
1 
 

A new concept for simultaneity in TSR      (v6, 2018-03-21) 

Per Hokstad 

phokstad@gmail.com 

 

Abstract. A main part is completely rewritten in this new version of the paper. We start by specifying 
a state vector (‘time vector’) in the theory of special relativity (TSR). This vector is well suited to specify 
various types of simultaneity. Moving clocks, being synchronized at a common ‘point of initiation’ play 
a crucial role. We may present the time vector as a complex variable, and there is a relation to the 
Minkowski distance. We exemplify the approach by including a short discussion of the ‘travelling twin’.  
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1 Introduction 
The concept of simultaneity becomes crucial when inertial reference frames (RFs) are moving relative 
to each other. Of course, we have the ‘basic simultaneity’; i.e. simultaneity of events occurring at the 
same instant and same location, but these are rather the same event, just seen in the perspective of two 
different RFs. For events at a distance, we can essentially observe simultaneity from the ‘perspective’ 
of a certain RF: When the synchronized clocks of a specific RF show the same readings, we have 
simultaneous events in the perspective of this RF. The literature further refers to the ‘relativity of 
simultaneity’. Here we actually present an approach, actually suggesting a definition of simultaneity 
even ‘at a distance’. This is partly based on Hokstad (2016, 2018). 

We start by repeating some material related to the Lorentz transformation (LT), and further give a short 
introduction to simultaneity. It is important here to observe our notion of the ‘basic clocks’ (BC), which 
at time 0 are (imagined to be) located at the common origin, and at this instant are all synchronized.  
This is the basis for specifying a two-dimensional state vector, which we denote a ‘time vector’. 
Essential for the definition of this vector is the BC reading at the current location, and the distance from 
the RF’s own BC. This time vector proves useful when investigating simultaneity also ‘at a distance’. 
We finally include an exemplification utilizing the travelling twin paradox. 

This paper gives a purely mathematical description of the phenomenon, and there is no attempt of a 
physical interpretation. 

2 Foundation 
We here present some assumptions, and give some background related to the LT, which proves useful.  

2.1 Basic notation  
We start out with a RF, K0, where the position along the x-axis is denoted x0. At virtually any position 
there are synchronized clocks with clock reading denoted, t0. We will simply refer to (x0, t0) as an event. 
Further, there is a RF, Kv, moving along the x-axis of K0 at velocity v. On Kv we have 

xv =  The position on Kv, being identical to the location x0 at a time t0 on K0 

tv =  Clock reading at position xv on Kv, when xv corresponds to x0, and the clock on K0 reads t0. 

Observers (observational equipment) on both of these two RFs agree on these four observations. Further, 

 There is a complete symmetry between the two RFs K0 and Kv; these being identical in all respects. 
 The clock at xv = 0 and the clock at x0 = 0 will when tv = t0 = 0 be at the same location, and they are 

then synchronized. We refer to this as the ‘point of initiation’, and these clocks as ‘basic clocks’ 
(BCs). 



2 
 

2.2 The Lorentz transformation (LT) and time dilation 
The LT represents the fundament for our discussions. In the above notation the LT takes the form  

                                                                   𝑡௩ =  
௧బି(௩/మ)௫బ

ඥଵି(௩/)మ
                                                                  (1) 

                                                                    𝑥௩ =  
௫బି௩௧బ

ඥଵି(௩/)మ
                                                                   (2) 

We prefer a modified version of the LT. At any time, tv and position, xv we introduce wv equal to wv = 
xv/tv, (and therefore also w0 = x0/t0). Then we insert x0 = w0t0, and (1) directly gives that the clock reading 
on the RF, Kv at this position equals: 

                                                            𝑡௩ = 𝑡௩(𝑤) =
ଵି ௩௪బ/మ

ඥଵି(௩/)మ
𝑡                                                        (3) 

Note that we – when appropriate – will write tv(w0) rather than tv to pinpoint its dependence on w0, The 
new time dilation formula (3) will – for a given clock reading, t0 on the primary system, K0 – give the 
clock reading, 𝑡௩(𝑤) on the secondary system, Kv, as a linear, decreasing function of w0. Observe that 
(3) shows that we can write tv in the form 

𝑡௩ = 𝑡௩(𝑤) = 𝛾௩(𝑤)𝑡. 

Fig.1 provides an illustration of this time dilation formula. Here we give clock reading (‘time’) both on 
K0 and Kv in the perspective of K0; (i.e. all clocks on K0 reading the same time). Therefore, the figure 
illustrates an instant when time equals t0 all over this reference frame. The horizontal axis gives the 
‘position’ w0 = x0/t0 on K0 at which the clock measurements are carried out. The vertical axis gives the 
actual clock readings. So as time on K0 equals t0 at any ‘position’, w0, the clock readings on Kv at this 
instant, 𝑡௩ = 𝑡௩(𝑤), is a linear function of w0. 

Further, by also inserting x0 = w0t0 and xv = wv∙tv, in (2), we will from (1) and (2) obtain 

                                                                      𝑤௩ =  
௫ೡ

௧ೡ(௪బ)
=

௪బି௩

ଵି
ೢబ


∙
ೡ



                                                                        (4) 

 

0

Clock 
reading

w* v

  ඥ1 − (𝑣/𝑐)2 

  /ඥ1 − (𝑣/𝑐)2 

tv= tv(w0)

t0

w0

t0

t0

 
Figure 1. Clock readings in the perspective of K0. Thus, ‘time’ all over K0 equals t0, while clock readings, tv(w0) on the 
other RF is given as a function of w0, where w0 = x0/t0 provides the ‘position’ on K0; cf. (3). 
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Now equations (3), (4) represent an alternative version of the LT, here expressed by parameters (t, w) 
rather than (t, x). The most striking feature of this new version is that it is a single equation, (3), which 
involves the time parameters, t0 and tv; giving tv as a factor independent of t0 multiplied with t0.  

