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Abstract 

Many previous attempts have been undertaken to produce a singularity-free solution to the 

black hole problem. This effort included many “Bardeen black hole” models, as well as 

quantum mechanical, and string theory models. The present paper describes a new solution 

based on a relativistic extension of Newton-Galileo physics, termed Information Relativity 

theory. For a purely gravitational, spherical black hole, the theory yields a black hole radius 

that equals the Schwarzschild radius, but without an interior singularity. Moreover, for a typical 

galaxy with a supermassive black hole residing at its center, the model produces a simple 

expression for the galaxy's dynamics in its dependence on redshift. According to the 

emerging dynamics, a galaxy's supermassive black hole is part of a binary system, together 

with a naked singularity at redshift z = 2 -1/2 ≈ 0.707, suspected to be a quasar with extreme 

velocity offsets or an active galactic nucleus (AGN). Another redshift, z ≈ 2.078, is also 

predicted to be associated with quasars and AGNs. The derived results are contrasted with 

observational data and with a recent ΛCDM model. Taken together, the produced galaxy 

dynamics and the aforementioned results could shed some light on the role of supermassive 

black holes in the evolution of the galaxies in which they reside. 

The success of Information Relativity in reproducing the Schwarzschild radius of black holes, 

together with previous successful predictions of the phenomena of light bending, 

gravitational redshift, dark matter, and dark energy, attest the possibility of constructing a 

simple cosmology, based only on physical variables, without the notion of space time and its 

geodesics.       

 

Keywords: Black hole, Singularity, Schwarzschild radius, Relativity, Binary system, Galaxy 

structure. 
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1. Black Holes - A Brief History 

The term “black hole” was coined by John Wheeler in 1964, but the possibility of its existence 

within the framework of Newtonian physics was conjectured by John Michell in 1784, who 

argued for the possible existence of an object massive enough to have an escape velocity 

greater than the velocity of light [1]. Twelve years later, Simon Pierre LaPlace also predicted 

the existence of black holes. Laplace argued that “It is therefore possible that the largest 

luminous bodies in the universe may, through this cause, be invisible” [2]. 

A better understanding of black holes, and how gravity and waves intermingle, had to wait 

until 1915, when Albert Einstein delivered a lecture on his theory of General Relativity (GR) 

to the German Academy of Science in Berlin. Within a month of the publication of Einstein’s 

work, Karl Schwarzschild, while serving in the German Army on the Russian front, solved 

Einstein’s field equations for a non-rotating, uncharged, spherical black hole [3, 4]. For a star 

of a given mass, M, Schwarzschild found the critical radius R = 
2 𝐺 𝑀

𝑐2
, where G is the 

gravitational constant and c is the velocity of light, at which light emitted from the surface 

would have an infinite gravitational redshift, and thereby infinite time dilation. Such a star, 

Schwarzschild concluded, would be undetectable by an external observer at any distance 

from the star.  

Our understanding of the processes involved in the evolution and decay of black holes is 

largely due to quantum mechanical and thermodynamic theories. Early in 1974, Stephen 

Hawking predicted that a black hole should radiate like a hot, non-black (“gray”) body [5]. 

Hawking’s theory of black holes, is consistent with Bekenstein's generalized second law of 

thermodynamics [6], stating that the sum of the black-hole entropy and the ordinary thermal 

entropy outside the black hole cannot decrease. According to this prediction, black holes 

should have a finite, non-zero, and non-decreasing temperature and entropy. 

The first X-ray source, widely accepted to be a black hole, was Cygnus X-1 [7]. Since 1994, 

The Hubble Space Telescope, and other space-crafts and extremely large ground telescopes 

[see, e.g., 8, 9], have detected numerous black holes of different sizes and redshifts. We now 

know that black holes exist in two mass ranges: small ones of (M ≲ 10 M⊙) (M⊙, solar mass), 

believed to be the evolutionary end points of the gravitational collapse of massive stars, and 

supermassive black holes of M ≳ 106 M⊙, responsible for the powering of quasars and active 

galactic nuclei (AGN) [10, 12]. Supermassive black holes, residing at the centers of most 

galaxies, are believed to be intimately related to the formation and evolution of their galaxies 

[10- 14]. 

