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Abstract. Simultaneity is a key concept in the special theory of relativity (STR), considering two 
reference frames moving relative to each other at constant speed, v. We introduce a new approach to 
simultaneity and its relation to clock readings and position. The two clocks at the origins play a crucial 
role. We synchronize these at time 0, and refer to this event as the ‘point of initiation’. From symmetry 
reasons, we conclude that these two clock readings –at least in some sense – represent simultaneity. The 
second element of our approach is a new version of the Lorentz transformation; where we in a new way 
combine the four (time, space) variables at a specific position, giving a state variable of two orthogonal 
components. The resulting description of simultaneity is well suited to analyse and conclude on the 
travelling twin case. Further, we provide a generalization; specifying a two dimensional time vector. 
The absolute value of the time vector specifies a measure of distance (in time) from the point of 
initiation. We utilise this distance to specify simultaneity of events related to the two reference frames; 
simultaneity corresponding to identical distances; i.e. time vectors having same absolute value (=‘total 
distance’). We can also give the time vector as a complex number, where the real part equals the clock 
reading at the relevant position. 

Key words: Time dilation; simultaneity, symmetry, Lorentz transformation; time vector, travelling 
twin. 

1 Introduction 

When reference frames (RFs) are moving relative to each other, the definition of simultaneity becomes 
crucial. Of course, we have the ‘basic simultaneity’; i.e. simultaneity of events occurring at the same 
instant and same location, but these are actually the same event, just seen in the perspective of two 
different RFs. For events at a distance we can essentially observe simultaneity from the ‘perspective’ of 
a certain RF. The events where the synchronized clocks of a RF show the same time are simultaneous 
in the perspective of this reference frame.   

In general, one may define simultaneity by use of light rays; e.g. see standard textbooks, [1], [2], but it 
seems not to be a unique definition of distant simultaneity. Here we present an approach, having two 
main elements: 

 At the origins of each RF there is a clock. We synchronized them at time zero, and due to symmetry, 
they remain synchronized. So we can utilise them to define distant simultaneity. 

 The two RFs will together have four (time, space) variables at a specific location. These are related 
through the Lorentz transformation. We here combine these four variables in a new way and obtain 
two state vectors, related by an orthogonal transformation; (i.e. a version of the Lorentz 
transformation).  

This presentation directly provides a tool to handle the travelling twin case, presenting a solution to this 
paradox. Further, we generalize the approach; specifying time as a two dimensional vector. Given as a 
complex number in polar form its magnitude represents the ‘distance’ from the initial synchronization 
at time 0; i.e. from the ‘point of initiation’. Events with the same magnitude for this time variable implies 
simultaneity (at least in a certain sense). The real part of the time variable equals the clock reading of 
the event. The imaginary part represents the distance in space from the ‘point of initiation’- measured 
by the time required for a light signal. 

The new approach given here is based on results presented in [3] and [4]. 
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2 Foundation 
We present some basic assumptions, and give both the standard and a new version of the Lorentz 
transformation. Throughout we restrict to consider one space coordinate. 

2.1 Basic assumptions and notation  
We start out with a reference frame (RF), K0, where the position along the x-axis is denoted x0 and the 
clock reading of any of its synchronized clocks is denoted, t0.  

Further, there is a reference frame, Kv (with the same orientation), moving along the x-axis of K0 at 
velocity v. So K0 is moving along the x-axis of Kv at velocity –v. On Kv we have 

xv = The position (along the x-axis), that corresponds to (has same location as) x0 when the clock reading 
on K0 equals t0. 

tv = Clock reading at position xv on Kv at the instant when xv corresponds to x0. 

Observers (observational equipment) on both of these two RFs agree on these four observations. Further 

 There is a complete symmetry between the two reference frames K0 and Kv; the frames being identical 
in all respects. 

 The clock at xv = 0 and the clock at x0 = 0 will at time tv = t0 = 0 be at the same location, and they are 
then synchronized. We refer to this as the ‘point of initiation’. 

