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Abstract. We specify a ‘time vector’ for any event in the theory of special relativity (TSR). This vector 
is well suited to specify various types of simultaneity. (Imagined) moving clocks, being synchronized 
at a common ‘point of initiation’ play a crucial role. We may present the time vector as a complex 
variable, and there is a relation to the Minkowski distance. We exemplify the approach by including a 
short discussion of the ‘travelling twin’.  
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1 Introduction 
The concept of simultaneity becomes crucial when inertial reference frames (RFs) are moving relative 
to each other. Of course, we have the ‘basic simultaneity’; i.e. simultaneity of events occurring at the 
same instant and same location, but these are rather the same event, just seen in the perspective of two 
different RFs. For events at a distance, we can essentially observe simultaneity from the ‘perspective’ 
of a certain RF: When the synchronized clocks of a specific RF show the same readings, we have 
simultaneous events in the perspective of this RF. The literature further refers to the ‘relativity of 
simultaneity’. Here we present an approach, suggesting an alternative definition of simultaneity also ‘at 
a distance’. Some further background is given in Hokstad (2017, 2018). 

We introduce ‘basic clocks’ (BC), which at time 0 are (imagined to be) located at the common origin, 
and then are synchronized. The readings of these BCs provide a basis for specifying a two-dimensional 
‘time vector’ related to any event. This vector proves useful for defining simultaneity also ‘at a distance’. 

This paper gives a purely mathematical description of the phenomenon, investigating implications of 
the Lorentz transformation (LT), and there is no attempt of a physical interpretation. 

2 Foundation 
As a background we here present some basic results related to the LT.  

2.1 Basic notation  
We start out with a RF, K0, where the position along the x-axis is denoted x0. At virtually any position 
there are synchronized clocks with clock reading denoted, t0. We will simply refer to (t0, x0) as an event. 
Further, there is a RF, Kv, moving along the x-axis of K0 at velocity v. On Kv we have 

xv =  The position on Kv, being identical to the location x0 at a time t0 on K0 

tv =  Clock reading at position xv on Kv, when xv corresponds to x0, and the clock on K0 reads t0. 

Observers (observational equipment) on both of these two RFs agree on these four observations. Further, 

 There is a complete symmetry between the two RFs K0 and Kv; these being identical in all respects. 
 We provide precise initial conditions: The clock at xv = 0 and the clock at x0 = 0 will when tv = t0 = 0 

be at the same location, and they are then synchronized. We refer to this as the ‘point of initiation’, 
and these clocks as ‘basic clocks’ (BCs). 

2.2 The Lorentz transformation (LT) and time dilation 
The LT represents the fundament for our discussions. In the above notation the LT takes the form  

                                                                   𝑡௩ =  
௧బି(௩/௖మ)௫బ

ඥଵି(௩/௖)మ
                                                                  (1) 
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                                                                    𝑥௩ =  
௫బି௩௧బ

ඥଵି(௩/௖)మ
                                                                   (2) 

We prefer a modified version of the LT. At any time, tv and position, xv we introduce wv equal to wv = 
xv/tv, (and therefore also w0 = x0/t0). Then we insert x0 = w0t0, and (1) directly gives that the clock reading 
on the RF, Kv at this position equals: 

                                                            𝑡௩ = 𝑡௩(𝑤଴) =
ଵି ௩௪బ/௖మ

ඥଵି(௩/௖)మ
𝑡଴                                                        (3) 

So equation (3) express the LT by parameters (t, w) rather than (t, x). Note that we – when appropriate 
– will write tv(w0) rather than tv to pinpoint its dependence on w0, The new time dilation formula (3) will 
– for a given clock reading, t0 on the primary system, K0 – give the clock reading, 𝑡௩(𝑤଴) on the 
secondary system, Kv, as a linear, decreasing function of w0. Observe that (3) shows that we can write tv 

in the form 

𝑡௩ = 𝑡௩(𝑤଴) = 𝛾௩(𝑤଴)𝑡଴. 

Fig.1 provides an illustration of this time dilation formula. Here we give clock reading (‘time’) both on 
K0 and Kv in the perspective of K0; (i.e. all clocks on K0 reading the same time). Therefore, the figure 
illustrates an instant when time equals t0 all over this reference frame. The horizontal axis gives the 
‘position’ w0 = x0/t0 on K0 at which the clock measurements are carried out. The vertical axis gives the 
actual clock readings. So as time on K0 equals t0 at any ‘position’, w0, the clock readings on Kv at this 
instant, 𝑡௩ = 𝑡௩(𝑤଴), is a linear function of w0. Fig. 1 also shows the value w =𝑤∗, giving t0 =tv; (cf. 
discussion in Hokstad (2017).  

