum_{i=1}^{n} A_i B_i - E(a,c) \Leftrightarrow \text{We do not require } A_i = A_j, \text{ but see §3:}$$
(2)

$$= \frac{1}{n} \sum_{i=1}^{n} A_i B_i \ [1 - A_i B_i \cdot E(a, c)]. \Leftrightarrow A_i B_i A_i B_i = 1; \frac{1}{n} \sum_{i=1}^{n} 1 \cdot 1 = 1.$$
(3)

$$\therefore |E(a,b) - E(a,c)| = \left| \frac{1}{n} \sum_{i=1}^{n} A_i B_i \left[1 - A_i B_i \cdot E(a,c) \right] \right| \Leftrightarrow |X| = |Y| \text{ if } X = Y.$$

$$\tag{4}$$

$$\leq \left| \frac{1}{n} \sum_{i=1}^{n} 1 \left[1 - A_i B_i \cdot E(a, c) \right] \right| \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} A_i B_i \leq \pm \frac{1}{n} \sum_{i=1}^{n} 1; |\pm Z| = |Z|.$$
(5)

$$\leq \left| 1 - \frac{1}{n} \sum_{i=1}^{n} A_i B_i \cdot E(a, c) \right| \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} 1 \cdot 1 = 1; \text{ etc.}$$
(6)

$$\leq |1 - E(a, b)E(a, c)|;$$
our QM-true result. \blacksquare (7)

$$\neq$$
 Bell-(15) = Bell-(14b) = 1 + $E(b, c)$; its RHS an absurdity. \blacktriangle (8)

Thus:
$$0 \ge |E(a,b) - E(a,c)| - E(b,c) - 1 \equiv$$
 Bell's inequality.
 $0 \ge |E(a,b) - E(a,c)| - |1 - E(a,b)E(a,c)| \equiv$ WM-inequality.
(10)

$$-a \cdot b \neq E(a,b) = -\int d\lambda \rho(\boldsymbol{\lambda}) A(a,\boldsymbol{\lambda}) A(b,\boldsymbol{\lambda}) \equiv \text{Bell's theorem.} \boldsymbol{\blacktriangle}.$$
(11)

$$-a \cdot b = E(a,b) = \frac{1}{n} \sum_{i=1}^{n} A_i B_i = -\int d\lambda \rho(\boldsymbol{\lambda}) A(a,\boldsymbol{\lambda}) A(b,\boldsymbol{\lambda}) \equiv \text{WM-theorem.} \blacksquare (12)$$

=

^{*}eprb@me.com Ex: BTR30Av2 - 20171130. Ref: BTR31ZD - 20171202.

Discussion 3

- \cdot (1): is the common start-point Bell-(14a): for Bell [us]; en route to his [our] inequality (9) [(10)].
- · (2): no difficulty arises if we match results via $A_i = 1$ with $A_j = 1$; $A_i = -1$ with $A_j = -1$.
- (3): in passing (though not required here): $\frac{1}{n}\sum_{i=1}^{n}\frac{1}{m}\sum_{j=1}^{m}A_{j}B_{j} = \frac{1}{m}\sum_{j=1}^{m}A_{j}B_{j}$.
- (4): allows a simpler help-note after (5).
- (5): the help-note says it all.
- (6): by reduction.
- (7): uses the most basic definition of an expectation; a conventional arithmetic mean.
- (8): nb: by observation and using math-facts: (14b) = (15); but Bell-(14b) \neq (14a)!
- (9): shows (8)'s absurd upper bound to be 0. \blacktriangle Under QM, that bound is $\frac{1}{2}$.
- · (10): shows (9)'s QM-true upper bound is 0; ie, under QM, that bound is 0.
- · (11): absurd, like (9). \blacktriangle QM-true (12) refutes them both.
- · (12): QM-true, as tested via (7)-(11); or independently. QED.

4 Conclusions

3.1 (i) (8) pinpoints Bell's error: Bell-(14a) \neq Bell-(14b). (ii) The source of his error lies in that terse clue below (14b): using Bell-(1). (iii) The QM-truth for Bellians is this: it is absurd to use Bell-(1) beyond the bounds of EPRB—from David Bohm—the experiment that underpins his study.

3.2. In Bell's terms, our comments $[\cdot]$ next highlight our departure from his theorem and beliefs:

Bell (1964:199): 'The QM expectation $-a \cdot b$ [LHS (11) \blacktriangle -(12) \blacksquare] cannot [sic] be represented, either accurately or arbitrarily, in the form of Bell-(2) [ie, RHS (11) \blacktriangle -(12)].' Line below Bell-(3): $(11) \blacktriangle$ is true [sic], so $(12) \blacksquare$ is not [sic] possible.' Bell (1964:195): 'any theory the QM predictions are well-founded, locality must be abandoned [sic].) Thus, from Bell (1990:13): 'I step back from asserting that there is AAD and I say only that you cannot [sic] get away with locality. You cannot [sic] explain things by events in their neighbourhood.'

3.3. (i) Using Bell's technique—but avoiding pitfalls (via our QM-true $(10) \blacksquare \& (12) \blacksquare$)—we refute Bell's inequality (9) and Bell's theorem (11) mathematically and quantum mechanically. This adds to our findings elsewhere: $(9) \blacktriangle \& (11) \blacktriangle$ may be refuted without reference to quantum theory. QED.

5 Acknowledgments

I again thank Roger Mc Murtrie (Canberra) for his collaboration.

References 6

- 1. Bell, J. S. (1964). "On the Einstein Podolsky Rosen paradox." Physics 1, 195-200. http://cds.cern.ch/record/111654/files/vol1p195-200 001.pdf [DA20170328]
- 2. Bell, J. S. (1990). "Indeterminism and nonlocality." Transcript of 22 January 1990, CERN Geneva. Driessen, A. & A. Suarez (1997). Mathematical Undecidability, Quantum Nonlocality and the Question of the Existence of God. A. 83-100. http://www.quantumphil.org./Bell-indeterminism-and-nonlocality.pdf [DA20170328]