 We will choose the perspective of one RF, usually K0, and refer to this as the primary system. The 
time on this primary RF is at any position, x0 given as a constant, t0. In contrast, at a certain time, t0 
on the primary system, the observed time, tv on the other (‘secondary') RF will depend on the location 
where the time reading is carried out. 
 

2.2 The Lorentz transformation (LT) and time dilation 
The Lorentz transformation represents the fundament for our discussion of time dilation. From the above 
notation the Lorentz transformation takes the form  

                                                                      𝑡௩ =  
௧బି

ೡ

మ௫బ

ටଵି(
ೡ


)మ

                                                                     (1) 

                                                                      𝑥௩ =  
௫బି௩௧బ

ටଵି(
ೡ


)మ

                                                                    (2) 

Two special cases are of particular interest. Recall that the first clock comparison is carried out at the at 
origins xv = x0 = 0 when tv = t0 = 0. Now we consider two specific choices for time and location for a 
second time comparison. 

First we compare the clock located at xv = 0 on Kv with the passing clocks on K0, showing time t0. This 
clock on K0 must according to (2) have position x0 = vt0, and (1) gives the following relation between 
these two clock readings 

                                                                 𝑡௩ = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                           (3) 

This equals the standard time dilation formula.  

Secondly, we can compare the clock located at x0 = 0, on K0 with a passing clock on Kv (at position xv = 
-vtv), and now (1) gives 

                                                                𝑡௩ = 𝑡 /ඥ1 − (𝑣/𝑐)ଶ                                                          (4) 

as the relation between t0 and tv. These relations, (3), (4) are apparently contradictory, and we prefer to 
formulate them in compact form as 

                                                               𝑡ௌ =  𝑡ெ  ඥ1 − (𝑣/𝑐)ଶ                                                         (5) 
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where 

tSC = Second clock reading for the single clock (SC) used both at the first and the second time 
comparison; (i.e. reading of a clock located at the origin of a RF). 

tMC = Second clock reading on the RF using multiple clock (MC); so here we are not using the same 
clock as applied at the point of initiation.  

We will use the relation (5) in the next chapter, discussing simultaneity. Now we restrict to point out 
that SC and MC are not features of the RF but of the clocks used for a specific time comparison. Both 
of the RFs can apply a SC for a certain time comparison, and thus might conclude that it is a system 
where ‘time goes slower’. However, the same RF can also apply MC for another time comparison and 
then the conclusion would that time ‘goes faster’ on this RF. We therefore prefer to avoid phrases like 
‘moving clock goes slower’. It is the observational principle, i.e. choice of clocks for the time 
comparisons, that matters. 

2.3  An alternative formulation of the Lorentz transformation 
We now proceed to replace v in the Lorentz transformation (LT), (1), (2) with an angle, θ, given by 

sin 𝜃 = v/c, 

implying that                                                                      

cos 𝜃 = ට1 − (
௩


)ଶ.                                                                

Now the LT (1), (2) can be formulated as: 

                                                        𝑡௩ ∙ cos 𝜃 = 𝑡 − (𝑥/𝑐) ∙ sin 𝜃                                                      (6) 

                                                       𝑥௩/𝑐 ∙ cos 𝜃 = 𝑥/𝑐 − 𝑡 ∙ sin 𝜃                                                     (7) 

Thus, some rotation of the (time, space) coordinates is involved here. As we restrict to consider one 
space coordinate the LT involves four state variables, t0, x0, tv and xv. It is now important to observe that 
if we specify any two of these four variables, the other two will be given by the LT.  

