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Abstract. We specify a time vector for an event in the theory of special relativity (TSR). This vector is 
well suited to specify various types of simultaneity. Moving (possibly imagined) clocks, which are 
synchronized at a common ‘point of initiation’, play a crucial role. We can present the time vector as a 
complex variable, and there is a close relation to the Minkowski distance. We exemplify the approach 
by including a short discussion of the ‘travelling twin’.  
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1 Introduction 
The concept of simultaneity is crucial in the theory of special relativity (TSR). Within a single inertial 
reference frame (RF) simultaneity is easily established by the synchronization of clocks, e.g. using light 
rays; for instance see textbooks like Giulini (2005) and Mermin (2005). Then we say that events with 
the same clock reading, ‘time’ (t) on a specific RF, are simultaneous in the perspective of this frame. So 
this type of simultaneity depends on the chosen RF.  

The situation is more complex when we have several inertial RFs, which are moving relative to each 
other. However, if we have just a single event, these will of course have different (time, space) 
parameters, (t, x), within the different RFs. We refer to this trivial case as basic simultaneity. 

However, when we have moving RFs, there is in TSR no unique definition of simultaneity of events 
occurring ‘at a distance’. The various RFs will disagree with respect to simultaneity. One refers to 
relativity of simultaneity, e.g. see the discussion in Debs and Redhead (1996). They argue for the 
conventionality of simultaneity; the definition of simultaneity is essentially a matter on convention.  

We will here argue that one can provide a single, sensible and consistent definition of simultaneity also 
‘at a distance’. Hokstad (2018) applied a symmetry argument to obtain such a simultaneity for two RFs; 
postulating an auxiliary RF with origin always located at the midpoint between the two main RFs. In 
the present paper, we pursue a slightly different approach.  

First, we point out that an essential requirement for the use of the fundamental Lorentz transformation 
(LT) for two RFs, moving relative to each other, is that we start out with three sets of synchronizations: 

1. All clocks on the first RF are synchronized; (so they are simultaneous in the perspective of this RF); 
2. Similarly, all clocks on the second RF are synchronized; 
3. The clocks at the origins of the two RFs: At time 0 these are at the same location, and they are then 

synchronized; this ‘point of initiation’ is a fundamental initial condition for the experiment. We refer 
to these two clocks as basic clocks (BCs), and this synchronization provides an example of basic 
simultaneity (see above). 

Further, one implicitly assumes that the clocks on each of the RFs remain synchronized. We will here 
argue that also the two BCs at the origins of the RFs – which we synchronized at time 0 - will remain 
synchronized. They move away from each other at constant speed, v; but there is a symmetric situation; 
so there is no way to claim that one of the two clocks goes faster than the other.  

So our claim is that when the two ‘basic clocks’ at the origins of the two RFs show the same time, this 
corresponds (in some sense) to simultaneous events ‘at a distance’. Actually, we could consider this a 
consequence of the standard assumption of symmetry between the two RFs. We will find that this leads 
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to a rather strong form of simultaneity, as all observers can agree on this. Further, in the above argument 
there is no need to restrict to consider just two RFs (or two BCs), so we can get simultaneity for any 
number of events. 

In this paper, we start out by introducing a two dimensional time vectors related to any event (t, x). The 
clock reading of the BC at the location of the event is an essential element of the vector, which proves 
useful for defining simultaneity ‘at a distance’. We restrict to consider just a single space parameter. 

This paper gives a purely mathematical description of the phenomenon, investigating implications of 
the LT, and there is no attempt of a physical interpretation. 

2 Time as a two-dimensional variable  
We now introduce a two-dimensional state vector. We refer to this as a time vector, and will use it to 
define simultaneity. 

2.1 Time vector of a single RF 
We consider a RF, K. At virtually any position, there is a synchronized clock with a clock reading 
denoted, t. When at position, x there is a clock reading, t, we will simply refer to (t, x) as an event. 
Further, we introduce the parameter 

                                                                      w = x/t                                                                              (1) 

which we of course can interpret as the velocity of an object (a point on a  RF) that has moved from the 
origin at time 0 to the position, x at ’time’ (clock reading), t.  