The other equation (4) has a direct interpretation related to velocities. According to standard results of 
TSR, e.g. Refs. [7]-[9], the velocities v1 and v2 sums up to v, given by the formula 

                                                                  𝑣 = 𝑣ଵ⨁ 𝑣ଶ  ≝  
௩భା௩మ

ଵା
ೡభ


∙
ೡమ


                                                       (5) 

So now defining the operator ⨁ this way, eq. (4) actually says that 𝑤௩ = 𝑤⨁(−𝑣), (also 
implying 𝑤 =  𝑤௩⨁𝑣); thus, clearly interpreting w0 and wv as velocities along the x - axis. That is we 
have a moving position along the x-axis for clock comparisons. Therefore, this w0 specifies what we 
refer to as the observational principle, pinpointing that this is an essential factor for the resulting 
observed time dilation. Note that we do not need to think of w0 as a velocity; rather as a way to specify 
a certain position x0 = w0t0 on the primary RF, K0.  

2.3 Two standard special cases (observational principles) 
Two special cases are of particular interest. Recall that the first clock comparison is carried out at the 
origins xv = x0 = 0 when tv = t0 = 0. Now repeating some essential (and well-known) arguments given in 
Hokstad (2016, 2018), we specify two choices for the second comparison of clock readings. 

First we compare the clock located at xv = 0 on Kv (with the passing clocks on K0, showing time t0). 
Thus, also wv = 0, and (4) implies w0 = v, and (3) gives the relation between the two clock readings at 
this position, (cf. Fig. 1):  

                                                           𝑡௩ = 𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                   (6) 

This equals the standard ‘time dilation formula’. Secondly, we can compare the clock located at x0 = 0 
on K0 with a passing clock on Kv. For x0 = w0 = 0, (i.e. following the basic clock at the origin of K0), eq. 
(3) gives the following relation, (again see Fig. 1): 

                                                          𝑡௩ = 𝑡௩(0) =  𝑡/ඥ1 − (𝑣/𝑐)ଶ                                                     (7) 

The relations, (6), (7) are apparently contradictory; eq. (6) tells that the clock on Kv goes slower, and (7) 
tells that the clock on K0 goes slower; cf. the Dingle’s question, (McCausland 2008, 2012). Thus, the 
time dilation is not a feature of the RF, but follows from which single clock we choose to follow when 
we perform the second clock comparisons. Therefore, we prefer to formulate the time dilation formulas 
(6), (7) in compact form as 

                                                              𝑡 =  𝑡ெ  ඥ1 − (𝑣/𝑐)ଶ                                                         (8) 

Here we have introduced the notation 

tBC = The clock reading of a basic clock (BC), i.e. clock located at the origin of a RF1. 

tMC = The clock reading at the same location but on the other RF; i.e. the clock reading on a RF using 
multiple clocks (MC) for clock comparisons with the basic clock.  

Therefore, both of the RFs can apply a BC for a certain clock comparison, and then conclude that ‘time 
goes slower’ on the RF which use BC. However, the same RF would apply MC for a clock comparison 
with a BC on the other RF; and we would then conclude that ‘time goes slower’ on this other RF. It is 
the observational principle, i.e. choice of clocks for the clock comparisons that matters; cf. discussion  
in Hokstad (2018). This is a well-known result. According to Petkov (2012) already Minkowski referred 
to proper time and coordinate time, corresponding the above two concepts of time. However, the 
underlying duality has perhaps not received the attention it deserves in standard literature.  

                                                           
1 We have previously also used tSC (where SC = Single Clock) to denote this clock reading 
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2.4 The symmetric case 
There is another interesting special case of the LT, (3), (4). We can ask which value of w0 (and thus wv) 
will result in tv = t0. We easily find that this equality is obtained by choosing w0 = 𝑤∗, where   

                                                    𝑤∗ =
మ

௩
ቀ1 − ඥ1 − (𝑣/𝑐)ଶቁ =  

௩

ଵାඥଵି(௩/)మ
                                        (9) 

Further, by this choice of w0 we also get wv = – 𝑤∗. This means that if we consistently consider the 
positions where simultaneously x0 = 𝑤∗t0 and xv = – 𝑤∗tv = – 𝑤∗t0, then no time dilation will be observed 
at these positions. In other words (cf.  Fig. 1): 

                                                                         𝑡௩(𝑤∗) = 𝑡                                                                          

At this position we also find xv = - x0, and so we see this as the midpoint between the origins of the two 
RFs; thus, providing a nice symmetry. Note that when we choose the observational principle, (9), then 
absolutely everything is symmetric, and it should be no surprise that we get tv = t0.  

Note that 𝑤∗ has a simple interpretation. Recalling the definition of the operator ⨁ in eq. (5) for adding 
velocities in TSR, (𝑣 = 𝑣ଵ⨁ 𝑣ଶ), it is easily verified that when  𝑤∗ is given by (9), then we get 𝑤∗⨁𝑤∗= 
v. So this confirms that when our point of observation ‘moves’ with velocity  𝑤∗ relative to K0 and - 𝑤∗, 
relative to Kv, it corresponds exactly to the case that the relative speed between K0 and Kv equals v. 

3 Concepts of simultaneity 
Within a single RF simultaneity is easily established by the synchronization of clocks, e.g. using light 
rays, for instance see Einstein (1924), Giulini (2005), Mermin (2005). Further, a specific event, (t, x) 
will be specified differently by the two RFs. However, this is rather the same event; described by 
different (time, space) parameters, and we refer to this as basic simultaneity. 

However, for moving reference frames there is within the TSR no unique definition of simultaneity at a 
distance. Rather, one refers to relativity of simultaneity, e.g. see the discussion in Debs and Redhead 
(1996). In particular they argue for the conventionality of simultaneity. That is, when establishing 
simultaneity at a distance by the use of light signals, the definition of simultaneity is essentially a matter 
on convention; any time in a certain interval can be seen as simultaneous with a specified distant event.  

We would in this respect comment that even if there are several possible definitions for simultaneity at 
a distance, this does not mean that all are equally valid. If, for instance, we want to model a symmetric 
situation, there should also be a certain symmetry with respect to simultaneity. 

When the events occur at different locations one could refer to the rather weak concept of simultaneity 
by perspective. One can say that events with the same clock reading (t) measured on a specific RF are 
simultaneous in the perspective of this frame. As we know, this simultaneity depends on the chosen RF.  

However, in Hokstad (2018) we found it useful to apply an auxiliary reference frame as a tool to obtain 
simultaneity at a distance. We simply postulate an auxiliary RF with origin always located at the 
midpoint between our two main RFs. Further, we utilized the symmetry of this model, so that 
simultaneous clock readings at the auxiliary RF implies a certain simultaneity at a distance for the two 
main RFs.  In particular, we strongly argued that this approach provides logical and consistent solutions 
to the travelling twin example.  