In particular, the standard version of the LT gives (tv, xv) expressed by (t0,  x0), or vice versa. But similarly, 
we could reformulate the LT to give a relation between (t0,  tv) and (x0,  xv). And – as a third possibility – 
we can formulate the LT as a relation between (t0,  xv) and (tv, x0). Here we follow up on this third 
possibility. First, by combining (6) and (7), we can replace (6) by 

                                                          𝑡௩ = 𝑡 cos 𝜃 − (𝑥௩/𝑐) ∙ sin 𝜃                                                      (8) 

Now (7) and (8) give a new version of the Lorentz transformation, which in matrix form becomes                                                          

                                                                    ቀ ௧ೡ
௫బ/

ቁ =  𝐴 ቀ ௧బ
௫ೡ/

ቁ                                                              (9) 

Here the transformation matrix, 

                                                                 𝐴 = ቂ
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

ቃ                                                          (10) 

is orthogonal as  

                                                          𝐴ିଵ = 𝐴் = ቂ
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ቃ                                                   (11) 

Next we introduce the ‘time vectors’ 

                                                                         𝑡ଵሬሬሬ⃗ =  ቀ ௧బ
௫ೡ/

ቁ                                                                 (12) 

                                                                         𝑡ଶሬሬሬ⃗ =  ቀ ௧ೡ
௫బ/

ቁ                                                                 (13) 



4 
 

and the relation (9) is then written 

                                                                          𝑡ଶሬሬሬ⃗ = 𝐴𝑡ଵ
ሬሬሬሬሬሬ⃗                                                                      (14) 

which we denote the orthogonal version of the Lorentz transformation. A nice feature of this formulation 
is that it represents a rotation, θ, of the (𝑡, 𝑥௩/𝑐) plane, (with the components 𝑡 and 𝑥௩/𝑐 being 

orthogonal). Similarly, the vector 𝑡ଵሬሬሬ⃗ = ቀ ௧బ
௫ೡ/

ቁ will be given by 𝑡ଶሬሬሬ⃗ = ቀ ௧ೡ
௫బ/

ቁ, using the same rotation in 

opposite direction, i.e. replacing v by –v, (and θ by -θ) in A. 

We stress that the vectors, 𝑡ଵሬሬሬ⃗  and 𝑡ଶሬሬሬ⃗  provide identical information. They define the same event related 
to K0 and Kv. Which of them we choose to describe the event could depend on which RF we specify as 
the primary one. The first component for both of these vectors equals the clock reading at one of the 
RFs. The second component equals the position of the other RF divided by c for the event in question. 
So this component equals the time for a light flash to go this distance. (For instance, a light flash 
occurring at the ‘point of initiation’ will arrive at position x0 on K0 exactly at this time 𝑥/𝑐.) Therefore, 
both components of the vectors 𝑡ଵሬሬሬ⃗  and 𝑡ଶሬሬሬ⃗  represent time, and so we refer to them as time vectors. We 
could say that the two vectors of the specified event represent two aspects of the ‘distance’ in time, as 
measured from the ‘point of initiation’.   

3 Simultaneity in STR 

Within the framework of STR it seems most common to verify simultaneity across reference frames by 
use of light rays. This differs from the approach presented here.  

3.1 Concepts of simultaneity 
It hardly exists a concept of ‘global’ simultaneity within the STR. However, there are some types of 
simultaneity with limited applicability. First, we refer to so-called basic simultaneity of events, meaning 
that the events occur at the same instant and the same location. Actually, we consider this to be the same 
event, just expressed by variables of different reference frames. So we note that basic simultaneity 
occurs in spite of the fact that the relevant clocks give different time readings for the event. 

When the events occur at different locations one could refer to the weaker concept of simultaneity by 
perspective. We will say that events that show the same time (t) - as measured on a specific reference 
frame - are simultaneous in the perspective of this frame. However, the LT implies that this simultaneity 
will differ in the perspective of the different reference frames. Therefore, such a concept could seem 
rather useless.  