We have previously (Hokstad (2017)) suggested the following time vector for this event 

                                                              𝑡(𝑡, 𝑥) = ቀඥ௧మି(௫/)మ 
௫/

ቁ                                                              (2) 

(We might use ∣x∣/c as the second component, but also x/c works.) Using, w = 𝑥/𝑡, we can write this 
time vector as 

                                                         𝑡(𝑡, 𝑤) = ቀ𝒕𝟏

𝒕𝟐
ቁ = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡                                                     (3) 

Now, both components of this vector has a specific interpretation. The first component equals  

                                                                  𝑡 =  𝑡ඥ1 − (𝑤/𝑐)ଶ                                                          (4)                                                

Here we recognize the standard time dilation formula, (see App. A). We just imagine a RF, Kw moving 
relative to K at velocity w, and assume that at time 0 the origins of the two RFs where at the same 
location, and that the two clocks at this position where then synchronized. This synchronization implies 
that these clocks are of particular interest, and we call them Basic Clocks (BC). We also refer to this 
event of synchronization (at time, 0) as the ‘point of initiation’.  

Thus, we interpret 𝑡  of eq. (4) as the clock reading of the BC (located at the origin of Kw) at the instant 
when this clock has reached the position, x = wt on K, (at an instant when the local clock on K reads t). 
We may say that 𝑡  defines the ‘basic time’ of the event (t, x) on K. Thus, we have the following 
alternative expression for our time vector: 

                                                                       𝑡(𝑡, 𝑥) = ቀ  ௧ಳ

௫/
ቁ                                                                 (5) 

To summarize, eqs. (2), (3) and (5) are all valid expression for the time vector of the event (t, x) on K:  

                                            𝑡 = ቀ𝒕𝟏

𝒕𝟐
ቁ = ቀඥ௧మି(௫/)మ 

௫/
ቁ = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡 = ቀ௧ಳ

௫/
ቁ                                                (6) 

We note that the first component of the time vector is a valid expression only when ∣x∣/c < t, (that is 
∣w∣<c). So at a given position, x the time vector (6) is only defined for clock readings, t > ∣x∣/c. Here 
∣x∣/c is the time required for a light flash, which occurred at the point of initiation, to reach the position, 
x.  
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Actually, in the limit, when ∣w∣→c, the moving BC arriving x will read tBC = 0 (eq. (4)), and thus, no 
time has elapsed on this BC, even if the local clock on K reads t. This is valid for an arbitrarily large  ∣x∣. 

x/c

Simultaneity, 
same

t
𝑡𝐵𝐶  

 φ
t1

t2  
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൱ 𝑡 
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𝑡𝐵𝐶  

 

Figure 1 One specific time vector, �⃗�(𝒕, 𝒘) = ቀ𝒕𝟏
𝒕𝟐

ቁ = ቀඥ𝟏ି(𝒘/𝒄)𝟐

𝒘/𝒄
ቁ 𝒕 =  ቀ𝒕𝑩𝑪

𝒙/𝒄
ቁ for a specific clock reading, t at the position, x = 

w∙t, when ∣t∣>x/c; (here sin 𝝋 = w/c). 

However, for t > ∣x∣/c we can present the time vector,  𝑡 =  𝑡(𝑡, 𝑤) = 𝑡(𝑡, 𝑥)  as a point on the semicircle 
with radius, t in the (tBC, x/c) space; see Fig. 1. In summary, the components of the time vector have 
simple interpretations: 

1. The first component, 𝑡 =  𝑡ඥ1 − (𝑤/𝑐)ଶ equals the clock reading of the BC of the (possibly 

imagined) RF, Kw which has now reached the position x = w 𝑡 on K. We call this the ‘basic time’ 
(or ‘BC reading’) at this position.  

2. The second component, x/c, equals the time required for a light flash to go to the distance, x from 
the origin of K (with its own BC) to the given position. So this equals the distance in time between 
the BC located at the origin of K and the BC at position x. 

Thus, both components refer to aspects of ‘distance in time’ from the ‘point of initiation’, (x = t = 0).  

Further, the absolute value of the time vector equals the clock reading of the event itself: 

                                                                 │𝑡(𝑡, 𝑤)│ = 𝑡                                                                 (7) 

Thus, events on K, with time vectors having the same absolute value, also have identical clock readings, 
and thus are simultaneous ‘in the perspective’ of K. The semicircle of Fig. 1 illustrates this. 