In the present paper we will pursue a slightly different approach. First we point out that an essential 
requirement for the use of the LT is that we start out with three sets of synchronizations. 

1. All clocks on the first RF, K0; 
2. All clocks on the second RF, Kv; 
3. The two clocks at the origins of K0 and Kv at time 0, this represent basic simultaneity, and we refer 

to these as the basic clocks (BCs).  

Usually one will here implicitly assume that all clocks on K0 remain synchronized; as also do the clocks 
on Kv. We will now further argue that also the two BCs at the origins of K0 and Kv - being synchronized 
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at time 0 - will remain synchronized. They are moving away from each other at speed, v, but in a  
symmetric situation, there is no way to claim that one of the two clocks goes faster than the other. We 
have the standard phrase ‘moving clock goes slower’, but that is when the ‘moving clock’ is compared 
with passing clocks, and not with the other clock at the origin; cf. discussion of Section 2.2. 

So our claim is that when the two ‘basic clocks’ at the origins of the two RFs show the same time, this 
corresponds to simultaneous events ‘at a distance’. (We consider this rather to be a consequence of our 
assumption of symmetry between the RFs.) This actually leads to a rather strong form of simultaneity, 
as all observers can agree on this. This is a main basis for our discussions in the next chapter.  

4 The time vector and simultaneity 
We now introduce at wo-dimensional state vector. We refer to this as a time vector and will utilize it to 
define simultaneity. We first introduce the time vector of a single RF; next look at two related RFs. 

4.1 Time vector of a single RF 
Since we now consider just one RF, we make slight change in the notation by dropping all subscripts v 
(and 0). Thus we consider a RF, K, with clock readings, t and positions, x. Further, we look at a specific 
a clock reading, 𝑡 = 𝑡, and the position, x = 𝑤 ∙ 𝑡. Now, by letting w = 𝑥/𝑡 we define the time vector 

for the event (𝑡, 𝑥) as2 𝑡(𝑡, 𝑤) = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡 with the following alternative expressions 

                                      𝑡(𝑡, 𝑤) = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡 = ቀ௧బඥଵି(௪/)మ 

௫/
ቁ = ቀඥ(௧బ)మି(௫/)మ 

௫/
ቁ                    (10) 

As stated, its magnitude, 𝑡, equals the clock reading at the chosen position. We can further interpret the 
other parameter, w = x/𝑡, as the velocity relative to K of a (possibly imagined) RF, Kw, (which origin 
has the same location as the origin of K at the ‘point of initiation’). So the point is that at time 𝑡 on K, 
the origin of Kw is located in x = 𝑤 ∙ 𝑡. In other words, the basic clock (BC) located in x at time 𝑡 is 
the BC of Kw. This means that we have the relation, (cf. (8)) 

𝑡 =  𝑡ඥ1 − (𝑤/𝑐)ଶ 

Where we take 𝑡  to be the clock reading of the BC of Kw. We further introduce  

sin 𝜑 = w/c. 

Then we can also write 𝑡(𝑡, 𝑤) as  

𝑡(𝑡, 𝑤) = ൬
cos 𝜑

sin 𝜑
൰ 𝑡 

Further, by utilizing the above relation between 𝑡 and 𝑡  we also get  

𝑡(𝑡, 𝑤) = ൬
1

tan 𝜑
൰ 𝑡  

Now the vector, 𝑡(𝑡, 𝑤) corresponds to a point on the semicircle with radius, 𝑡 in the (t, x/c) space; 
see Fig. 2. In summary, for a specific clock time, 𝑡 and position, 𝑥 = 𝑤𝑡 on K we interpret the two 
components of this time vector as follows: 

 The first component, 𝑡 =  𝑡ඥ1 − (𝑤/𝑐)ଶ equals the clock reading of the BC of the (possibly 

imagined) RF, Kw; which by now is located at the position x = w 𝑡 on K. We call this the ‘basic 
time’ (‘BC reading’) at this position. 

 The second component, x/c, equals the distance, x from the origin (and thus from the BC) of K to 
the given position, measured as the time 𝑡 ∙ 𝑤/𝑐 = x/c required for a light flash to go to this 
distance.  

                                                           
2 An argument for this choice can be found in Appendix B; also see Hokstad (2017). 
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Figure 2 Time vector, �⃗�൫𝒕𝟎, 𝒘൯ = ቀඥ𝟏ି(𝒘/𝒄)𝟐

𝒘/𝒄
ቁ 𝒕𝟎 for a specific clock reading t0 at the position, x = wt0; (here sin 𝝋 = w/c). 

Thus, both components refer to a distance from the ‘point of initiation’, (x = t = 0). Only for x = w = 0, 
the BC of the first component refers to the BC at K itself; and in that case the second component equals 
zero. At all other positions, the first component refers to an ‘imagined BC’. Thus, we implicitly assume 
that we initially synchronized the basic clocks of K and Kw. We further repeat that the absolute value of 
our time vector is independent of w (and x): 

                                                               │𝑡(𝑡0, 𝑤)│ = 𝑡0                                                              (11) 

In the perspective of K this is not only the clock reading at the chosen position, x, but –due to the clock 
synchronization - equals the ‘simultaneous’ clock reading at any position, on K, cf. the blue semicircle 
of Fig. 2 representing all time vectors on K with this absolute value. Thus, events on K which have time 
vector with the same absolute value, have the same clock time on K, and are therefore simultaneous ‘in 
the perspective of K’. 

However, as we know, this is indeed a weak form of simultaneity. Events that are simultaneous in the 
perspective of one RF, are usually not simultaneous in the perspective of another RF. So we should look 
for a strong form of simultaneity. Actually we will claim that - locally on a specific RF - we should 
rather consider events with the same BC reading 𝑡 to be simultaneous. This follows from our argument 
regarding simultaneity of BCs presented in Chapter 3. Therefore, we will consider events having time 
vectors with identical first components to be simultaneous; cf. stipled vertical line in Fig. 2. 

We here observe that there is a strong link between this approach and Minkowski’s approach to space-

time; cf. space-time distance as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, Minkowski 
(1909). As stated in Petkov (2012), Minkowski refers to the time of the basic clock, (cf. 