Now in [3] we discussed the use of an auxiliary reference frame as a tool to define a simultaneity by 
perspective, and that proved useful. We simply postulate an auxiliary RF with origin always located at 
the midpoint between our two ‘basic’ RFs. In cases of strict symmetry, we argue that simultaneity in the 
perspective of this auxiliary reference frame also provide a valid symmetry for the two basic reference 
frame; and this symmetry implies a simultaneity at a distance.  In particular, we strongly argued that this 
approach provides a solution to the travelling twin example.  

Here we will pursue a slightly different approach based on the same symmetry, and utilize the 
discussions of the previous chapter. Now we point out that an essential requirement for the use of the 
LT is that we start out with three sets of synchronizations. 

 First, all clocks on the first RF, K0; 

 Next, all clocks on the second RF, Kv; 

 Third, the two clocks at the origins at time 0, (actually representing basic simultaneity).  

Obviously, we assume that all clocks on K0 remain synchronized; as do also the clocks on Kv. Further, 
we will now argue that the two clocks at the origins of K0 and Kv - being synchronized at time 0 - will 
remain synchronized. They are moving away from each other at speed, v, but in our model of complete 
symmetry, there is no way to claim that one of the two clocks goes faster than the other. We have the 
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standard phrase ‘moving clock goes slower’, but that is when the ‘moving clock’ is compared with 
passing clocks, and not with the other clock at the origin; cf. detailed discussions in [3]. 

So our claim is that when the two clocks at the origin show the same time, this correspond to 
simultaneous events ‘at a distance’. We follow up on this in the next section. 

3.2  Simultaneity of moving clocks 
Now we first apply the general result of Section 2.3 at two specific positions. First Position I equals the 
position of the origin of K0, i.e. the clock at location x0 = 0. The Position II is at the other origin, xv = 0 
of Kv. At both positions, there is an event both at K0 and Kv; giving four variables, which we now specify 
in the general notation. First, the variables of Position I: 

Position I: At the origin, x0 = 0 of K0.    

i. (t0, x0): Clock reading, t0 of the clock at origin,  x0 = 0 on K0 

ii. (𝑡௩, xv): Clock reading, 𝑡௩ =  𝑡/ඥ1 − (𝑣/𝑐)ଶ at the corresponding position xv = -vtv on Kv          

As discussed in the Section 2.3 we can summarize these four values in the two vectors (see (12), (13)): 

                                            𝑡ଵሬሬሬ⃗ = ቀ ௧బ
௫ೡ/

ቁ = ቀඥଵି(௩/)మ

ି௩/
ቁ 𝑡௩ = ൫ ୡ୭ୱ ఏ

ି ୱ୧୬ ఏ
൯𝑡௩                                          (15) 

                                                         𝑡ଶሬሬሬ⃗ =  ቀ ௧ೡ
௫బ/

ቁ = 𝐴𝑡ଵሬሬሬ⃗ =  ൫ଵ

൯𝑡௩                                                   (16) 

Similarly, for the variables of Position II we have:                                                                                         

Position II:  At the origin, xv = 0 of Kv.  

iii. (𝑡௩, xv): Clock reading, 𝑡௩  of the clock at origin, xv = 0 on Kv 

iv. (t0, x0): Clock reading,  𝑡 = 𝑡௩/ඥ1 − (𝑣/𝑐)ଶ at the corresponding position x0 = vt0 on K0 

Further, we summarize also these four variables in two vectors, then getting 

                                                               𝑡ଵሬሬሬ⃗ =  ቀ ௧బ
௫ೡ/

ቁ =  ൫ଵ

൯𝑡                                                       (17) 

                                          𝑡ଶሬሬሬ⃗ = ቀ ௧ೡ
௫బ/

ቁ = ቀඥଵି(௩/)మ

௩/
ቁ 𝑡  = 𝐴𝑡ଵሬሬሬ⃗ = ൫ୡ୭ୱ ఏ

ୱ୧୬ ఏ
൯𝑡                                    (18) 

Now we consider the relation between the four events i.-iv. The two events i. and ii. of Position I 
represent ‘basic simultaneity’, i.e. ‘same location, same time’. This is also the case for the two events 
iii. and iv. of Position II. In general, however, the two events at Position I and the two at Position II are 
not related. 