0

Clock 
reading

w* v

  ඥ1 − (𝑣/𝑐)2 

  /ඥ1 − (𝑣/𝑐)2 

tv= tv(w0)

t0

w0

t0

t0

 
Figure 1. Clock readings in the perspective of K0. Thus, ‘time’ all over K0 equals t0, while clock readings, tv(w0) on the 

other RF is given as a function of w0, where w0 = x0/t0 provides the ‘position’ on K0; cf. (3). 

2.3 Two standard special cases (observational principles) 
Two special cases are of particular interest. Recall that the first clock comparison is carried out at the 
origins xv = x0 = 0 when tv = t0 = 0. Now repeating some essential (and well-known) arguments given in 
Hokstad (2016, 2018), we specify two choices for the second comparison of clock readings. 

First we compare the clock located at xv = 0 on Kv (with the passing clocks on K0, showing time t0). 
Thus, also wv = 0, and (4) implies w0 = v, and (3) gives the relation between the two clock readings at 
this position, (cf. Fig. 1):  
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                                                           𝑡௩ = 𝑡௩(𝑣) = 𝑡଴ ඥ1 − (𝑣/𝑐)ଶ                                                   (4) 

This equals the standard ‘time dilation formula’. Secondly, we can compare the clock located at x0 = 0 
on K0 with a passing clock on Kv. For x0 = w0 = 0, (i.e. following the basic clock at the origin of K0), eq. 
(3) gives the following relation, (again see Fig. 1): 

                                                          𝑡௩ = 𝑡௩(0) =  𝑡଴/ඥ1 − (𝑣/𝑐)ଶ                                                     (5) 

Apparently, the relations, (4), (5) are contradictory; eq. (4) tells that the clock on Kv goes slower, and 
(5) tells that the clock on K0 goes slower; cf. the Dingle’s question, (McCausland 2008, 2012). Thus, the 
time dilation is not a feature of the RF, but follows from which single clock we choose to follow when 
we perform the second clock comparisons. Therefore, we prefer to formulate the time dilation formulas 
(4), (5) in compact form as 

                                                              𝑡஻஼ =  𝑡ெ஼  ඥ1 − (𝑣/𝑐)ଶ                                                         (6) 

Here we have introduced the notation 

tBC = The clock reading of a basic clock (BC), i.e. clock located at the origin of a RF1. 

tMC = The clock reading at the same location but on the other RF; i.e. the clock reading on a RF using 
multiple clocks (MC) for clock comparisons with the basic clock.  

Therefore, both of the RFs can apply a BC for a certain clock comparison, and then conclude that ‘time 
goes slower’ on the RF which use BC. However, the same RF would also apply MC for a clock 
comparison with a BC on the other RF; and we would then conclude that ‘time goes slower’ on this 
other RF. Thus, it is the observational principle, i.e. choice of clocks for the clock comparisons that 
matters; cf. discussion in Hokstad (2018). This is a well-known result. According to Petkov (2012) 
already Minkowski referred to proper time and coordinate time, corresponding the above two concepts 
of time. However, the underlying duality has perhaps not received the attention it deserves in standard 
literature.  

3 Concepts of simultaneity 
Within a single RF simultaneity is easily established by the synchronization of clocks, e.g. using light 
rays, for instance see Einstein (1924), Giulini (2005), Mermin (2005). Further, a specific event, (t, x) 
will be specified differently by the two RFs. However, this is rather the same event; described by 
different (time, space) parameters. 

However, for moving reference frames there is within the TSR no unique definition of simultaneity at a 
distance. Rather, one refers to relativity of simultaneity, e.g. see the discussion in Debs and Redhead 
(1996). In particular they argue for the conventionality of simultaneity. That is, when establishing 
simultaneity at a distance by the use of light signals, the definition of simultaneity is essentially a matter 
on convention; any time in a certain interval can be seen as simultaneous with a specified distant event.  

For a single RF the task is simpler. Events with the same clock reading (t) on a specific RF, are 
simultaneous in the perspective of this frame. So this simultaneity depends on the chosen RF.  