We see Fig. 1 as an illustration of the time vectors of one specific RF. Different semicircles (of radius, 
t) which we could draw, represent different clock readings. By specifying both a t and a position, x, we 
also obtain a corresponding tBC. Both at position x and –x there will be a BC with this reading, tBC, (they 
have moved in opposite directions from the origin of K).  

We observe that there is a strong link between the above approach and Minkowski’s approach to space-

time; cf. space-time distance given as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, Minkowski 

(1909). As stated in Petkov (2012), Minkowski refers to our BC reading (see ඥ𝑡ଶ − (𝑥/𝑐)ଶ of eq. (2)), 
as ‘proper time, and our t as ‘coordinate time’.  
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In analogy with the Minkowski space-time, we could generalize this approach to be valid for a three-

dimensional space with coordinates (x, y, z). We would then define w (eq. (1)) by w =ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ /𝑡 

2.2 Time formulated as a complex variable 
We can of course formulate our time vector for the event (t, x) as a complex variable. In polar form, we 
can write the vector 𝑡(𝑡, 𝑤) in (3) as: 

                                                                       𝐭(𝑡, 𝑤) = 𝑡𝑒ఝ,                                                                (8) 

Here the argument,  𝜑 ∈ (−𝜋/2,   𝜋/2), is given by 

                                                                          sin 𝜑 = w/c.                                                                   (9) 

 When 𝜑 = 0, we have w = x = 0. Then the corresponding event occurs at the origin of K, and the 
relevant BC is the one located on K itself. In this case only, the time variable becomes a real number. 
Further, the magnitude, t of 𝐭(𝑡, 𝑤); its real part,  

Re(t(t, 𝑤)) = tඥ1 − (𝑤/𝑐)ଶ = 𝑡cos 𝜑 = 𝑡𝐵𝐶; 

and its imaginary part,  

Im(t(t, 𝑤)) = t ∙ (𝑤/𝑐) = 𝑡 sin 𝜑 = x/c 

all have interpretations as described in Section 2.1.  

2.3 Relating time vectors of different RFs. The Lorentz Transformation 
Now consider a RF, Kv moving relative to a K0 at a speed, v. An event on Kv is specified by the clock 
reading, tv at the position, xv, (and this applies also for v = 0). Further, wv = xv /tv, and we define 𝜑௩ by 

                                                              sin 𝜑௩ =  𝑤௩/𝑐, (𝑤௩ < 𝑐)                                                       (10) 

As seen in (6) above, there are various ways to write the time vector on Kv; one alternative being: 

𝑡௩ሬሬሬ⃗ = ቆ
  𝑡௩



𝑥௩/𝑐
ቇ 

In analogy with the formulation as a complex variable (see eqs. (8) and (9)) we can also write it as 

                                             𝑡௩ሬሬሬ⃗ (𝑡௩, 𝑤௩) = ቀ𝒕𝒗,𝟏

𝒕𝒗,𝟐
ቁ = ቀୡ୭ୱ ఝೡ

ୱ୧୬ ఝೡ
ቁ 𝑡௩ =  ቀ ଵ

୲ୟ୬ ఝೡ
ቁ 𝑡௩

                                      (11) 

Now consider the case that 𝑡௩ሬሬሬ⃗ (𝑡௩ , 𝑤௩) and 𝑡ሬሬሬ⃗ (𝑡, 𝑤) describe the same event, just expressed by the co-
ordinates of Kv and K0, respectively; (thus, having ‘basic simultaneity’). Then the LT (cf. Appendix A) 
will provide the relation between these vectors. It is easily verified, (and rather well known cf. eq. (2)), 
that the first component 𝑡௩,ଵ is then invariant under the LT, and so in this case  

𝑡௩,ଵ = 𝑡, (independent of v). 

The point is simply that time vectors 𝑡ሬሬሬ⃗ (𝑡, 𝑤) and 𝑡௩ሬሬሬ⃗ (𝑡௩, 𝑤௩) refer to the same event, and thus 
experience the same BC reading, 𝑡 . Fig. 2 provides an illustration, where KBC represents the RF of the 
BC being present at the event. 