But now we specify the events of Positions I and II in a symmetric way, which implies simultaneity for  
all four events. Thus, we restrict to the case that the two clocks at the origins, (which we synchronized 
at time 0), shall show the same time. Thus, clock reading, t0 of Position I is equal to the clock reading, 
𝑡௩ of Position II. Then we have the symmetric situation introduced in Section 3.1, and so also events i. 
and iii. are simultaneous due to symmetry. Therefore, we can claim that all four events, i. – iv. are 
simultaneous, at least in some sense. Further, the time vectors of (15), (16) are essentially identical to 
the two time vectors (17), (18); (just interchanging their order). 

Now there is a minor asymmetry here, as the position of event ii. equals xv = -vtv, (eq. (15), whilest the 
position of event iv. equals x0 = vt0 (without the minus sign); cf. (18). However, this difference appears 
since we here let K0 and Kv have the same direction. If we define these RFs to have opposite directions, 
the minus sign of (15) would disappear, and there would be a complete symmetry of time vectors; just 
interchanging vector 1 and 2 when we go from Position I to Position II.  

Therefore the vectors (15), (16) defined at the origin of K0 are essentially the same as the vectors (17), 
(18) defined at the origin of Kv. So in exactly in the same way as we in Section 2.2 combined (3) and 
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(4) into the more informative eq. (5), we now replace the two sets (15), (16) and (17), (18) by the 
equations 

                                                              𝑡ሬሬሬ⃗ =  ቀ ௧ಾ

௫ೄ/
ቁ =  ൫ଵ


൯𝑡ெ                                                          (19) 

                                                        𝑡ሬሬሬ⃗ = ቀ ௧ೄ

௫ಾ/
ቁ = ቀඥଵି(௩/)మ

௩/
ቁ 𝑡ெ                                                    (20) 

So rather than 𝑡ଵሬሬሬ⃗  and 𝑡ଶሬሬሬ⃗ , we apply 𝑡ሬሬሬ⃗  and 𝑡ሬሬሬ⃗ . Of course, we also now have 𝑡ሬሬሬ⃗ = 𝐴𝑡ሬሬሬ⃗ . The two new 
vectors, 𝑡ሬሬሬ⃗  and 𝑡ሬሬሬ⃗  apply for both Position I and II, (i.e. the origin of one of the RFs). Note that we choose 
v/c in eq. (20) as positive or negative, depending on which of the two origins we refer to. 

As in Section 2.2 we apply notation 𝑡ௌ  = clock reading of the clock actually positioned at an origin, 
and 𝑡ெ = clock reading of the corresponding clock on the other RF. Similarly, 𝑥ௌ and 𝑥ெ  represent 
the positions corresponding to these clock readings, (and so 𝑥ௌ = 0). 

We observe that the first component of each time vector equals the clock reading of one of the two RFs. 
The second component represents the distance from the origin of a reference frame; measured by 
velocity of speed of light.  

So we can interpret all four components as some ‘distance in time’ from the point of initiation. We also 
note that both vectors have the same absolute value, 𝑡ெ, which we might interpret as the ‘total 
distance’. So, in summary, the two time vectors (19), (20), will by the LT essentially give identical 
information, and they apply for both of the origins. We now suggest that one demonstrates simultaneity 
of these four events by considering absolute value of these time vectors. Thus, we postulate that one can 
apply a time vector similar to (19), (20) to define simultaneity. This will be the topic of Chapter 4. First 
we discuss the travelling twin example. 

3.3 The travelling twin 
As stated for instance in Mermin [2] the travelling twin paradox shall illustrate that two identical clocks, 
initially in the same place and reading the same time, can end up with different readings if they move 
apart from each other and then back together. We will – as we also understand [2] - consider the idealised 
situation. That is, we restrict to that part of the travel when TSR applies – and thus assume complete 
symmetry between the two twins. The example was discussed at length in [3], and we here just give a 
short comment. 