ඥ(𝑡)ଶ − (𝑥/𝑐)ଶ of (10)), as ‘proper time, and our 𝑡 as ‘coordinate time’. However, to my knowledge 
this has not been applied in the discussion of simultaneity. 

Finally we note that the BC reading, 𝑡 is not just the BC reading of a specific, RF, K. It must be the 
BC reading at this position for any RF. Thus, the first component, 𝑡 , of the time vector is also most 
relevant when we discuss simultaneity ‘across RFs’. We return to this in Section 4.3 below. 

𝜑

 𝑡(𝒕𝟎, 𝑤) = ቆ
ඥ1 − (𝑤/𝑐)ଶ

𝑤/𝑐
ቇ 𝒕𝟎 

t      

𝑡 

𝑥/𝑐      

𝑡  

𝑡 

Simultaneity 
of BC reading     
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4.2 Time formulated as a complex variable 
We can of course formulate the time vector for the event (𝑡, x) as a complex variable. In polar form, 
we can write the vector 𝑡(𝑡, 𝑤) in (10) as 

                                                             𝐭(𝑡, 𝑤) = 𝑡𝑒ఝ,   (w =x/𝑡)                                              (12) 

Here the magnitude, 𝑡 still equals the clock reading, and we interpret w = x/𝑡 as the velocity relative 
to K of an (imagined) basic clock (BC), now having arrived at the position, x. Further, the argument,  𝜑 ∈
(−𝜋/2,   𝜋/2), is given by 

sin 𝜑 = w/c. 

When 𝜑 = 0, we have w = x = 0. Then we are at the origin of K, and the relevant BC is the one located 
on K itself. In this case the time variable becomes a real number. 

As specified in Section 4.1, the real part, Re(t(𝑡, 𝑤)) = 𝑡ඥ1 − (𝑤/𝑐)ଶ = 𝑡0cos 𝜑 = 𝑡𝐵𝐶 gives the BC 

reading at the location, and this identifies simultaneity. The imaginary part, Im(t(𝑡, 𝑤)) = 𝑡(𝑤/𝑐) =
𝑡 sin 𝜑 = x/c represents the distance (measured in terms of time required for a light flash) from 
the RFs own BC to the position in question.  

Finally, we can generalize (12) to hold for a three-dimensional space, with coordinates (x, y, z). We then 

define w by w =ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ 
 
/𝑡. Thus, w still specifies a position (distance from origin) at time 𝑡 

on the RF K, and we still have sin 𝜑 = w/c, using the new definition of w. 

4.3 Time vectors of two related RFs 
We now consider how to relate the time vectors, 𝑡(𝑡, 𝑤) of two different RFs, moving relative to each 
other. We return to the notation of Chapter 2, with two RFs K0 and Kv. Relative to these RFs we have 
the ‘corresponding’ positions x0 = w0t0 and xv = wvtv, and the LT is given as (3), (4).  We further introduce                

                                                         sin 𝜑௩ =  𝑤௩/𝑐 (all v; also v=0)                                                  (13) 

This defines an angle 𝜑௩ relative to an event (xv, tv) on any Kv, (including K0).  As suggested in Section 
4.2 we can write the time vector as  

𝐭(𝑡௩ , 𝑤௩) = 𝑡௩𝑒ఝೡ  

We will now utilized the LT to find the relation between the time variables 𝐭(𝑡, 𝑤) and 𝐭(𝑡௩ , 𝑤௩) of 
two ‘corresponding’ events, (having basic simultaneity). Now first replace v in the LT, (3), (4) with an 
angle, 𝜃௩, given by 

                                                                        sin 𝜃௩ = v/c                                                                   (14) 

Which implies that cos 𝜃௩ = ඥ1 − (𝑣/𝑐)ଶ. Then we can formulate the LT, (3), (4) as: 

                                                              𝑡௩ =  
ଵିୱ୧୬ ఝబ ୱ୧୬ ఏೡ

ୡ୭ୱ ఏೡ
∙ 𝑡                                                            (15) 

                                                             sin 𝜑௩ =  
ୱ୧୬ ఝబିୱ୧୬ ఏೡ

ଵିୱ୧୬ ఝబ ୱ୧୬ ఏೡ
                                                            (16) 

This new version of the LT tells how we can express 𝐭(𝑡௩, 𝑤௩) = 𝑡௩𝑒ఝೡ  in terms of 𝐭(𝑡, 𝑤) and 𝜃௩.  A 
calculations first gives the result that the real part is constant under the LT: 

                                                               𝑡௩cos 𝜑௩ = 𝑡cos 𝜑 = 𝐶𝑜𝑛𝑠𝑡.                              

Actually, this just equals our earlier result that 𝑡௩ඥ1 − (𝑤௩/𝑐)ଶ (all v) equals the unique clock reading 
of the BC at this position and this time; i.e., 𝑡 . Thus 

                                 𝑅𝑒(𝐭(𝑡௩ , 𝑤௩)) = 𝑡௩cos 𝜑௩ =  𝑡௩ඥ1 − (𝑤௩/𝑐)ଶ = 𝑡 , (all v)                            (17) 
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Further, we have various expressions for the imaginary part of the complex time vector:   

                                   𝐼𝑚൫𝐭(𝑡௩ , 𝑤௩)൯ =
௫ೡ


= ቀ

௪ೡ


ቁ 𝑡௩ = 𝑡௩sin 𝜑௩ = tan 𝜑௩ 𝑡                                    (18) 

Utilizing the LT, (15), (16), we obtain an expression for 𝑡௩ sin 𝜑௩, and get 

𝐼𝑚(𝐭(𝑡௩ , 𝑤௩)) =  
sin 𝜑 − sin 𝜃௩

cos 𝜃௩
𝑡 =

𝑤/𝑐 − 𝑣/𝑐

ඥ1 − (𝑣/𝑐)ଶ
𝑡  

(where we could also insert 𝑡 = 𝑡/ඥ1 − (𝑤/𝑐)ଶ). In particular, for v =0 we have 𝐼𝑚(𝐭(𝑡, 𝑤)) =

sin 𝜑 𝑡. To summarize, we may express the LT for Kv, and K0 as      

𝑅𝑒൫𝐭(𝑡௩ , 𝑤௩)൯ = 𝑅𝑒൫𝐭(𝑡, 𝑤௩)൯ = 𝑡  (= BC reading of given event) 