Hokstad (2018) introduced an auxiliary reference frame as a tool to obtain simultaneity at a distance. 
We simply postulated an auxiliary RF with origin always located at the midpoint between our two main 
RFs. Further, we utilized the symmetry of this model, so that simultaneous clock readings at the auxiliary 
RF implies a certain simultaneity at a distance for the two main RFs.   

In the present paper we will pursue a slightly different approach. First we point out that an essential 
requirement for the use of the LT is that we start out with three sets of synchronizations. 

1. All clocks on the first RF, K0; 
2. All clocks on the second RF, Kv; 

                                                           
1 We have previously also used tSC (where SC = Single Clock) to denote this clock reading 
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3. The two clocks at the origins of K0 and Kv at time 0, this represent a basic simultaneity, and we 
refer to these as the basic clocks (BCs).  

Usually one will here implicitly assume that all clocks on K0 remain synchronized; as also do the clocks 
on Kv. We will now further argue that also the two BCs at the origins of K0 and Kv - being synchronized 
at time 0 - will remain synchronized. They are moving away from each other at speed, v, but in a  
symmetric situation, there is no way to claim that one of the two clocks goes faster than the other.  

So our claim is that when the two ‘basic clocks’ at the origins of the two RFs show the same time, this 
corresponds (in some sense) to simultaneous events ‘at a distance’. (We consider this rather to be a 
consequence of our assumption of symmetry between the RFs.) This leads to a rather strong form of 
simultaneity, as all observers can agree on this, see our discussions in the next chapter.  

4 The time vector and simultaneity 
We now introduce a two-dimensional state vector. We refer to this as a time vector and will utilize it to 
define simultaneity. We first introduce the time vector of a single RF; next look at two RFs related by 
the LT. 

4.1 Time vector of a single RF 
Since we now consider just one RF, we make a slight change in the notation, by dropping all subscripts 
v (and 0). Thus, we consider a RF, K, and consider an arbitrary event (t, x); i.e having clock reading, t 
at position, x. We have previously (Hokstad (2017)) suggested the following time vector for this event 

                                                              𝑡(𝑡, 𝑥) = ቀඥ௧మି(௫/௖)మ 
௫/௖

ቁ                                                           (7) 

As above we also introduce w = 𝑥/𝑡, and can then write this time vector as 

                                                              𝑡(𝑡, 𝑤) = ቀඥଵି(௪/௖)మ

௪/௖
ቁ 𝑡                                                          (8) 

We note that the absolute value of the time vector equals the clock reading, t of the event. The first 
component of this vector seems particularly interesting, as this equals what we have referred to as the 
basic clock (BC) reading of this event. Recalling (6), we have that the first component equals 

                                                                  𝑡஻஼ =  𝑡ඥ1 − (𝑤/𝑐)ଶ                                                          (9)                                                

where 𝑡஻஼  equals the clock reading of the BC at this position (that is the clock located at the origin of a 
RF, Kw). (Of course, 𝑡஻஼  depends on the event (t, x), and we could write 𝑡஻஼(𝑡, 𝑥).) Now we have the 
following alternative expression for the time vector 

                                                                            𝑡(𝑡, 𝑥) = ቀ  ௧ಳ಴

௫/௖
ቁ                                                              (10) 

We note that the first component of the time vector, (see (9)) is a valid expression only when x/c < t, 
(that is w<c). So at a given position, x we must have time t > x/c, were x/c is the time required for a light 
flash initiated at the point of initiation to reach this position, x. So it is only after this time that (10) 
defines the time vector at a fixed position x. 

Thus, we extend the above definition to also cover t < x/c. We simply define 

                                                  𝑡(𝑡, 𝑤) = ቐ 
൫଴

ଵ
൯𝑡 ;                         𝑡 < 𝑥/𝑐

ቀඥଵି(௪/௖)మ

௪/௖
ቁ 𝑡;          𝑡 > 𝑥/𝑐

                                            (11) 

Here we recall that w equals the speed at which the BC has ‘arrived’, at the event, (t, x). Obviously w<c, 
and we introduce 

                                                                  𝑤ି = min(𝑤, 𝑐)                                                                     (12) 

Thus, we can in general write 𝑡(𝑡, 𝑤) as  
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                                                      𝑡(𝑡, 𝑤) = ቀ𝒕𝟏

𝒕𝟐
ቁ = ቀඥଵି(௪ష/௖)మ

௪ష/௖
ቁ 𝑡                                                    (13) 

However, for the (main) case, t > x/c, we recall that (7), (8) and (10) are all valid expression for the time 
vector: 