We start out with two synchronized clocks at the origins of two reference frames; the RF of the earth, 
and the RF of the rocket of the travelling twin. This is exactly the situation described above. In our 
symmetry argument we conclude that the two clocks remain synchronized in the sense that identical 
readings of these particular clocks imply simultaneity.  

By the arrival of the twin to the ‘star’, both twins observe two clock readings, their own clock, and the 
clock on the other passing frame. The four (time, space) readings at these two positions are identical, 
and at both places give rise to two ‘time vectors’; see discussion of Section 3.2. 

Ch. 10 of Ref. [2], gives the following numerical example. The distance between earth and the ‘star’ 

equals x0 = 3 light years, and the rocket has speed, v = (3/5)c, giving ඥ1 − (𝑣/𝑐)ଶ = 4/5. It follows that 
in the reference frame of the earth/star, the rocket reaches the star at time, t0 = x0/v = 5 years. The clock 

on the rocket is located at xv = 0, and at the arrival at the star this clock reads 𝑡௩ = 𝑡 ∙ ඥ1 − (𝑣/𝑐)ଶ =

4 years. 

So ref. [2] – as seems common in the literature - claims that the travelling twin ages 4 years during ‘the 
same time’ as the earthbound twin ages 5 years. We will, however, conclude differently. We claim that 
simultaneity is not handled properly in these arguments. Of course it is correct that ‘in the perspective’ 
of one twin the other twin ages more slowly; but this argument is valid for both twins; cf. the so-called 
Dingle’s question [5], [6]. As seen above, we will from symmetry reasons argue that the clock of the 
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travelling twin, which shows 4 years (at his arrival to the star), occurs simultaneously with the event 
that the clock of the earthbound twin shows 4 years. So by the return they have both aged 8 years. Also 
see further, detailed arguments in [3]. 

4 Time vector and a generalized concept of simultaneity 

4.1 A generalized time vector  
Chapter 3 provided a result just for two very specific positions, i.e. for the positions of the two clocks 
initially synchronized at the origins of the RFs. There is one rather obvious generalization of this result. 
We introduce a vector   

                                                                    𝑡(𝑤)ሬሬሬሬሬሬሬሬሬ⃗ = ቀඥଵି(௪/)మ

௪/
ቁ 𝑡ெ                                                   (21) 

where tMC, as before, equals the clock reading at the same position as one of the origins; but not on the 
RF of the origin itself. Due to the symmetry we are free to choose any of the two origins for this. We 
observe that (19) and (20) come out as special cases of this vector: 

    𝑡(0)ሬሬሬሬሬሬሬሬ⃗ = 𝑡ሬሬሬ⃗  

𝑡(𝑣)ሬሬሬሬሬሬሬሬ⃗ = 𝑡ሬሬሬ⃗  

Further, we can now interpret 𝑡(𝑤)ሬሬሬሬሬሬሬሬሬ⃗  as the time vector of an arbitrary position in between Position I and 
II. First we choose one RF and a specific tMC on this. Next we specify a xMC on the same RF, and let w= 
xMC / tMC. Then (21) gives the time vector corresponding to the event (tMC, xMC), and we may also obtain 
the remaining two (time, space) variables at this position from the (orthogonal) Lorentz transformation. 

Now consider the interpretation of the parameter, w, which obviously refers to a velocity. We simply 
imagine that there is a third RF, (Kw) - with relative speed, w – and also having a clock at its origin at 

the ‘point of initiation’. This clock will read time, 𝑡௪ = 𝑡ெ  ඥ1 − (𝑤/𝑐)ଶ at the instant when our 
chosen RF reads time, tMC at the position, xMC. Thus, this tw corresponds to tSC of eq. (5), and 

ඥ1 − (𝑤/𝑐)ଶ just equals the time dilation factor for a RF at relative speed, w. Further, we argue that 
also this third clock remains synchronized with the two other clocks at the origins (of K0 and Kv, 
respectively). Thus, the new event with time vector given in (21) is simultaneous with the events of 
Position I and II, for any w, satisfying 0 < w < v. 