 𝐼𝑚൫𝐭(𝑡௩ , 𝑤௩)൯ =
sin 𝜑 − sin 𝜃௩

sin 𝜑 cos 𝜃௩
 𝐼𝑚(𝐭(𝑡, 𝑤)) 

Here also, 
ୱ୧୬ ఝబିୱ୧୬ ఏೡ

ୱ୧୬ ఝబ ୡ୭ୱ ఏೡ
 =  

୲ୟ୬ ఝೡ

୲ୟ୬ ఝబ
. Finally, we can now also write the time vector as 

                                                    𝑡(𝑡௩ , 𝑤௩) = ቀୡ୭ୱ ఝೡ
ୱ୧୬ ఝೡ

ቁ 𝑡௩ =  ቀ ଵ
୲ୟ୬ ఝೡ

ቁ 𝑡                                             (19) 

Fig. 3 illustrates the two time vectors at K0 and Kv. Recall that we consider one and the same event in 
the perspective of K0 and Kv, respectively, at the instant when the BC on the given location reads 
time 𝑡 . The blue semicircle gives the time vectors on K0 corresponding to events being simultaneous 
with the chosen on ‘in the perspective of K0’ (that is, showing clock time, 𝑡). The red semicircle gives 
the time vectors on Kv corresponding to events being simultaneous with the chosen on ‘in the perspective 
of Kv’ (that is, showing clock time, 𝑡௩). The 𝑡 and 𝑡௩ are related through (15). The vectors are here 
given in a common coordinate system, (t, x/c). 

x/c
Basic 

Simultaneity

t

𝑡(𝑡𝑣, 𝑤𝑣) 

 

𝑡𝐵𝐶  

 φv

 φ0

t0

tv

t0

𝑡(𝑡0, 𝑤0) 

 

 

Figure 3 Time vector, �⃗�(𝒕𝟎, 𝒘𝟎) on K0 when its clocks read time t0 (blue), and time vector, �⃗�(𝒕𝒗, 𝒘𝒗) on Kv at the same 

position (red). The given position has a BC reading equal to 𝑡  
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0

xv
Kv 

K0 

0

0

x0

tv

t0

𝑡𝐵𝐶  Kw0
 

Figure 4 Two events (x0, t0) and (xv, tv) representing basic simultaneity, and clock reading, tBC of a BC at the same position. 
Origins of all RFs are marked with a zero, 0. 
 
 

x/c
a)   v = w0 

( φv = wv = xv = 0)

t
𝑡𝐵𝐶  

 φ0

t0

tv

t0

x/c

t
𝑡𝐵𝐶  φv

 φ0

t0

tv

t0

x/c

t
𝑡𝐵𝐶   φv

 φ0

t0

tv t0

x/c

t
𝑡𝐵𝐶   φv

 φ0

t0

tv

t0

b) v > w0 
(wv<0, φv  <0)

c) v = w0⊕w0

(w0 = - wv = w*)

 

d) v > w0⊕w0

(wv < - w0) 

 
Figure 5 Further examples of a time vector, �⃗�(𝒕𝟎, 𝒘𝟎) on K0 (blue), and ‘corresponding’ time vector �⃗�(𝒕𝒗, 𝒘𝒗) on Kv (red). 
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Fig. 3 presents an example where 0 < v < w0, and using (16), also 0 < 𝑤௩ < 𝑤; thus, 0 < 𝜑௩ < 𝜑. 
This is the situation illustrated in Fig. 4. The next Fig. 5 illustrates some further cases (all with v > 0): 

a) v = w0. In this case 𝑥௩ = 𝑤௩ =  𝜑௩ = 0, and the origin of Kv is located at the relevant position; i.e. 
the BC of this event is actually located on Kv itself. 

b) v > w0 > 0. Using (16) we get 𝜑௩ < 0.  So also 𝑤௩ < 0, 𝑥௩ < 0. 
c) v = w0⨁w0. In this case we know w0 = −wv = w*, (and also 𝑥௩ = −𝑥). Here the blue and red 

semicircle coincide. 
d) v > w0⨁w0. In this case, 𝑤௩ < −𝑤. 

4.4 Summary of time vector and simultaneity 
To summarize: On any RF, K, we introduce a time vector related to an event (t, x), where x = wt, which 
splits the clock reading (‘clock time’), t in two components: 

1. 𝑡 ∙ ඥ1 − (𝑤/𝑐)ଶ = 𝑡; the clock reading, of the (imagined) BC currently at this position 
2. 𝑡 ∙ 𝑤/𝑐 = 𝑥/𝑐;              clock time required for a light flash to go from the RF’s own BC (at its 

                                       origin) to the current position. 

So, both components represent ‘distance in time’ from the ‘point of initiation’. The absolute value equals 
the clock reading of the event. It is rather sensible to take the time vector as a complex variable, with 
the first component as the real part, and the second as the imaginary.  

We point out that this time vector is suitable for specifying various forms of simultaneity: 

1. Simultaneity ‘in the perspective of a RF’ occurs when time vectors (on this RF) have the same 
absolute value; cf. semicircles of previous figures. This represents simultaneity in a ‘weak sense’. 
So synchronization of clocks does not imply that identical clock readings (even at the same 
location) infers simultaneity. 

2. Simultaneity in a ‘strong sense’ occurs for two events having time vectors with the same real part. 
This means that the (possibly imagined) BCs present at the location of the events have the same 
clock reading.  

i. When we refer to two events of the same RF, there are necessarily different BCs involved (at 
different locations); cf. Section 4.1. (These events are of course not simultaneous in the 
perspective of K.)  

ii. When we refer to two events of different RFs, (moving relative to each other at speed, v), it 
could be one and the same BC involved; cf. Section 4.3. In this case, we have what we call 
‘basic simultaneity’; it is the same event just specified in two different RFs. In this case the 
LT describes the relation between the two time vecors.   

3. We can further combine the two version of the above (strong) simultaneity concept 2, to define 
simultaneity ‘at a distance’ also for events related to different RFs. Assume that we at a location A 
have basic simultaneity (type 2.ii) defined by the BC at this location. Further, on both these RFs 
we have strong simultaneity with an event at another location B on the same RF (type 2.i). When 
both these conditions are satisfied, it follows that we also have simultaneity between the two events 
at A and B, as specified by the two different RFs. Again it is the real part of the time vector (the 
local 𝑡) that defines this simultaneity. A discussion in Appendix B elaborates on this case, and 
we further refer to the example on the travelling twin in the next chapter.    