                                   𝑡 = ቀඥ௧మି(௫/௖)మ 
௫/௖

ቁ = ቀඥଵି(௪/௖)మ

௪/௖
ቁ 𝑡 = ቀ௧ಳ಴

௫/௖
ቁ;  for t>x/c     

Thus, for t > x/c we can present the time vector,  𝑡 =  𝑡(𝑡, 𝑤) = 𝑡(𝑡, 𝑥)  as a point on the semicircle with 
radius, t in the (tBC, x/c) space; see Fig. 2. In summary, for a specific clock time, t and position, 𝑥 = 𝑤𝑡 
on K we interpret the two components of this time vector as follows: 

 The first component, 𝑡஻஼ =  𝑡ඥ1 − (𝑤/𝑐)ଶ equals the clock reading of the BC of the (possibly 

imagined) RF, Kw which by now is located at the position x = w 𝑡 on K. We call this the ‘basic time’ 
(‘BC reading’) at this position. (Only for x = w = 0, this BC refers to the BC at K itself.) 

 The second component, x/c, equals the distance, x from the origin (and thus from the BC) of K to 
the given position, measured as the time 𝑡 ∙ 𝑤/𝑐 = x/c required for a light flash to go to this distance. 
Note that this also is the distance between the BC ‘on location’ and the BC at the origin of K itself. 

Thus, both components refer to a distance from the ‘point of initiation’, (x = t = 0. We further repeat 
that the absolute value of our time vector is independent of w (and x): 

                                                               │𝑡(𝑡, 𝑤)│ = 𝑡                                                              (14) 

cf. the semicircle of Fig. 2 which represent all time vectors on K with absolute value, t. Thus, events on 
K, which have time vector with the same absolute value, have the same clock time on K, and are 
simultaneous ‘in the perspective of K’. We will refer to this as Simultaneity Type I. 

x/c

Simultaneity, 
same

t
𝑡𝐵𝐶  

 φ
t1

t2  

 

 

 

 
𝑡(𝑡, 𝑤) = ൭

ඥ1 − (𝑤/𝑐)2

𝑤/𝑐
൱ 𝑡 

Simultaneity, 
same t

𝑡𝐵𝐶  

 

Figure 2 One specific time vector, 𝒕⃗(𝒕, 𝒘) = ቀ𝒕𝟏
𝒕𝟐

ቁ = ቀඥ𝟏ି(𝒘/𝒄)𝟐

𝒘/𝒄
ቁ 𝒕 =  ቀ 𝒕𝑩𝑪

𝒘𝒕/𝒄
ቁ for a specific clock reading t at the position, x = 

wt, when t>x/c; (here sin 𝝋 = w/c). 

However, this can be seen as a rather weak form of simultaneity: Events that are simultaneous in the 
perspective of one RF, are usually not simultaneous in the perspective of another RF. As suggested in 
Chapter 3 the BC of the event can provide an alternative form of simultaneity. Thus, we point out that 
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events with the same BC reading, 𝑡஻஼ exhibit a form of simultaneity. Therefore, events having time 
vectors with identical first components are simultaneous in this sense; cf. stipled vertical line in Fig. 2. 
We will refer to this as Simultaneity, Type II. 

We here observe that there is a strong link between this approach and Minkowski’s approach to space-

time; cf. space-time distance as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, Minkowski 

(1909). As stated in Petkov (2012), Minkowski refers to the time of the basic clock, (cf. ඥ𝑡ଶ − (𝑥/𝑐)ଶ 
of eq. (7)), as ‘proper time, and our t as ‘coordinate time’. However, to my knowledge this has not been 
applied in the discussion of simultaneity. 

Finally, we note that the BC reading 𝑡஻஼ is not just the BC reading of a specific, RF, K. It must be the 
BC reading at this position for any RF. Thus, the component, 𝑡஻஼ , of the time vector is also most relevant 
when we discuss simultaneity ‘across RFs’. We return to this in Section 4.3 below. 

The time vector and simultaneity. 
In summary, it is interesting to relate the time vector of an arbitrary event (t, x) on the RF, K, with the 
time vector of two other events; first, that associated with the BC presently at the location in question; 
secondly, a time vector of the origin of K. Thus, for t>x/c we relate the following three time vectors:  

1. Time vector, 𝑡 = ቀ௧ಳ಴

௫/௖
ቁ for an arbitrary event (t, x) on K. 

