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Abstract
Here begins a precautionary tale from a creative life in STEM. Bringing an elementary knowledge
of vectors to Bell (1964)—en route to refuting Bell’s inequality and his theorem—we aim to help
STEM students study one of the strangest double-errors in the history of science. To that end we
question Marcus du Sautoy’s claim that Bell’s theorem is as mathematically robust as they come.

1 Preamble

1.1. (i) Bell’s theorem is to some, ‘the most profound discovery of science’ (Stapp 1975:271), ‘one
of the few essential discoveries of 20th Century physics’ (vdMST 1992: v). (ii) Bell’s theorem (1964)
claims—via Bell-(2) 6= Bell-(3)—that two sensible equations cannot be equal under QM [Bell-(#) is
short for Bell 1964:(#)]. (iii) du Sautoy (2016:170) claims that ‘Bell’s theorem is as mathematically
robust as they come.’ (iv) With a proof best read next to Bell (1964): we aim to refute both claims. (v)
Bell (1964) is freely available (see References): please identify its unnumbered formulae as (11a),(14a)-
(14c),(15a),(21a)-(21e),(23). (vi) Taking math to be the best logic, it may flow for several lines before
we comment; often with N (absurd) or � (QM-true). (vii) QM is our gold-standard for results.

1.2. Refuting other Bellian claims, Watson (2017d) introduces EPR-Bohm (EPRB)—the experiment
in Bell’s (1964)—at ¶¶21.-2.7. The key to our work there is this: rejecting inferences that are false in
quantum settings, we posit the principle of true local realism: the union of true locality (after Einstein)
and true (non-naive) realism (after Bohr). Given our QM-true results, we’ll be pleased to address issues
re our approach: to aid discussion, improvement, correction, our paragraphs, equations, figures, etc,
are numbered; constructive and pointed critical comments are especially welcome.

1.3. In Bell (1964), P denotes an expectation (an average). We, reserving P for probabilities, often
denote expectations via 〈·〉; see LHS Bell-(3). Here, to make our work easier to follow wrt Bell (1964),
we replace Bell’s P (~a,~b) with E(a, b)—which is no bad thing—our a and b being unit-vectors.

1.4. Believing our analysis to be elementary—and QM-true—we’ll happily provide additional notes in
later versions; see ¶¶1.2 & 3.1. Here’s how we set the scene for now, with Ai = A(a,λi); etc:

Bell’s inequality: |E(a, b)− E(a, c) | −E(b, c)− 1 ≤ 0.N (1)
Our inequality: |E(a, b)− E(a, c) | +E(a, b)E(a, c)− 1 ≤ 0.� (2)

Bell’s theorem: E(a, b) = −∫dλ ρ(λ)A(a,λ)A(b,λ) 6= −a · b.N (3)

Our theorem: E(a, b) =
1

n

n∑
i=1

AiBi = −∫dλ ρ(λ)A(a,λ)A(b,λ) = −a · b.� (4)

· (1) is Bell-(15), Bell’s (1964) inequality formatted per ¶1.3: (1) is doubly absurd and false.

· (2) corrects (1): QM-true, (2) is the result that Bell should have reached; see (7)-(12).

· (3) is Bell’s theorem: inferred by Bell via (1) and QM, (3) is false because (1) is false.

· (4) is our refutation of Bell’s theorem (3): (4) is QM-true, so (4) & (2) are QM-true together.
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3 ANALYSIS

1.5. Sharing Bell’s indifference (1964:195)—whether λ is continuous or discrete (we can work with
both)—we include both possibilities in (4). The variant of Bell-(2) in (3) & (4) is Bell-(14): it is the
form that Bell uses in his principal analysis; (14a)-(14c).

2 Introduction

2.1. A longer Introduction would discuss Bell’s nomination for a Nobel Prize—providing context from
his other achievements in QM—including the pioneering developments that followed his theorem. [On
Einstein’s side wrt locality: we question Bell’s work on local-causality; which includes his theorem.]