We note the limitation of the given approach: So far we have just defined simultaneity relative to a 
specific ‘point of initiation’. However, if we first identify simultaneous events ‘at a distance’ relative to 
a given ‘point of initiation’ (as described above), it should in addition be possible to define further 
simultaneities based on these events, now treated as new ‘common’ points of initiation. This could 
represent a considerable extension. 



11 
 

5 The travelling twin 
The travelling twin paradox is frequently discussed, e.g. see Schuler and Robert (2014). As stated for 
instance in Mermin (2005) this illustrates that two identical clocks, initially in the same place and 
reading the same time, can end up with different readings if they move apart from each other and then 
back together. We gave a lengthy discussion in Hokstad (2018), and now restrict to a short comment. 

We start out with two synchronized clocks at the origins of two reference frames; the RF of the earth, 
and the RF of the rocket of the travelling twin. This is exactly the situation described in Ch. 3. We note 
that both clocks are located at the origin of their RFs, and so both are basic clocks (BCs).  

Fig. 6 gives an illustration of relevant time vectors by the arrival at the star, using the numerical example 
of Mermin (2005). The distance from the earth to the star equals x0 = 3 light years, i.e.  x0/c = 3 years, 

and the velocity of the rocket is v = 0.6c, giving ඥ1 − (𝑣/𝑐)ଶ = 0.8. Then the clock readings of the two 
RFs at the star by the twin’s arrival are 4 and 5 years, respectively. First, Fig. 6.a) gives the time vectors 
‘in the perspective’ of the earthbound twin. We know that on the star the clock of his RF reads 5 years, 
and so ‘in his perspective’ this is the clock readings all over his RF, (blue semicircle). However, the BC 
on the star at this instant, (that is the clock of his travelling twin) reads 4 years. Thus, this event on the 
star is simultaneous with his own clock (also being a BC) showing 4 years. Thus, on the RF of the 
earthbound twin the event that the clock at the star reads 5 years will occur simultaneously (in the strong 
sense) with the clock remaining on the earth showing 4 years. At both those two locations the BC reading 
equals 4 years.  

Fig 6.b) illustrates the two time vectors at the star: Red time vector for the travelling twin, and again the 
(same) blue vector for the earthbound twin; (also see Fig. 5.a). These two time vectors of Fig. 6.b) 
represent ‘basic simultaneity’. Now by combining the two results of Fig 6. a) and b), we get that the 
clock of the travelling twin showing 4 years (on the star) is an event being simultaneous with the clock 
of the earthbound twin showing 4 years (on the earth); cf. argument in Section 4.4. – Or we could simply 
claim these events to be simultaneous because the real part of their time vectors are equal. 

x/c

t
5

x/c

t

b) a) 

4

5
3

4 5

5

3

 

Figure 6 The time vectors 𝑡 = ൫ଷ
ସ
൯ = 5 ቀ,

,଼
ቁ and 𝑡 = ൫ସ


൯ = 4൫ଵ


൯ by the arrival at the star of the travelling twin. a) 

Time vectors at the star and on the earth on the RF of the earthbound twin. b) Time vectors at the star: Red = travelling 
twin. Blue = RF of earthbound twin. 

I think this statement regarding the simultaneity at a distance is crucial for a proper handling of the 
travelling twin paradox. Note that our result does not imply that the twins will have the same age also 
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by their reunion. Starting out from the above two simultaneous events, we will find that the actual clock 
readings by the reunion of the twins will depend of the further experimental set-up. In particular, if the 
travelling twin immediately start his return, and the earthbound twin remains at rest on the earth, we 
arrive at the standard result, referred in Mermin (2005): The travelling twin will have aged just 8 years, 
as compared to 10 years for the earthbound; cf. last version of Hokstad (2018). 

6 Conclusions 
In the present work - considering the model of special relativity with just one space coordinate - we 
define a state vector, where we can interpret both components as aspects of time. Thus, we refer to it as 
a time vector, even if it also involves location. It appears sensible to formulate the vector as a complex 
variable, and there is a rather close link to the time-space of Minkowski. 

The absolute value of this time vector equals the clock reading (’clock time’) at the relevant position, 
and we can see this as a measure for the overall distance in time from the ‘point of initiation’, i.e. the 
time, 0 and the origins of the reference frames (RFs) having a common location.  

This vector provides a means to define various forms of simultaneity. Time vectors on the same RF, 
having same absolute value will specify events that are simultaneous ‘in the perspective of this RF. This 
is known to be a rather weak form of simultaneity.  

However, we strongly argue that we - without the use of light rays – can also use this time vector to 
define a strong form of simultaneity ‘at a distance’. Events having a time vector with the same real part 
will exhibit this strong form of simultaneity. 

The main simultaneity result is based on one fundamental claim: Due to the inherent symmetry of the 
given RFs we have that the clocks at the origin of the RFs at time 0 will remain ‘synchronized’. We 
refer to these as BCs, and identical clock readings of these will represent simultaneity at a distance.  

Considering the time vector for any event (t , x) of an actual RF, we may introduce an ‘imagined’ RF 
with its BC currently located at the chosen position, x. The first component of the time vector equals the 
clock reading of this (imagined) BC. The second component equals the distance to the BC of the actual 
RF itself, measured as the time required for a light signal to go this distance.  

The results apply for simultaneity relative to a common ‘point of initiation’; it seems the derivations 
must always be based on such an event. However, extensions of the given presentation seem possible. 
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Appendix A. Some notation 

Kv = RF moving relative to a RF, K0, at velocity v 

xv =  The position on Kv  

tv =  Clock reading at position xv on Kv  

wv = xv/tv   (Used to specify a location xv on Kv at a specific clock time tv. Can also be interpreted as the 
velocity of an imagined RF 𝐾௪ೡ

.)   

𝜑௩ = sinିଵ 𝑤௩/𝑐  

tBC = The clock reading of the basic clock (BC) of a given event 

v  =   Velocity of RF Kv, relative to RF K0 

𝜃௩ = sinିଵ 𝑣/𝑐 

------------------------------ 
When we have two RFs we apply the notation for K0, x0,  … etc. for all parameters related to the 
‘primary’ RF. However in cases of having just one RF, we use the notation, K, x, ... rather than  K0, x0, 
... . (𝜃௩ is not relevant for v=0.) 