So applying the LT on the time vectors gives the simple result that the first component is unaffected. 
Thus, using the complex form of the vector, as in Section 2.2, and replacing w by x in the second 
argument of 𝐭, we can write the LT as 

                                                      𝐭𝒗(𝑡௩, 𝑥௩) = 𝐭𝟎(𝑡, 𝑥) + 𝑖 (𝑥௩ − 𝑥)                                            (12) 

Thus, when we express the LT by the complex time vector it is only the imaginary part that is affected 
by the transformation. Fig. 3 also provides an illustration; here using the vector representation of time. 
We see that the time vector on K0 (blue) and the on Kv (red) have identical first component, 𝑡 .  
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Figure 2 Two events (x0, t0) and (xv, tv) representing basic simultaneity, and the clock reading, tBC of a BC at the same 
position. The origins of all RFs are marked with a zero, 0. 

x/c
Simultaneity,

Type II

𝑡𝑣ሬሬሬ⃗ (𝑡𝑣, 𝑤𝑣) 

 

𝑡𝐵𝐶  
 φv

 φ0

tv

t0

𝑡0ሬሬሬ⃗ (𝑡0, 𝑤0) 

 

Simultaneity,
Type I

 

Figure 3 Time vector, 𝒕𝟎ሬሬሬ⃗ (𝒕𝟎, 𝒘𝟎) on K0 when its clocks read t0, (blue); and time vector, 𝒕𝒗ሬሬሬ⃗ (𝒕𝒗, 𝒘𝒗) on Kv at the same position, 
(red). Here we actually have one event, described by two different RFs.  

3 Simultaneity and the time vector 
It should be quite clear by now that there is a rather close connection between the time vector and 
simultaneity. As indicated in Figs. 1 and 3 we consider two types of simultaneity. We will now refer to 
these as Type I and II, respectively, and sum up the main features of these.  

3.1 Simultaneity, Type I 
The absolute value of the time vector is equal to the clock reading, t of the corresponding event. When 
we consider the events of a single RF, K, (but only then) this provides a measure of simultaneity. We 
say that events with identical, t are simultaneous ‘in the perspective of K’, and refer to this as 
Simultaneity, Type I. So this occurs when the time vectors for events on a specific RF have the same 
absolute value; cf. the vectors on the semicircles of Figs. 1 and 3.  

However, this is a very weak form of simultaneity. The various RFs will even disagree on the ‘time’ of 
a single, specific event, (what we have called basic simultaneity). The two time vectors given in Fig. 3 
provide an example. Thus, different RFs will disagree regarding simultaneity, Type I.  

3.2 Simultaneity, Type II 
We use our concept of Basic Clocks (BCs) to define Simultaneity, Type II. At the point of initiation 
(t=0, all RF) all BCs are located at the common origin, and they are moving relative to each other at 
various speeds. Thus, for every event (t, x) on any RF (with t > ∣x∣/c) there is a BC present. Events that 
have the same BC reading, tBC are simultaneous in this sense (Type II). It is not required that the BCs 
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actually exist; we are just stating what these clocks would read, if they were present at the location of 
an events. We distinguish between the following cases: 

i. We consider a single RF, cf. Fig. 1. Given a fixed tBC, we have that all events (t, x) on this RF, having 
a clock reading, t that equals  

                                                            𝑡 = ඥ(𝑡)ଶ + (𝑥/𝑐)ଶ                                                         (12) 
are simultaneous, and have BC time, tBC. We refer to this as Simultaneity, Type II, Single RF.  

ii. We have a single event; just described by two (or several) RFs, cf. Fig. 3. So these RFs have the same 
BC reading, tBC. This is the situation described by the LT, and the red and the blue time vector of the 
figure are two representations (in two different RFs) of the same event. Thus, they have the same tBC. 
In this rather trivial case, we apply just a single BC, and refer to Simultaneity, Type II, Local. 

iii. We generalize the above two cases; thus, providing a means to give an objective definition of 
‘simultaneity at a distance’, irrespective of RF. The main point is that the above argument also applies 
for various BCs ‘at a distance’. For instance, looking at Fig. 3 we immediately see that the event 
described by the two given time vectors are also simultaneous with the corresponding event on the 
negative x-axis; where there is another BC with the same 𝑡 . However, we are not limited to such 
a special case. There will be BCs at any speed (<c) available at any position, x<ct, with the ability to 
specify simultaneity of events ‘at a distance’. Thus, the simultaneous events, described by (12) do 
not have to be located on one specific RF! Equivalently, the requirement that various events (tv, xv) 
on a Kv have identical BC reading is obviously equivalent to 

                                                            ඥ𝑡௩
ଶ − (𝑥௩

ଶ/𝑐)ଶ = 𝑡௩
  = Const.                                                (13) 

(cf. the Minkowski distance.) As known, this expression is invariant under the LT; and more 
important, the criterion is applicable also when we consider several BCs, Kv. So this is a useful 
concept, and we refer to it as Simultaneity, Type II, At a distance. 