2. Time vector, 𝑡 = ቀ௧ಳ಴

଴
ቁ for the identical event of a (possibly imagined) passing RF with a BC 

corresponding to the event (t, x) on K. (The BC on the passing RF is located at the origin of this RF, 
and thus, the x –coordinate here equals 0.) 

3. Time vector for the event at the origin of K, having the same BC reading as the event (x, t). At the 

origin, we have x = 0, and so also this time vector equals 𝑡 = ቀ௧ಳ಴

଴
ቁ, (now referring to a vector on K).  

Thus, we argue that 𝑡 = ቀ௧ಳ಴

଴
ቁ is a logical choice when we shall specify the time vector of an event at 

the origin of K, considered to be simultaneous with the event (x, t). We refer to this as simultaneity of 
Type II. This differs from the standard simultaneity concept, Type I, “simultaneity in the perspective 
of”, which claims simultaneity on K when we have same clock reading, t, (i.e. same absolute value of 
time vector.) 

So our claim is that – having an arbitrary event – there are two BCs of interest: First, the one related to 
the event ( on location), and secondly that at the origin of its own RF. Both these events have time 

vector ቀ௧ಳ಴

଴
ቁ,  while the time vector of the event itself is equals ቀ௧ಳ಴

௫/௖
ቁ. Equality of the first component 

indicates simultaneity.  

Finally, it is of some interest to consider the limiting case, 𝑡 → 𝑥/𝑐, (i.e. 𝑤 → 𝑐); which implies that the 
BC reading,  𝑡஻஼ , of the event approaches 0. In this limiting case, it has elapsed a time x/c on the RF, K; 
while for the ‘moving’ BC there has elapsed no time. 

4.2 Time formulated as a complex variable 
We can of course formulate the time vector for the event (t, x) as a complex variable. In polar form, we 
can write the vector 𝑡(𝑡, 𝑤) in (10) as 

                                                             𝐭(𝑡, 𝑤) = 𝑡𝑒௜ఝ,   (w =x/t)                                                        (15) 

If we restrict to w<c, the argument,  𝜑 ∈ (−𝜋/2,   𝜋/2), is given by 

sin 𝜑 = w/c. 
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(more generally we could replace φ by 𝜑ି, where sin 𝜑ି = 𝑤ି/c.) Further , the magnitude, t equals the 
clock reading, and we interpret w = x/t as the velocity relative to K of an (imagined) basic clock (BC), 
now having arrived at the position, x.  

When 𝜑 = 0, we have w = x = 0. Then we are at the origin of K, and the relevant BC is the one located 
on K itself. In this case the time variable becomes a real number. 

As specified in Section 4.1, the real part, Re(t(t, 𝑤)) = tඥ1 − (𝑤/𝑐)ଶ = 𝑡cos 𝜑 = 𝑡𝐵𝐶 gives the BC 

reading at the location, and this identifies simultaneity. The imaginary part, Im(t(t, 𝑤)) = t ∙ (𝑤/𝑐) =
𝑡 sin 𝜑 = x/c represents the distance (measured in terms of time required for a light flash) from 
the RFs own BC to the position in question.  

Finally, we can generalize (12) to hold for a three-dimensional space, with coordinates (x, y, z). We then 

define w by w =ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ 
 
/𝑡. Thus, w still specifies a position (distance from origin) at time t on 

the RF K, and we still have sin 𝜑 = w/c, using the new definition of w. 

4.3 Relating time vectors of two RFs 
We now consider how to relate the time vectors, 𝑡(𝑡, 𝑤) of two different RFs, moving relative to each 
other. We return to the notation of Chapter 2, with two RFs K0 and Kv. Relative to these RFs we have 
the ‘corresponding’ positions x0 = w0t0 and xv = wvtv, and the LT is given as (3), (4).  Further, we for all 
v; (also v=0) introduce 

                                                          sin 𝜑௩ =  𝑤௩/𝑐, (for 𝑤௩ < 𝑐)                                                    (16) 

As seen in Section 4.1 there are various ways to write the time vector, 𝑡(𝑡௩ , 𝑤௩). By use of (16), the eqs. 
(8) and (9) now further give 

x/c
Simultaneity,

Type II

𝑡(𝑡𝑣, 𝑤𝑣) 

 

𝑡𝐵𝐶  
 φv

 φ0

tv

t0

𝑡(𝑡0, 𝑤0) 

 

Simultaneity,
Type I

 