2.2. From Bell (2004, cover): ‘John Bell ... is particularly famous for his discovery of the crucial differ-
ence between the predictions of conventional quantum theory and the implications of local causality, a
concept insisted on by Einstein.’ [And insisted on by us: our point being that there is no difference.]

2.3. We believe a wider knowledge of Bell’s efforts to resolve his ‘action-at-a-distance’ (AAD) dilemma
(Bell 1990:7)—and of his ‘don’t be a sissy’ have-a-go attitude (Mermin 2001:1)—will bring many
students to life, and to a life, in STEM. [Accepting locality, contra Bell (1990:13), we reject AAD.]

3 Analysis

3.1. Encouraging students to study Bell (1964) deeply—and enjoy discovery—some small steps are not
included here. [Depending on responses, such steps may be added as endnotes in later updates.]

3.2. En route to showing that (1) is doubly absurd—and thus (3) also—we first confirm an often-
overlooked fact: (1) is absurd under QM. Thus, using our (4): (1) under QM becomes

|a · c− a · b | + b · c− 1 ≤ 0. (5)

3.3. We now test (1), hence (5), using RHS (4) with an EPRB example. If a · b = b · c = 1
2 &a · c = −

1
2 ,

then LHS (1) and LHS (5) = |−1
2 −

1
2 | +

1
2 − 1 = 1

2 � 0. N (6)

3.4. Thus, via RHS (4)—with (6) QM-true—Bell’s (1) and Bell’s (3) are refuted; the latter via (4),
which is (3)’s contradiction. Why is it so? As we’ll see: Bell’s derivation of (1) is itself absurd! �

3.5. To see this, we start at the same place as Bell. (i) Given ¶1.5 above, we apply LHS (4) to
LHS Bell-(14a). (ii) We randomly distribute 3n particle-pairs—using up to 3n detector-pairs—over
randomized detector-settings (a, b), (a, c), (b, c); (a, b) denoting the angle between a and b, etc. (iii) To
avoid any chance of false inference—our STEM caution—we allow each particle-pair to be unique: and
thus uniquely indexed [i = 1, 2, ..., 3n] for ID purposes. (iv) Finally, we allow n to be such that—to a
more-than-adequate accuracy; ie, satisfying serious critics—and for convenience in presentation:

LHS Bell(14a) = E(a, b)− E(a, c) (7)

=
1

n

n∑
i=1

AiBi −
1

n

n∑
i=1

An+iCn+i (8)

=
1

n

n∑
i=1

AiBi [ 1−AiBi ·
1

n

n∑
i=1

An+iCn+i ]. (9)

ButAiBi = ±1 : using Bell-(1) with our identifiers. (10)

∴ | E(a, b)− E(a, c) | ≤ 1− 1

n

n∑
i=1

AiBi ·
1

n

n∑
i=1

An+iCn+i (11)

≤ 1− E(a, b)E(a, c) : which is (2); and QM-true, (12)
∵ for any a, b, c : |a · c− a · b | +(a · b)(a · c)− 1 ≤ 0, using (4).� (13)

2



4 CONCLUSIONS

3.6. With our results QM-true: Bell’s inequality (1) and its consequents (5)-(6) are refuted via (7)-(12).
Bell’s theorem (3) is refuted via its contradiction—RHS (4)—in (12). nb: CHSH (1969) and others
imply that (1) is Bell’s theorem. Either way, it is refuted; CHSH is itself refuted at Watson 2017d:(41).

3.7. Given ¶3.6, with Bell’s inequality and Bell’s theorem refuted—and not his later ideas, which
Watson (2017d) refutes—the key points of difference here (in our terms) are:

‘The quantum mechanical expectation value −a · b [see RHS (3) & RHS (4)] cannot [sic]
be represented, either accurately or arbitrarily, in the form of Bell-(2),’ (p.199). (3) is true
[sic], so (4) is not [sic] possible (p.196; line below Bell-(3). Any theory reproducing RHS
(4)—the QM predictions—must be nonlocal [sic] (p.195). Since the QM predictions are
well-founded, locality must be abandoned [sic]; thus, from Bell (1990:13): ‘I step back from
asserting that there is AAD and I say only that you cannot [sic] get away with locality.
You cannot [sic] explain things by events in their neighbourhood.’