 

Appendix B 
Here we provide some material from the previous version of the paper. Here the formulation of 
time vector/simultaneity focuses on the relation between two symmetric events of the RFs, K0 
and Kv, and so the presentation deviates somewhat from that of the present work. 

B.1  An alternative formulation of the Lorentz transformation (LT) 
We start out from this version of the LT: 

                                                    𝑡௩ ∙ cos 𝜃௩ = 𝑡 − (𝑥/𝑐) ∙ sin 𝜃௩                                                    (B1) 

                                                   𝑥௩/𝑐 ∙ cos 𝜃௩ = 𝑥/𝑐 − 𝑡 ∙ sin 𝜃௩                                                    (B2) 

As we restrict to consider one space coordinate the LT involves four state variables, t0, x0, tv, xv. If we 
specify any two of these four variables, the other two will be given by the LT. The standard version of 
the LT, (1), (2) (or as here (B1), (B2)) gives (tv, xv) expressed by (t0,  x0), or vice versa. But similarly, we 
could reformulate the LT to give a relation between (t0,  tv) and (x0,  xv). And – as a third possibility – we 
can formulate the LT as a relation between (t0,  xv) and (tv, x0). In the present work we follow up on this 
third possibility. First, by combining (B1) and (B2), we can replace (B2) by 

                                                      𝑥௩/𝑐 = (𝑥/𝑐) ∙ cos 𝜃௩ − 𝑡௩sin 𝜃௩                                                (B3) 

To give the resulting modified version of the LT we introduce the matrix 

                                                            𝐶௩ = 
cos 𝜃௩ sin 𝜃௩

− sin 𝜃௩ cos 𝜃௩
൨                                                         (B4) 

This is an orthogonal matrix as  

                                                      𝐶௩
ିଵ = 𝐶௩

் = 𝐶ି௩ = 
cos 𝜃௩ −sin 𝜃௩

sin 𝜃௩ cos 𝜃௩
൨                                                

Now (B1) and (B3) give a new version of the LT, which we in matrix form can write3                                                                              

                                                           
3 Again observe some change in the notation, as compared to previous versions 
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                                                                    ቀ ௧బ
௫ೡ/

ቁ = 𝐶௩ ቀ ௧ೡ
௫బ/

ቁ                                                              (B5) 

Now also introduce the two ‘time vectors’ related to our two RFs, K0 and Kv  

                                                                          𝑡 = ቀ ௧ೡ
௫బ/

ቁ                                                                  (B6) 

                                                                          𝑡ᇱሬሬ⃗ = ቀ ௧బ
௫ೡ/

ቁ                                                                 (B7) 

and then we write the relation (11) as 

                                                                           𝑡ᇱሬሬ⃗ = 𝐶௩𝑡                                                                    (B8) 
We will denote this the orthogonal version of the Lorentz transformation. A nice feature of this 
formulation is that it represents a rotation, 𝜃௩, of the (𝑡௩, 𝑥/𝑐) plane, (with the components 𝑡௩ and 𝑥/𝑐 

being orthogonal). So also the vector 𝑡 = ቀ ௧ೡ
௫బ/

ቁ will be given by 𝑡ᇱሬሬ⃗ = ቀ ௧బ
௫ೡ/

ቁ, using the same rotation 

in opposite direction, i.e. we replace -v by v, (and applying 𝐶ି௩ = 𝐶௩
ିଵ here rather than  𝐶௩. We note that 

he vectors, 𝑡 and 𝑡ᇱሬሬ⃗  provide identical information, as they actually define the same event. We will see 

that it becomes rather natural to link 𝑡 to the RF, K0, and 𝑡ᇱሬሬ⃗  to the RF, Kv. 

Both components of the vectors, 𝑡 and 𝑡ᇱሬሬ⃗  represent time. The first component equals the clock reading 
of one of the RFs. The second component equals the position of the other RF for the event in question, 
divided by c; so it equals the time for a light flash to go from the origin to this position.   

B.2 Moving clocks and simultaneity 
We will now apply the general result of Section 2.3 for two specific positions of the RFs, K0 and Kv.  
Position A equals the origin of K0, i.e. location x0 = 0. Position B is at the other origin, i.e. xv = 0 of Kv. 
In other words, A and B are the positions of the ‘basic clocks’ at the origins of K0 and Kv, respectively. 

Further we consider the events that time equal to 𝑡 ∙ ඥ1 − (𝑣/𝑐)ଶ on both these ‘basic clocks’. Thus, 
we consider two events, that are not simultaneous, neither in the perspective of K0, nor of Kv. However, 
they would be simultaneous in a certain auxiliary RF, cf. Hokstad (2018); demonstrating a strong sense 
of symmetry. The remaining parameters are easily specified as (3) and (4) apply here. We summarize 
the parameter values at these positions as follows (cf. Fig. 1): 
Position A:   

 𝑥 = 0,               𝑡 =  𝑡ඥ1 − (𝑣/𝑐)ଶ    (on K0) 
𝑥௩ = −𝑣 𝑡,      𝑡௩ = 𝑡                                           (on Kv) 

Position B:   
 𝑥 = 𝑣𝑡              t0 = 𝑡                            (on K0) 

𝑥௩ = 0,                      tv = 𝑡ඥ1 − (𝑣/𝑐)ଶ       (on Kv) 

The corresponding time vectors, as introduced in Section 2.3 become: 
Position A:   

                                                             𝑡 =  ቀ ௧ೡ
௫బ /

ቁ =  ൫ଵ

൯ 𝑡                                                           (B9) 

                                      𝑡ᇱሬሬ⃗ = 𝐶௩𝑡 = ቀ ௧బ
௫ೡ/

ቁ = ቀඥଵି(௩/)మ

ି௩/
ቁ 𝑡 = ቀ ୡ୭ୱ ఏೡ

ି ୱ୧୬ ఏೡ
ቁ 𝑡                                     (B10) 

Position B:  

                                                     𝑡 = ቀ ௧ೡ
௫బ/

ቁ = ቀඥଵି(௩/)మ

௩/
ቁ 𝑡 = ቀୡ୭ୱ ఏೡ

ୱ୧୬ ఏೡ
ቁ  𝑡                                      (B11) 