 

2. Pathology and Previous Solutions 

As mentioned above, the solution to Einstein’s field equations [3, 4] yields a critical hole 

radius of R = 
2 𝐺𝑀

𝑐2 . However, Schwarzschild’s solution suffers from a serious pathology, 
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because it predicts a singularity whereby the fabric of spacetime is torn, causing all matter 

and radiation passing the event horizon to be ejected out to an undefined spacetime, leaving 

the black hole empty, thus, in violation of the laws of thermodynamics and contradiction with 

quantum mechanics [e.g., 15-16]. Many believe that the black holes (and the Big Bang) 

singularities mark a breakdown in GR. 

Attempts to solve the singularity problem are aplenty. Bardeen was the first to propose a 

regular black hole model [17]. In 1968, he produced a famous model, conventionally 

interpreted as a counterexample to the possibility that the existence of singularities may be 

proved in black hole spacetimes without assuming either a global Cauchy hyper-surface or 

the strong energy condition. Other regular “Bardeen black holes” models have been also 

proposed [e.g., 18-23], but none of these models is an exact solution to Einstein equations [24]. 

Other solutions to produce singularity-free black hole come from string theory [e.g., 25, 26], 

and quantum mechanics [e.g., 27-31]. As examples, Ashtekar and others [27-28] proposed a 

loop quantum gravity model that avoids the singularities of black holes and the Big Bang. 

Their strategy was to utilize a regime that keeps GR intact, except at the singularity point, at 

which the classical spacetime is bridged by a discrete quantum one. Although the solution is 

mathematically difficult, its strategy is simple. It begins with semi-classical state at large late 

times (“now”), and evolves it back in time, while keeping it semi-classical until one 

encounters the deep Planck regime near the classical singularity. In this regime, it allows the 

quantum geometry effects to dominate. As the state becomes semi-classical again on the other 

side, the deep Planck region serves as a quantum bridge between two large, classical 

spacetimes [27]. 

 

3. The Proposed Solution 

Here I propose another solution to the spherical supermassive, gravitational black hole. The 

solution is based on a new relativity theory, termed Information Relativity theory (IR). First, 

I give a brief description of the theory. Then I utilize it to derive a dynamical equation for a 

typical galaxy with a supermassive black hole (e.g., the Milky Way), and a solution to the 

black hole radius. The resulting radius turns out to be equal to the Schwarzschild radius (R= 
2 𝐺 𝑀

𝑐2
), but with no singularity at the interior. Moreover, the proposed solution predicts that 

supermassive black holes, residing at the center of galaxies, are part of binary systems, with 

naked singularities at redshift z = 2−
1

2 ≈ 0.707, suspected to be quasars with extreme velocity 

offsets or active galactic nuclei (AGNs). 

A complete formulation of Information Relativity theory (IR) and its applications to various 

field in physics, including small particles physics, quantum mechanics, and cosmology, are 

detailed elsewhere (e.g., 32-36). In principle, information relativity theory is nothing more 
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than relativizing Newtonian physics, which we accomplished by taking into account the 

time travel of information from one reference frame to another. The theory is also local-

realistic, with no uncertainties. It is formulated only in terms of physical observables, with 

no axioms (e.g., constancy of c) nor hypothetical constructs (e.g., spacetime, quantum states). 

It is important to note that, in the framework of information relativity, the scale of the system 

is of no importance. The theory takes a unifying approach toward physics by using the same 

set of equations, without any free parameters, to explain and predict both quantum and 

cosmological phenomena. In several previous articles, we showed that, not only does the 

theory reproduce quantum theoretical results, it also explains them in simple mechanical 

terms. 

Note that, unlike special relativity theory, in which the relativity of time is achieved by 

axiomatizing constancy of light velocity, relativizing time and other physical entities in 

information relativity theory is a force majeure of the fact that information does not pass 

between two points in configuration space instantaneously but rather suffers delay, which 

depends on the spatial distance between the two points and the velocity of the information 

carrier. 