3.8. In sum—using the same technique that Bell used to derive his QM-false (1) & (3); but avoiding
the pitfalls (our (2) & (4) being QM-true)—Bell’s inequality (1) and Bell’s theorem (3) are refuted.

3.9. For the record, the math-truth (and hence, here, the QM-truth) for (1)—and thus for (5)—is,

for any a, b, c : |a · c− a · b | − (b · c)− 1 ≤ 1
2 ; � (14)

consistent with our result at (6). [Proving the limits of (13) & (14) is left as a STEM exercise.]

3.10. Also—from the note below Bell-(14b)—here’s Bell’s key error;

Bell 1964:(14a) 6= Bell 1964:(14b); cf RHS (13) with RHS (6), etc. (15)

3.11. In other words: Bell’s move (14a) - (14b)—using Bell-(1) incorrectly—is the source of the 6= in
(15). Here, from (1) & (2), is the physical significance of that 6= and Bell’s false move:

E(a, b)E(a, c) + E(b, c) = 0. (16)
ie, using (4)/QM, Bell has a constraint (a · b)(a · c)− (b · c) = 0 on detector-settings!N (17)

3.12. To be clear: (17), though absurd here under EPRB, tells us the constraint under which Bell’s
theorem and du Sautoy’s claim hold true. Since (17) is an equality-to-zero, it’s an interesting STEM
exercise to find the limits of—and to understand the physical-significance of—such constraints.

3.13. Absurdities (1), (3), (6), (17) thus arise from Bell’s misuse of Bell-(1) after Bell-(14a). QED.�

3.14. So: (i) given the scenario in ¶3.5—given 3n particle-pairs, with from one to 3n detector-pairs
available; at different sites—over varied settings equivalent to (a, b), (a, c), (b, c); (ii) given our caution
re false STEM inferences; (iii) given Bellian absurdities and our QM-truths; (v) and given du Sautoy
(2016:170)—‘Bell’s theorem is as mathematically robust as they come’—we conclude with a question:
Is Bell’s theorem as mathematically robust as they come? Or have we missed something?

3.15. See Quora discussion: https://www.quora.com/Is-Marcus-du-Sautoy-right-re-Bells-theorem

4 Conclusions

‘This was our dilemma: our analysis of EPRB led us to admit that, somehow, distant things
are subtly connected, or at least not disconnected,’ after Bell (1990:7). But there was hope:
‘This action-at-a-distance business will pass. ... If we’re lucky it will be to some big new
development like the theory of relativity. Maybe someone will just point out that we were
being rather silly. ... But I believe the questions will be resolved,’ after Bell (1990:9).
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4.1. Eliminating 22 math-expressions—between Bell-(3)-(12) and after Bell-(15)—Bell’s ideas would
be clearer still if our (3) is declared to be Bell’s [invalid] theorem.

4.2. Students should then be encouraged to understand ¶3.5—nb: its particle-by-particle IDs and
analysis is more elementary (and much less daunting) than it sounds—to thus find the many interesting
errors in Bell-(14b)-(23). They might then join us and refute Bell’s theorem on their own terms.

4.3. ‘Britain’s most famous mathematician’—du Sautoy (2016, cover)—may well say (p.170), ‘Bell’s
theorem is as mathematically robust as they come.’ But bound here, as we all are by QM—and by
EPRB and true local realism—we find no basis for that conclusion here.

4.4. Indeed, in closing, we launch our own impossibility theorem. Given EPRB, QM, and true local
realism [the union of true locality and true realism per Watson (2017d)]—ie, given the locality that we
(with Einstein) accept; which Bell (1990:12-13) rejects—it is impossible that Bell-(14a) = Bell-(14b).
Or have we missed something?
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