Now in general, (13) is the criterion for Simultaneity, Type II. This concept is obviously in conflict with 
Simultaneity, Type I. Events that are simultaneous according to their BC readings, tBC, are usually not 
simultaneous ‘in the perspective’ of the relevant RF. Thus, the simultaneity concept II is more useful, 
than the concept, I, which is based entirely on the clock readings, t. In summary, Type II gives a 
consistent definition that applies across RFs, and thus is much more sensible.  

Finally, one should note that we have defined simultaneity relative to a specific ‘point of initiation’, 
only. In this respect, it does not represent an ‘absolute simultaneity’.  

4   The travelling twin 
The travelling twin paradox is frequently discussed, e.g. see Schuler and Robert (2014). As stated for 
instance in Mermin (2005) the paradox illustrates that two identical clocks, initially in the same place 
and reading the same time, can end up with different readings if they move apart from each other and 
then back together. We gave a lengthy discussion in Hokstad (2018), and now restrict to a comment on 
the simultaneity of events related to the actual arrival. 

In this thought experiment we start out with two synchronized clocks at the origins of two reference 
frames: the RF of the earth, and the RF of the rocket of the travelling twin. We note that both clocks are 
located at the origin of their RFs, and so both are basic clocks (BCs) in our notation. This makes the 
case very well suited to illustrate the current approach. Actually, it is sufficient to point out that both 
clocks are BCs. So if the travelling twin’s clock shows 4 years by his arrival, this is simultaneous with 
the event that the clock on the earth also shows 4 years. This follows from our concept, Simultaneity, 
Type II, At a distance.  

However, to illustrate this further, we also consider the relevant time vectors. We use the numerical 
example of Mermin (2005). The distance from the earth to the star equals x0 = 3 light years, i.e.  x0/c = 

3 years. Further, the velocity of the rocket is v = 0.6c, giving ඥ1 − (𝑣/𝑐)ଶ = 0.8. It follows that by the 
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arrival of the travelling twin, the clock at the star belonging to the earthbound twin will read x0/v = 3/0.6 
= 5 years, (assuming that the he has a clock, located on the star. being synchronized with his own). At 
the same instant the clock of the travelling twin reads 5∙0.8= 4 years (time dilation). In the literature one 
now often just points out that ‘time’ equals 5 years ‘in the perspective’ of the earthbound twin, and 4 
years ‘in the perspective’ of the travelling twin. 

Fig. 4 illustrates the time vectors related to the arrival at the star: Red time vector for the travelling twin; 
his clock showing 4 years. Blue vector for the earthbound twin; his clock showing 5 years. We note that 

since x0/c = 3 years at this position, we also directly get tBC = √5ଶ − 3ଶ = 4 years, as already stated. The 
two semicircles represents times ‘in the perspectives’ of the two twins; obviously representing very 
conflicting views. We note that Fig. 4 is a special case of Fig. 3, as the RF of the BC now is equal to 
that of the travelling twin, (red semicircle has radius tBC=4).  

However, we also have another BC, namely that of the earthbound twin. Thus, we conclude that when 
these two time vectors have the same tBC = 4 years, this represents Simultaneity Type II, at a distance. 
Actually, the two twins then have identical time vectors, (but in different RFs). 

x/c

54

5
3

𝑡𝐵𝐶  

 

Figure 4. The time vectors at the star by the arrival: Red = RF of travelling twin. Blue = RF of earthbound twin. The relevant 

vectors are 𝑡 = ൫ଷ
ସ
൯ = 5 ቀ,

,଼
ቁ and 𝑡 = ൫ସ


൯ = 4൫ଵ


൯. 