The rationale behind the theory is extremely simple and straightforward. It could be 

illustrated as follows: Consider the case where information from a moving body is 

transmitted to a stationary observer by light signals. Assume that the start and end of an 

occurrence on the body's reference frame are indicated by two signals sent from the body's 

moving reference frame to the stationary observer. Because the lights velocity is finite, the 

two signals will arrive to the observer's reference frame in delays, which are determined by 

the distances between the body and the observer, at the time when each signal was 

transmitted. Suppose that the moving body is distancing from the observer; in this case, the 

termination signal will travel a longer distance than the start signal. Thus, the observer will 

measure a longer event duration than the event duration at the body's reference frame (time 

dilation). For approaching bodies, the termination signal will travel a shorter distance than 

the start signal. Thus, the observer will measure a shorter event duration than the event 

duration at the body's reference frame (time contraction). It is obvious from the above 

description that no synchronization of the clocks at the two reference frames is required. For 

the simple case of transverse motion with constant velocity v, expressing the above-

mentioned example in the language of mathematics yields the following equation:  

 

𝛥𝑡

𝛥𝑡0
=  

1

1−𝛽
                                                                         (1) 

 

where ∆t is the events time duration as measured by the observer, 𝛥𝑡0 is the events time 
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duration at the body's rest-frame, and β is the relative velocity, β = 
𝑣

𝑐
. Derivations of the 

transformations of length, mass, and energy, detailed elsewhere [34], are depicted in the 

second column in Table 1. Notice that, for β → 0 (or v << c), the wave energy density 𝑒𝑤→0, 

and all other transformations of time, distance, mass, and kinetic energy reduce to the 

classical Newtonian terms. 

 

 

Table 1 

Theory transformations for the case of inertial motion  

Physical Term Relativistic Expression 

In Velocity                  In Redshift 

Time (sec)                        𝛥𝑡

𝛥𝑡0
=  

1

1−𝛽
                    z +1                (1) 

Time (round trip) 𝛥𝑡

𝛥𝑡0
= 

2

1−𝛽2
                  

2(𝑧+1)2

2𝑧+1
               2) 

Distance (m) 

 

𝛥𝑥

𝛥𝑥0
= 

1+𝛽

1−𝛽
                     2z +1                (3) 

Mass density (kg/m3) 𝜌

𝜌0
 = 

1−𝛽

1+𝛽
                   

1

2𝑧+1
                (4) 

Kinetic energy density 𝑒𝑘 1

2
𝜌0 𝑐2 1−𝛽

1+𝛽
 𝛽2    

1

2
𝜌0 𝑐2 𝑧2

(𝑧+1)2(2𝑧+1)
           

(5) 

 

 

Because our objective is to apply the theory to the cosmology of black holes, we derive the 

theory transformations in terms of redshift z, instead of recession velocity β. For this end, 

consider an observer on Earth who receives redshifted waves emitted from a receding 

celestial object (e.g., a star, black hole, galaxy center, etc.). Assume that the recession velocity 

of the celestial object, at the time the wave was emitted, was equal to v. Using Doppler's 

formula, we can write: 

 

                                                      z = 
𝜆𝑜𝑏 − 𝜆𝑒𝑚  

𝜆𝑒𝑚 
  = 

𝑓𝑒𝑚 − 𝑓𝑜𝑏  

𝑓𝑜𝑏 
                                           

(6) 
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Where 𝜆𝑒𝑚 (𝑓𝑒𝑚 ) is the wavelength (frequency) of the wave emitted by the celestial object and 𝜆𝑜𝑏  

(𝑓𝑜𝑏 ) is the wavelength (frequency) measured by the observer on Earth. We also have 𝑓𝑒𝑚  = 
1

𝛥𝑡𝑒𝑚
 and  

𝑓𝑜𝑏  = 
1

𝛥𝑡𝑜𝑏
 , Where 𝛥𝑡𝑒𝑚 𝑎𝑛𝑑 𝛥𝑡𝑜𝑏 are the time intervals corresponding to 𝑓𝑒𝑚  and 𝑓𝑜𝑏 , respectively.  

 

Substitution in eq. 6 gives:  

       z = 

1

𝑡𝑒𝑚
−  

1

𝑡𝑜𝑏
1

𝑡𝑜𝑏

 =  
𝛥𝑡𝑜𝑏

𝛥𝑡𝑒𝑚
− 1                                                  (7) 

 

From eq. 1 we have: 
𝛥𝑡𝑜𝑏

𝛥𝑡𝑒𝑚
 = 

1

1−𝛽
 , where β =  

𝒗

𝒄
. Substitution in eq. 7 yields:  

  

         z =   
1

1−𝛽
−1 =  

𝛽

1−𝛽
                                                  (8) 

 

And the recession velocity in terms of redshift is: 

 

        β = 
𝑧

𝑧+1
                                                                              (9)   

 

For blue-shift the same equation holds except that we must replace β by - β. Substituting eq. 9 in the 

transformations depicted in the middle column in Table 1 yields the transformation as functions of the 

redshift z depicted in right side column of the table. 