Figure 3 Time vector, 𝒕⃗(𝒕𝟎, 𝒘𝟎) on K0 when its clocks read time t0 (blue); and time vector, 𝒕⃗(𝒕𝒗, 𝒘𝒗) on Kv at the same 
position (red). We actually consider the same event, described by two different RFs (and being related by the LT). Thus, 

here we insert the time vectors of K0 and Kv in the same co-ordinate system; both having a BC reading equal to 𝑡஻஼ . 
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0

xv
Kv 

K0 

0

0

x0

tv

t0

𝑡𝐵𝐶  Kw0
 

Figure 4 Two events (x0, t0) and (xv, tv) representing basic simultaneity, and the clock reading, tBC of a BC at the same 
position. Origins of all RFs are marked with a zero, 0. 
 
 

                                                    𝑡(𝑡௩ , 𝑤௩) = ቀୡ୭ୱ ఝೡ
ୱ୧୬ ఝೡ

ቁ 𝑡௩ =  ቀ ଵ
୲ୟ୬ ఝೡ

ቁ 𝑡஻஼                                             (17) 

We illustrate this result in Fig. 3, showing the time vector of one and the same event in the perspective 
of two RFs, K0 and Kv. The most interesting feature is that the first component of the time vector is 
identical for all ‘perspectives’: 

                                          𝑡௩,ଵ = 𝑡௩cos 𝜑௩ =  𝑡௩ඥ1 − (𝑤௩/𝑐)ଶ = 𝑡஻஼ , (all v)                                   (18) 

This is actually an obvious result, since for any event there is just one BC present; we are actually 
referring to the same event, just described by two different RFs (and thus the LT provides the relation 
between the parameters). 

We also have various expressions for the imaginary part of the complex time vector:   

                                               𝑡௩,ଶ =
௫ೡ

௖
= ቀ

௪ೡ

௖
ቁ 𝑡௩ = 𝑡௩sin 𝜑௩ = tan 𝜑௩ 𝑡஻஼                                         (19) 

As a result we can easily write out a version of the LT relating the time vectors of K0 and Kv, respectively; 

that is relating 𝑡௩ሬሬሬ⃗ = ቀ௧ೡ,భ
௧ೡ,మ

ቁ and 𝑡଴ሬሬሬ⃗ = ቀ௧బ,భ
௧బ,మ

ቁ. As seen, various alternative expressions exist, (cf. Fig. 2 and 

also recall the essential result 𝑡௩,ଵ = 𝑡଴,ଵ = 𝑡஻஼). We refer to Appendix B for further examples.  

In this Section we have restricted to discuss identical events, described by two different RFs, see Fig. 4. 
We refer to this as Simultaneity, Type II, Local. However, we can apply the same approach to define 
simultaneity by utilizing different BCs (at different locations) but with the same clock reading, 𝑡஻஼ . We 
refer to this as Simultaneity, Type II, At a distance, cf. next chapter considering the travelling twin 
example. 

4.4 Summary of time vector and simultaneity 
To summarize: On any RF, K, we introduce a time vector related to an event (t, x), where x = wt, which 
splits the clock reading (‘clock time’), t in two components, which for t>x/c, (w<c) equals: 

t1 = 𝑡 ∙ ඥ1 − (𝑤/𝑐)ଶ = 𝑡஻஼;  the clock reading, of the (imagined) BC currently at this position 

t2 = 𝑡 ∙ 𝑤/𝑐 = 𝑥/𝑐;                clock time required for a light flash to go from the RF’s own BC (at the 
                                       origin of this RF) to the current position. 

So, both components (‘dimensions’) represent a ‘distance in time’ from the ‘point of initiation’. Further, 
the absolute value of the time vector equals the clock reading, t of the event. We note that it makes sense 
to define the time vector as a complex variable, with the first component as the real part, and the second 
as the imaginary.  

We point out that this time vector is suitable for specifying various forms of simultaneity: 

1. Simultaneity Type I: Events with the same clock reading, t. This applies for the events of a single 
RF, and simply means that the synchronized clocks of this RF give the same clock readings. We 
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usually refer to this as simultaneity in the perspective of this RF, and thus, it occurs when time 
vectors (on this RF) have the same absolute value; cf. semicircles of Figs. 2 and 3.   