So the main finding here is that the arrival at the star is simultaneous with the event that the clock on 
the earth shows 4 years. Actually, 4 years is the only feasible result, considering the symmetry of the 
situation, cf. Hokstad (2018). However, we should point out that in spite of this, we will arrive at the 
standard result of 10 and 8 years, for the ages (or rather clock readings) by the reunion of the twins on 
the earth. In order to maintain the conditions of the TSR, the return of the travelling twin requires the 
introduction of a third RF with a third BC, (which is brought to the earth). So literally, it is not the twin 
himself - or even his own clock - that comes back to the earth, but rather a clock that had identical 
reading at the moment of the turning at the star. This dramatic discontinuity at the twins turning will 
have a significant effect, and is the reason that we after all arrive at the standard result of 10 and 8 years; 
(cf. Appendix A.3 of Hokstad (2018)). Thus, this result is actually rather ‘inaccurate’, without stressing 
this discontinuity, i.e. the violation of the assumptions of the TSR. 

5 Conclusions 
The above presentation is based on one fundamental claim. We postulate an infinite set of (possibly 
imagined) reference frames (RFs) moving relative to each other at constant speeds. At the origins of 
these RFs there is a clock, and initially these are all synchronized, (being at the same location!). From 
symmetry, we conclude that they remain synchronized, and refer to them as basic clocks (BCs). 



8 
 

Then for any event (t, x) on any RF, we define a time vector in two dimensions: 

1. The clock reading of the (imagined) BC currently at this position, (𝑡) 
2. The time required for a light flash to go from the origin of the RF (where there also is a BC), to the 

current position,(𝑥/𝑐).                

So, both components (dimensions) represent a ‘distance in time’ from the ‘point of initiation’, when the 
BCs were synchronized. We find that the absolute value of this time vector equals the clock reading, t, 
of the event, and see this as a measure for the overall distance in time from the ‘point of initiation’. 

This time vector provides a means to define various forms of simultaneity. Obviously, when the time 
vectors on a specific RF have the same absolute value, t, they will specify events that are simultaneous 
‘in the perspective’ of this RF. This Simultaneity, Type I, follows as t also equals the clock reading of 
the event.  

However, the main result is that time vectors, which have identical first component (𝑡) correspond to 
simultaneous events. This represents simultaneity in a much stronger sense, as we can use it as a holistic 
definition, valid for all RFs. We denote it Simultaneity Type II. The definition can be used locally: When 
we consider a specific event, described by various RFs, the vectors of all RFs of course have the 
same 𝑡, as there is just one BC present.  

However, the most useful application is to consider this simultaneity ‘at a distance’. Events with the 
same 𝑡  will exhibit this form of simultaneity, also for distant events, irrespective of RF.  

The travelling twin paradox represents a trivial application of this definition of simultaneity Type II. 

The given results apply for simultaneity relative to a common ‘point of initiation’. Finally, we observe 
that one can also formulate the time vector as a complex variable, and that there is a close link to the 
space-time of Minkowski.  
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Appendix A   The Lorentz transformation (LT) and time dilation 

This Appendix reproduces some material from Hokstad (2018). 

A.1 Alternative formulation of the LT 

The LT represents the fundament for our discussions. In our notation, the LT takes the form  

                                                                 𝑡௩ =  
௧బି(௩/మ)௫బ

ඥଵି(௩/)మ
                                                                 (A1) 

                                                                  𝑥௩ =  
௫బି௩௧బ

ඥଵି(௩/)మ
                                                                  (A2) 

We prefer a modified version of the LT. At any time, tv and position, xv we introduce wv equal to wv = 
xv/tv, (and therefore also w0 = x0/t0). Then we insert x0 = w0t0, and (A1) directly gives that the clock 
reading on the RF, Kv at this position equals: 

                                                          𝑡௩ = 𝑡௩(𝑤) =
ଵି ௩௪బ/మ

ඥଵି(௩/)మ
𝑡                                                       (A3) 

Note that we here also write 𝑡௩ = 𝑡௩(𝑤) to stress the dependence on w0.  

0

Clock 
reading

w* v

  ඥ1 − (𝑣/𝑐)2 

  /ඥ1 − (𝑣/𝑐)2 

tv= tv(w0)

t0

w0

t0

t0

 
Figure A1. Clock readings in the perspective of K0. Thus, ‘time’ all over K0 equals t0, while clock readings, tv(w0) on the 
other RF is given as a function of w0, where w0 = x0/t0 provides the ‘position’ on K0; cf. (3). 

 

Further, by also inserting x0 = w0t0 and xv = wv∙tv, we obtain 

                                                             𝑤௩ =  
௫ೡ

௧ೡ(௪బ)
=

௪బି௩

ଵି
ೢబ


∙
ೡ



                                                                              (A4) 

So equations (A3), (A4) express the LT by parameters (t, w) rather than (t, x). We observe that clock 
readings, t0  and tv enters (A3) only! 