 

Black holes in Information Relativity theory 

Figure 1 depicts a schematic representation of a supermassive black hole with mass M and 

radius R residing at the center of its host galaxy.  

 

 

 

 

 

 

 

  

 

 
     Figure 1. Three particles near a black hole   
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The figure also depicts three hypothetical particles, with equal masses and velocities, at 

different distances from the center of the black hole. The more distant particle is deflected 

toward the black hole, but due to its large distance from the hole, it escaped its gravitating 

force and continue its travel in space. By contrast, the closest particle to the black hole 

experiences a strong enough gravitational force and is sucked into the black hole. The third 

particle passes at a critical distance from the hole, at which its gravitating force is sufficient 

to sustain it rotation around the hole at radius r. For such particle, the acceleration |�⃗�| 

supporting a uniform radial motion with radius r should satisfy: 

 

𝑎 = |�⃗�| = 
𝑣2

𝑟
 = 

𝑐2

𝑟
 𝛽2                                                               (10) 

 

The force supporting such motion, according to Newton's second law, could be expressed as: 

 

𝐹= 
𝜕𝑃

𝜕𝑡
 = 

𝜕(𝑚𝑣)

𝜕𝑡
 = m 

𝜕(𝑣)

𝜕𝑡
 + v 

𝜕(𝑚)

𝜕𝑡
  

= m 𝑎+ 𝑣 
𝜕(𝑚)

𝜕𝑣
 
𝜕(𝑣)

𝜕𝑡
 = m 𝑎 + v a 

𝜕(𝑚)

𝜕𝑣
   =  (m + v 

𝜕(𝑚)

𝜕𝑣
) a                          (11) 

 

Substitution the term for m using eq. 4 in Table 1, and deriving m with respect to v yields: 

 

F = 
1−2𝛽−𝛽2

(1+𝛽)2
   𝑚0  a                                                            12) 

 

Substitution the value of a form Eq. 10 in Eq. 12 yields: 

 

F = 
1−2𝛽−𝛽2

(1+𝛽)2
   𝑚0  a =  

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝑚0  

𝑣2

𝑟
 =  𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                  (13) 

 

Using Newton’s general law of gravitation, we get: 

 

G 
 𝑚0 𝑀

𝑟2
 = 𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                                                       4) 
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Solving for r yields: 

 

r = 
 𝐺 𝑀

𝑐2
 

(1+ 𝛽)2

1−2 𝛽− 𝛽2
  𝛽2                                                               (15) 

 

For a light photon, 𝛽 = 1.  Substitution in eq. 15 yields:  

 

               r (𝛽 = 1) = R =  
2 𝐺 𝑀

𝑐2                  (16)  

 

Which exactly equals the Schwarzschild radius, but with no interior singularity.  

Interestingly, the solution in eq. 15 has a naked space-like singularity at 𝛽 satisfying: 

 

1 − 2 𝛽 −  𝛽2 = 0                     17) 

 

Which solves for:  

 

β =√2 -1 ≈ 0.4142                         (18) 

 

With corresponding redshift of: 

 

 z = 
𝛽 

1−𝛽 
 = 

1

√2
 ≈ 0.7071                                                                (19) 

 

It is worth noting that the predicted exterior singularity is in space and not in spacetime. In 

information relativity theory, including in its present application to the black hole problem, 

the three dimensional space, and time are treated as independent, and separate physical 

variables, just like they are treated in classical physics and in the first formulation of special 

relativity theory.  

To express the equation of motion (eq. 15) in terms of redshift, we substitute the value of β 

from Eq. 9 in eq. 15 and solve for 𝑟, yielding:  

 

𝑟 = (
 𝐺 𝑀 

𝑐2
) 

𝑧2(1+2𝑧)2

(1+𝑧)2 (1−2𝑧2 )
                                   (20) 
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Figure 2 depicts the ratio 𝑟, normalized by 
 𝐺𝑀 

𝑐2
, as a function of z. 