2. Simultaneity Type II: Events with the same BC reading, tBC. Thus, the (possibly imagined) BCs 
present at the location of the events have identical readings, (i.e. the complex time vectors have the 
same real part). We can apply this either to one single RF, or to events of several RFs, (which are 
moving relative to each other at constant speed). 
We could distinguish between the following cases: 

i. We have the standard situation that two different RFs describe the same event (cf. the LT). 
Then of course the clock reading, tBC are identical. Actually we refer to the same BC on both 
RFs. In this situation, the LT will –as we know– describe the relation between the two time 
vectors. Here we may refer to Simultaneity Type II, Local; cf. Fig. 3. 

ii. We also here have events with the same tBC, but these clock readings are carried out on different 
clocks (i.e. at different locations). In this case we refer to Simultaneity Type II, At a distance; 
see exampling next chapter. In principle, this could apply both for events on the same RF 
(Figure 2) and events related to two different RFs (Figure 3).  

We note the limitation of the given approach: We have defined simultaneity relative to a specific ‘point 
of initiation’, only. However, if we first identify simultaneous events ‘at a distance’ relative to a given 
‘point of initiation’, it should also be possible to define further simultaneities based on these events, now 
treated as new ‘common’ points of initiation. This could represent a considerable extension. 
 
5 The travelling twin 
The travelling twin paradox is frequently discussed, e.g. see Schuler and Robert (2014). As stated for 
instance in Mermin (2005) this illustrates that two identical clocks, initially in the same place and 
reading the same time, can end up with different readings if they move apart from each other and then 
back together. We gave a lengthy discussion in Hokstad (2018), and now restrict to a short comment. 

We start out with two synchronized clocks at the origins of two reference frames; the RF of the earth, 
and the RF of the rocket of the travelling twin. We note that both clocks are located at the origin of their 
RFs, and so both are basic clocks (BCs).  

x/c

5

x/c
b) a) 

4

5
3

4 5

5

3

𝑡𝐵𝐶 𝑡𝐵𝐶  

 

Figure 5 The time vectors 𝑡 = ൫ଷ
ସ
൯ = 5 ቀ଴,଺

଴,଼
ቁ and 𝑡 = ൫ସ

଴
൯ = 4൫ଵ

଴
൯ by the arrival at the star of the travelling twin. a) 

Time vectors at the star and on the earth on the RF of the earthbound twin. b) Time vectors at the star: Red = travelling 
twin. Blue = RF of earthbound twin. 
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Fig. 5 gives an illustration of relevant time vectors by the arrival at the star, using the numerical example 
of Mermin (2005). The distance from the earth to the star equals x0 = 3 light years, i.e.  x0/c = 3 years, 

and the velocity of the rocket is v = 0.6c, giving ඥ1 − (𝑣/𝑐)ଶ = 0.8. Then the clock readings of the two 
RFs at the star by the twin’s arrival are 4 and 5 years, respectively. First, Fig. 5.a) gives the time vectors 
on the earth and the star, respectively, ‘in the perspective’ of the earthbound twin. We know that on the 
star the clock of his RF reads 5 years, and so ‘in his perspective’ this is the clock readings all over his 
RF, (blue semicircle). However, the BC on the star at this instant, (which is the clock of his travelling 
twin) reads 4 years. Thus, following our claim regarding simultaneity Type II ‘At a distance’ (but on the 
same RF) of Section 4.4 this event on the star is simultaneous with his own clock (also being a BC) 
showing 4 years. Simultaneity in this sense occurs when the earthbound twin’s clock at the star reads 5 
years and his clock on the earth shows 4 years; at both those locations the BC reading equals 4 years. 

Fig. 5.b) illustrates the two time vectors at the star: Red time vector for the travelling twin, and again 
the blue vector for the earthbound twin. These two time vectors of Fig. 5.b) represent a Simultaneity 
Type II ‘Local’ in Section 4.4.  

Next, by combining the two results of Fig. 5. a) and b), we get that the clock of the travelling twin 
showing 4 years (on the star) is an event being simultaneous with the clock of the earthbound twin 
showing 4 years (on the earth). – Or in short, we claim these events to be simultaneous because the first 
component of their time vectors are equal (= tBC = 4 years). 

Note that our claim is that the arrival at the star is simultaneous with the the event that clock on the earth 
shows 4 years, (and not 5 years, that seems to be claim of some authors). However, the change of 
direction (and thus the change of RF) required for the travelling twin, will have a big impact here on the 
further development. So the above simultaneity result does not imply that the twins will have the same 
age also by their reunion, (as was unfortunately claimed in previous versions of the present paper); cf. 
last version of Hokstad (2018).  