                                                        𝑡ᇱሬሬ⃗ = 𝐶௩𝑡 = ቀ ௧బ
௫ೡ/

ቁ = ൫ଵ

൯ 𝑡                                                       (B12) 

We observe that the two time vectors (B11), (B12) are essentially identical to the two time vectors (B9), 
(B10); (just interchanging their order). There is one minor asymmetry, as the position, 𝑥௩ = −𝑣 𝑡 in 
eq. (B10), whilst the position 𝑥௩ = 𝑣 𝑡 (without the minus sign) in eq. (B11). However, this difference 
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appears since K0 and Kv here have the same orientation. Therefore, the clock at the origin of K0 moves 
along the negative axis of Kv, (thus, 𝑥௩ < 0 at A); while the origin of Kv moves along the positive axis 
of K0, (thus 𝑥௩ > 0 at B), but actually there is a complete symmetry in the results of positions A and B.  

This symmetry is our main argument for simultaneity at a distance (at A and B). Following the argument 

of Chapter 3, the event (𝑥, 𝑡) = (0,  𝑡ඥ1 − (𝑣/𝑐)ଶ) at A and the event (𝑥௩ , 𝑡௩) = (0,  𝑡ඥ1 − (𝑣/𝑐)ଶ) 
at B are simultaneous at a distance, even if they are related to two different RFs. They both provide the 
clock readings of the basic clocks at these positions, (the origins of K0 and Kv, respectively).  

Further, the two (identical) events, (𝑥, 𝑡) and (𝑥௩ , 𝑡௩) at Position A represent ‘basic simultaneity’, 
(‘same location, same time’). The same is valid for these two events at Position B. In total, we will 
conclude that all four events illustrated in Fig. B1 are simultaneous (at least in some sense).  

We further argue that there are reasons to associate these four simultaneous events by the time vectors, 
(B9) - (B12), rather than the apparently more ‘natural’ choice of using say (𝑡,  𝑥/𝑐) and(𝑡௩ , 𝑥௩/𝑐). 
The main reasons for our choice of time vector are that 

 The vectors, 𝑡 and 𝑡ᇱሬሬ⃗  of (B9) - (B12) all have the same absolute value, 𝑡, which seems a sensible 
feature for times of simultaneity. 

 The orthogonal transformation 𝐶௩ plays a crucial role in relating the four events of positions A and 
B. It relates the two events at the same position (either A or B), thus, representing ‘basic’ 
simultaneity. Further, it relates the two events being on the same RF (either K0 and Kv), but at 
different positions. 

 The two components of the time vector, relates to the two BC readings relevant for the event. 

 The time vectors, 𝑡 at A, and 𝑡ᇱሬሬ⃗  at B, specifying the ‘simultaneity as a distance’, are identical, as 

both are equal to 𝑡 =  ൫ଵ

൯ 𝑡. (However, also a traditional choice, like (𝑡,  𝑥/𝑐) and (𝑡௩ , 𝑥௩/𝑐) 

satisfies such an equality.) 

 

A

Clock 
time

 𝑡𝑣 = 𝑡0 ඥ1 − (𝑣/𝑐)2 

Kv

K0

Position

 𝑡0 = 𝑡0ඥ1 − (𝑣/𝑐)2 

x0= 0 xv= 0

B

 𝑥𝑣 = −𝑣𝑡0  𝑥0 = 𝑣𝑡0  
 𝑡0 = 𝑡0   𝑡𝑣 = 𝑡0 

 

Figure B1 Positions A (at origin of K0) and B (at origin of Kv) at time 𝒕𝟎ඥ𝟏 − (𝒗/𝒄)𝟐 at both origins. 
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Now also observe that we can write all the four time vectors, (B9)-(B12), expressed by one single vector 

                                                 𝑡(𝑡, 𝑤) = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡 = ቀୡ୭ୱ ఏೢ

ୱ୧୬ ఏೢ
ቁ 𝑡                                                       (B13)        

This vector will equal either 𝑡 or 𝑡ᇱሬሬ⃗  of (B9) - (B12) by inserting either w = 0, w = v, or w = −𝑣. Here 
the values, ± 𝑣, correspond to the distance between A and B, which equals x = v𝑡. 

A further illustration of our choice of time vectors is given in Fig. B2. this shows the time vector, 𝑡 =

𝑡(𝑡, 𝑤) in the coordinate system, (𝑡௩ , 𝑥/𝑐), both at Positions A, (w=0), and Position B, (w = v). Also 
the (𝑡, 𝑥௩/𝑐) coordinate system is given (equals (𝑡௩ , 𝑥/𝑐), rotated an angle 𝜃௩). Of course, the rotation 
from Position A to B is equal to the rotation performed by the matrix, 𝐶௩.  

We mention that both components of this time vector has a rather simple interpretation. Both at A and 
B, the first component is the clock reading of the ‘basic clock’ at the position in question. The second 
component equals the position (divided by c) of the RF, (here K0). This is the time required to for the 
light to go from the origin of K0 to the current position (A or B). So, both represent ‘distance in time’. 

The vectors, 𝑡ᇱሬሬ⃗ = 𝑡 (𝑡, 𝑤), for w = -v and w=0, equal the 𝑡 - vectors in the rotated coordinate system, 

(𝑡, 𝑥௩/𝑐). These 𝑡ᇱሬሬ⃗ - vectors are not inserted in Fig. B2, but are easily identified and located, using (B10) 
and (B12). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2 Time vectors, �⃗� in coordinate system (𝒕𝒗, 𝒙𝟎/𝒄) at the positions A and B for RFs, K0 and Kv in the symmetric case 
when 𝒕𝒗 = 𝒕𝟎 (= 𝒕𝟎). We can also read the same two vectors in the rotated coordinate system, (𝒕𝟎, 𝒙𝒗/𝒄).  

 

 

𝜃௩ 

A 
𝑡(𝒕𝟎, 0) = ൬

1

0
൰ 𝑡0 

B 
 𝑡ሬ⃗ (𝒕𝟎, 𝑣) = ൬

cos 𝜃௩

sin 𝜃௩
൰ 𝑡 

𝑡

𝑡௩      

𝑡 

𝑥௩/𝑐      

𝑡 

𝑥/𝑐      