We see that the absolute value of the time vector generally equals  

│𝑡(𝑤)ሬሬሬሬሬሬሬሬ⃗ │ = 𝑡𝑀𝐶 

We now introduce this absolute value as a general measure of ‘distance’ from the ‘point of initiation’, 
and so this provides a means to define simultaneity. We postulate that events - related to any of the two 
specified RFs - are simultaneous if their time vector (21) have the same absolute value.  

4.2 Time formulated as a complex number 
We can of course also write the time vector (21) as a complex number. The magnitude equals 𝑡ெ, and 
we define the argument, 𝜃௪ by 

sin 𝜃௪ = 𝑤/𝑐 

Then, we write time as a complex number, in polar form: 

𝑡(𝑤) = 𝑡ெ𝑒ఏೢ  

As already stated, we interpret the magnitude, tMC as the distance from the point of initiation, and so this 
parameter defines simultaneity. The argument, 𝜃௪, represents the direction of the time variable, and is 
given by the speed, w of an (imagined) clock located at the position in question. This provides 
synchronization with the clocks at the origins of K0 and Kv. That is, the velocity, w of this third clock is 
adapted to provide that the event specified by (21) is simultaneous with the events at Position I and II. 
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Further, the real and imaginary part of the time variable equals 

Re (t(w)) = ඥ1 − (𝑤/𝑐)ଶ𝑡ெ = cos 𝜃௪ 𝑡𝑀𝐶 

Im (t(w)) = (𝑤/𝑐)𝑡ெ = sin 𝜃𝑤 𝑡ெ= xMC/c 

Again: he real part represents the clock reading of the chosen RF, (at the position of the origin of the 
other RF). The imaginary part represents the distance in space from the ‘point of initiation’, but 
measured by the time required for light to go this distance. So we could say that both the real and 
imaginary part represent aspects of distance from the ‘point of initiation’. 

5 Conclusions 

The Lorentz transformation relates the (time, space) coordinate of one reference frame (RF) with the 
(time, space) coordinate at the same position on the other RF. In the approach of the present paper we 
define a state vector, which combines the time variable of one RF with the space variable of the other. 
Thus, we obtain two vectors, related by an orthogonal version of the Lorentz transformation, (and thus 
provide the same information). We can interpret both components of these state vectors as time, and the 
time vector provides a measure of distance from the ‘point of initiation’, (i.e. time 0 when the origins of 
the two RFs had a common location). Therefore, we refer to the vector as a ‘time vector’.  

The vectors have nice features. They have orthogonal components and are related by an orthogonal 
transformation (rotation) in the two-dimensional (time) space. The first component of each vector equals 
the clock time. We can further interpret the absolute value as a measure of the overall distance in time 
from the ‘point of initiation’; thus providing a means to define simultaneity. 

A basic claim here is that the two clocks at the origin of the two reference frames at time 0 will remain 
synchronized also after time 0. Due to the inherent symmetry of the movements of the TSR, we conclude 
that the same clock reading of these two clocks must correspond (at least in some sense) to simultaneity.  

This symmetry of the two clocks at the origin also makes it easy to conclude on the travelling twin 
example. In my opinion, previous discussions of this case has not handled simultaneity properly. 

We generalise the time vector to represent time at any position in between the two origins (at Position I 
and II). We further present the time vector as a complex number. The real part of the time vector equals 
the clock time. The imaginary part is a measure of distance in terms of speed of light. The magnitude 
still represents the ‘distance’ from the initial point of synchronization at time 0. The time variable reduce 
to a real variable when the RFs are at rest relative to each other.  
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