Fig.A1 provides an illustration of the time dilation formula, (A3). This gives the clock reading both on 
K0 and Kv in the perspective of K0; (i.e. all clocks on K0 having the same clock reading). Therefore, the 
figure illustrates an instant when clocks read t0 all over this RF. The horizontal axis gives the ‘position’ 
w0 = x0/t0 on K0 at which the clock measurements are carried out. The vertical axis gives the actual clock 
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readings. So as clocks on K0 read t0 at any ‘position’, w0, the clock readings on Kv at this instant, 
𝑡௩ = 𝑡௩(𝑤), is a linear function of w0, see (A3). 

A.2 Two standard special cases (observational principles) 
Two special cases are of particular interest. Recall that the first clock comparison is carried out at the 
origins xv = x0 = 0 when tv = t0 = 0.  We specify two choices for the second comparison of clock readings. 

First we compare the clock located at xv = 0 on Kv (with the passing clocks on K0 showing t0). Thus, also 
wv = 0, and (A4) implies w0 = v, and (3) gives the relation between the two clock readings at this position, 
cf. Fig. A1:  

                                                         𝑡௩ = 𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                   (A5) 

This equals the standard ‘time dilation formula’. Secondly, we can compare the clock located at x0 = 0 
on K0 with a passing clock on Kv. For x0 = w0 = 0, i.e. following the basic clock at the origin of K0, eq. 
(A3) gives the following relation, (again see Fig. A1): 

                                                          𝑡௩ = 𝑡௩(0) =  𝑡/ඥ1 − (𝑣/𝑐)ଶ                                                     (A6) 

Apparently, the relations, (A5), (A6) are contradictory; eq. (A5) tells that the clock on Kv goes slower, 
and (A6) tells that the clock on K0 goes slower; cf. the Dingle’s question, (McCausland 2008, 2012). 
Thus, the time dilation is not a feature of the RF, but follows from which single clock we choose to 
follow when we perform the second clock comparisons. Therefore, we prefer to formulate the time 
dilation formulas (A5) and (A6) in compact form as 

                                                           𝑡 =  𝑡ெ  ඥ1 − (𝑣/𝑐)ଶ                                                         (A7) 

Here we have introduced the notation regarding the second clock comparison. 

tBC = The clock reading of a basic clock (BC). Thus, on this RF we use the same clock in the second 
clock comparison. (We have previously used the concept Single Clock (SC) to denote this BC.) 

tMC = The clock reading at the same location, but on the other RF. Therefore, this is the clock reading 
on the RF, which use multiple clocks (MC) for the clock comparison; (i.e. it uses another clock 
in the second comparison). 

Thus, both RFs can apply a BC for a certain clock comparison, and then conclude that ‘time goes slower’ 
on the RF which use BC. However, the same RF could also apply two clocks (MC) for a clock 
comparison with a BC on the other RF; and we would then conclude that ‘time goes slower’ on this 
other RF. Therefore, it is the observational principle, i.e. choice of clocks for the clock comparisons 
that matters; cf. discussion in Hokstad (2018). This is a well-known result. However, this duality has 
perhaps not received the attention it deserves in standard literature.  

A.3  The symmetric case 

There is another interesting special case of the LT, (A3), (A4). We can ask which value of w0 (and thus 
wv) will result in tv = t0. We easily find that this equality is obtained by choosing w0 = 𝑤∗, where   

                                                    𝑤∗ =
మ

௩
ቀ1 − ඥ1 − (𝑣/𝑐)ଶቁ =  

௩

ଵାඥଵି(௩/)మ
                                        (A8) 

Further, by this choice of w0 we also get wv = – 𝑤∗. This means that if we consistently consider the 
positions where simultaneously x0 = 𝑤∗t0 and xv = – 𝑤∗tv = – 𝑤∗t0, then no time dilation will be observed 
at these positions. In other words (cf.  Fig. A1): 

                                                                         𝑡௩(𝑤∗) = 𝑡      

We also find xv = - x0, thus, providing a nice symmetry. Note that when we choose the observational 
principle, (A8), then absolutely everything is symmetric, and it should be no surprise that we get tv = t0.  