6 Conclusions 
In the present work we consider implications of the Lorentz Transformation in the theory of special 
relativity. The clock reading of a reference frame (RF) is denoted, t, and we consider just one space 
coordinate, x. Related to any event (t, x) we define a time vector in two dimensions. We can formulate 
the vector as a complex variable, and there is a close link to the time-space of Minkowski. 

The absolute value of the time vector equals the clock reading (’clock time’), t at the relevant position, 
and we can see this as a measure for the overall distance in time from the ‘point of initiation’, i.e. the 
time, 0 and the origins of the RFs having a common location.  

This vector provides a means to define various forms of simultaneity. Time vectors on the same RF, 
having same absolute value will specify events that are simultaneous ‘in the perspective of this RF. We 
refer to this as Simultaneity Type I.  

However, we argue that we can also use this time vector to define a simultaneity Type II. There are two 
variants of this: ‘Local’ and ‘At a distance’. Events having a time vector with the same real part will 
exhibit this form of simultaneity. 

There is one fundamental claim here. We postulate an infinite set of (possibly imagined) RFs at constant 
relative speeds. At the origins of these RFs there are clocks which are synchronized at time 0, and for 
symmetry reasons we conclude that they remain synchronized. We refer to these clocks as basic clocks 
(BCs), and identical clock readings of these will represent simultaneity Type II.  

The first component of the time vector equals the clock reading of this (imagined) BC. The second 
component equals the distance to the BC of the actual RF itself, measured as the time required for a light 
signal to go this distance.  

The results apply for simultaneity relative to a common ‘point of initiation’; however, extensions seem 
possible. 
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Appendix A. Some notation 

Kv = RF moving relative to a RF, K0, at velocity v.  

K  = K0; (the suffix 0 is in general dropped when just one RF is involved) 

xv =  The position on Kv  

tv =  Clock reading at position xv on Kv, (often given as a function of w0 = x0/t0) 

wv = xv/tv   (Used to specify a location xv on Kv at a specific clock time tv. Can also be interpreted as the 
velocity of an imagined RF 𝐾௪ೡ

.)   

𝜑௩ = sinିଵ 𝑤௩/𝑐  

𝑤ି = min(𝑤, 𝑐) , where w = w0                                                                 

𝜑ି = sinିଵ 𝑤ି/𝑐  

tBC = tBC(t, x);   The clock reading of the basic clock (BC) of a given event 

v  =   Velocity of RF, Kv, relative to RF, K0 

------------------------------ 
When we have two RFs we apply the notation for K0, x0, … etc. for parameters related to the ‘primary’ 
RF. However, in cases of having just one RF, we rather use the notation, K, x, ... etc. 
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Appendix B 

Fig. 3 presents an example where 0 < v < w0, and using (16), also 0 < 𝑤௩ < 𝑤଴; thus, 0 < 𝜑௩ < 𝜑଴. 
This is the situation illustrated in Fig. 4. The Fig. B1 illustrates some further cases (all with v > 0): 

a) v = w0. In this case 𝑥௩ = 𝑤௩ =  𝜑௩ = 0, and the origin of Kv is located at the relevant position; i.e. 
the BC of this event is actually located on Kv itself. 

b) v > w0 > 0. Using (16) we get 𝜑௩ < 0.  So also 𝑤௩ < 0, 𝑥௩ < 0. 
c) w0 = −wv = w*, (and 𝑥௩ = −𝑥଴). We specify v= v*. Here the blue and red semicircle coincide. 
d) v > v*. In this case, 𝑤௩ < −𝑤଴. 

 

x/c
a)   v = w0 

( φv = wv = xv = 0)

t
𝑡𝐵𝐶  

 φ0

t0

tv
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t
𝑡𝐵𝐶  φv

 φ0

t0

tv

t0

x/c

t
𝑡𝐵𝐶   φv

 φ0

t0

tv t0

x/c

t
𝑡𝐵𝐶   φv

 φ0

t0

tv

t0

b) v > w0 
(wv<0, φv  <0)

c) v = w0⊕w0

(w0 = - wv = w*)

 

d) v > w0⊕w0

(wv < - w0) 

 
Figure B1 Further examples of a time vector, 𝒕⃗(𝒕𝟎, 𝒘𝟎) on K0 (blue), and ‘corresponding’ time vector 𝒕⃗(𝒕𝒗, 𝒘𝒗) on Kv (red). 