 

  

 

 

As shown by the figure, for very high redshifts 𝑟 converges to 2
 𝐺 𝑀 

𝑐2  (the Schwarzschild 

radius). Moreover, the result in eq. 19 has some interesting properties: (1) 𝑟 has a naked spatial 

singularity, at z = 
1

√2
 ≈ 0.707, (2) It displays a striking Golden Ration symmetry, such that for z 

= φ ≈ 1.618, 𝑟 / (
 𝐺 𝑀 

𝑐2
) ≈ 1.618, (3) It has a point of minimum in the range between the above 

mentions redshifts. To find the point of minimum we derive 𝑟 / (
 𝐺 𝑀 

𝑐2
) with respect to z and 

equate the result to zero, yielding: 

 

 4 𝑧4 − 2 𝑧3 − 10 𝑧2 − 6 𝑧 − 1 = 0      1) 

 

Which solves at 𝑧𝑚 ≈ 2.078, yielding 𝑟𝑚 ≈ 1.5867 (
 𝐺 𝑀 

𝑐2
). 

The prediction of an extreme galactic activity at z ≈ 0.7071 is supported by many observational 

studies, which reported the detection of quasars, blazars and other AGNs at z ≈ 0.707 [e.g., 

37-40]. For example, Steinhardt et al. [38] reported the discovery of a Type 1 quasar, SDSS 

0956+5128, with extreme velocity offsets at redshifts z = 0.690, 0.714, and 0.707. The prediction 

of AGNs at z ≈ 2.078 is also confirmed by observations [e.g. 41, 42]. 

Figure 2. r / (
 𝐺𝑀 

𝑐2
)  as a function of redshift 

Z ≈ 1.618 

Z ≈ 0.707 Z ≈ 2.0782 

≈ 1.5867 
≈ 1.618 

z 
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We also compared the dynamical dependence of r on redshift (eq. 20) with the dynamics 

reported in [43] for a cosmology of ΩM = 0.3 and ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1. Figure 3a 

depicts the predicted radius r (in Km) as a function of redshift for intermediate and massive 

black holes and Figure 3b depicts comparable results reported in [43]. Comparison of the two 

figures, despite differences in scaling, reveals a remarkable similarity between the two. 

 

 

 
Figure 3a 

Figure 3b 

 

Figure 3. Predicted r as a function of z (Fig. 3a) and comparable results based on ΛCDM 

model (ΩM = 0.3,  ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1) reported by Hook (2005) [45] (Fig 3b).  
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6. Summary and Concluding Remarks 

The singularity problem of the Schwarzschild's solution to the black hole radius has 

prompted many attempts to produce singularity-free or singularity-avoiding solutions. Such 

attempts include what is known as the “Bardeen black hole” models [e.g., 16-23], as well as 

quantum mechanical models [e.g., 26-30] and string theory models [e.g., 24, 25].  A minor 

portion of this literature was discussed in section 2. 

An additional solution was proposed here, based on a straightforward extension of Galileo-

Newton mechanics, termed information relativity theory. For the non-rotating, purely 

gravitational, spherical black hole we were able to reproduce the Schwarzschild radius, 

without the troubling interior singularity. No less important, the theory yields a simple 

equation for the dynamics of a typical galaxy with a supermassive black hole. Investigation of 

the emerging dynamics suggests that a galaxy's supermassive black hole is part of a binary 

system, comprised of the black hole and a spatial singularity at redshift z ≈ 0.707, suspected to 

be a quasar with extreme velocity offsets, or an active galactic nucleus (AGN). 

The produced model is successful in making several interesting predictions. The point of 

singularity at z ≈ 0.7071 confirms with several observations reporting the detection of quasars 

and AGNs at the predicted redshift [e.g., 37-40]. The prediction of galactic activity at z ≈ 2.078 

is also confirmed by observations reporting the existence of quasars and AGNs at z = 2.078 

and z = 2.08 [41-42]. Taken together, the derived dynamics, and the aforementioned results, 

shed some light on the intimate relationship between supermassive black holes, and the 

evolution of the galaxies in which they reside.  

The present paper adds to two previous papers in which we demonstrated that Information 

Relativity succeeds in reproducing the predictions of General Relativity theory for two other 

phenomena: light bending near massive objects [44], and gravitational redshift [45]. In a 

recent paper, we also showed that theory yield a simple quantum cosmology of the universe 

[46], and provides plausible explanations for dark matter and dark energy, which confirm 

with recent observations-based ΛCDM cosmologies. 

Taken together, our theoretical results attest the possibility of constructing a simple unifying 

physics, based only on physical variables, without the notion of space time and its geodesics.        
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