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Abstract: Given the near universality of the Benford/Newcomb Law of First Digits, and the 

ubiquity of fractal self-similarity observed throughout nature from the smallest to largest scales, 

it is argued that nature’s most fundamental geometry may be conformal geometry, which is 

universally present in full, partial, and discrete/broken forms. As a consequence, the assumption 

of absolute scale may apply only in restricted contexts, whereas relative scale may be the more 

dominant principle for the cosmos as a whole. 
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I. Simon Newcomb 

In the 1880s Simon Newcomb, a noted astronomer and mathematician, discovered something 

very odd. It was well before fancy calculators and so when scientists had to do complex 

mathematical calculations, they needed to use logarithm tables. Newcomb noticed that the first 

couple of pages (associated with numbers beginning with 1 and 2) were quite dog-eared, but the 

last pages (associated with numbers beginning with 8 and 9) were far less worn. This was a great 

mystery to Newcomb since he and apparently all those before him assumed that the first digits of 

any sizeable collection of data would fall on the numbers 1 through 9 with equal probability (i.e., 

about 11.11% for each of those first digits). If that were true, then the logarithm table pages 

should be equally dog-eared. Clearly they were not! How could one explain such a bizarre 

phenomena. 

After considerable thought, and perhaps some checking of various data tables, Newcomb came 

up with the following hypothesis. The numbers were evenly spaced if one chose to plot them on 

a logarithmic scale, not on the usual arithmetic scale. On a log scale the x-axis length devoted to 

numbers beginning with 1 is about six times wider than the x-axis length devoted to numbers 

beginning with 9. This would explain the mystery of the dog-eared logarithm tables, and 

Newcomb published a short paper in the American Mathematical Monthly
1
 (where he was an 

editor) in which he concluded: “The law of probability of the occurrence of numbers is such that 

all mantissae [first significant digits] of their logarithms are equally probable.” This was a 

heuristic probability law. Hill notes
2
 that Newcomb “supplied neither a precise domain or 

meaning to this probability, a formal argument, nor numerical data.” Mathematically, 

 Prob (1
st
 signif. digit d) = log10 (1 + 1/d),  d = 1, 2, 3, …9. 

Numerically, this probability sequence turns out to be: 30.1%, 17.6%, 12.5%, 9.7%, 7.9%, 6.7%, 

5.8%, 5.1%, 5.1% and 4.6%. In graphic form
3
, it looks like this: 
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Unfortunately, no one knew what to make of Newcomb’s strange law and it was for the most 

part forgotten – until the 1930s. 

 

II. Frank Benford 

Frank Benford worked at General Electric as a physicist in the 1930s, and he apparently 

independently discovered the same oddity in logarithm tables that Newcomb had found. He was 

fascinated with this discovery and devoted years to researching it empirically. He researched 

roughly 20 data tables, including about 20,000 entries, and the data tables were from many 

different sets of data from a very diverse selection of physical phenomena. Testing the data for 

the log-normal first digit distributions, he rediscovered what Newcomb had intuited. In 1938 he 

published his results
4
 and this time many people were impressed with Benford’s discovery, and 

curiously baffled by the fact that the Benford/Newcomb Law of First Digits is so common in 

nature, math and social phenomena. Benford’s somewhat philosophical interpretation of the First 

Digit Law was than mankind counts arithmetically (1, 2, 3, 4, …) but Nature counts 

geometrically (e
0
, e

x
, e

2x
, e

3x
, …) “and builds and functions accordingly”

5
. However, this seems 

to beg the question of why nature should do this, i.e., what is the causal explanation for the 

heuristic law. How do log-normal distributions come to be ubiquitous in the physical, biological, 

mathematical and social realms? 
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Since Benford’s paper was written many examples of data sets that obey the First Digit Law 

have been identified. A partial list can include the following. 

surface areas of rivers 

molecular weights 

sizes of stored computer files 

atomic element/isotope masses 

E1 atomic transition lines in plasmas 

pulsar physical properties 

universal physical constants 

populations of 3,000 countries 

surface areas of countries 

full widths (lifetimes) of mesons and baryons 

Dow Jones numbers 

fibonacci sequence 

half-lives of radioactive nuclei 

internet connections 

exoplanet masses, radii, volumes, orbital periods,... 

distances to galaxies 

distances to stars in our galaxy 

death rates 

blackbody radiation 

prime numbers 

river lengths 

size of bank accounts  

 

 

Clearly there must be a scientific explanation for this remarkable ubiquity of log scale 

distributions, and there have been many attempts. As yet, however, no single explanation has 

garnered wide acceptance. The hunt for the meaning of this nearly universal phenomena is still 

ongoing. 

III. Toward An Understanding Of The Benford/Newcomb Law of First Digits 

Since Benford’s paper was published there have been several interpretations of the 

Benford/Newcomb Law, ranging from philosophical claims of a universal harmony to skeptical 

proposals that it was an artifact of human uses of numbers, base systems, the floating decimal 

system, etc. Benford argued that the first digit law might be explained if the data tables were 

comprised of data garnered from geometric sequences and Prof. Roger Pinkham of Rutgers 

University argued that some form of relativity theory was probably involved
5
. There is now quite 

a large body of published work on the Benford/Newcomb Law, but the research papers of the 

mathematicians Riami
5,6

 and Hill
2,7,8

 offer the clearest and most convincing discussions of this 

complicated subject. 
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1. Geometric sequences (2, 4, 8, 16, 32, 64, 128, …) will tend to conform to the logarithm law if 

they are continued out long enough. 

2. Scale invariance, wherein physical objects/systems, laws, and processes are largely unaffected 

by changes in the scales of length, energy and other variables ( being multiplied by conserved 

constants) also tend to conform to the logarithmic law. This also means that if a data table obeys 

the Benford/Newcomb Law in one set of units, it will obey the logarithm law for any arbitrary 

choice of units. 

3. Linear recursion, wherein the same operation is applied in a series of iterations will also tend 

to conform to the logarithm law. Linear regression tends to generate sequences that are 

geometric sequences when carried out long enough. 

4. The Benford/Newcomb Law is virtually base invariant (i.e., base 10, base 2, base e, …). 

5. Hill
8
 has published “a formal rigorous proof that the log law is the only probability 

distribution which is scale invariant, and the only one which is base invariant (excluding the 

constant 1).” [emphasis add] 

So it might seem like we are have some solid evidence for explaining why the 

Benford/Newcomb Law is so common in nature and human endeavors. However, there are some 

caveats that we must consider. 

1. First and foremost is the fact that the Benford/Newcomb Law of First Digits is not an exact 

mathematical law. Rather it is a law about distributions that are unbiased and cover a large range 

of scale. There are data tables that do not conform to the law, such as tables of random numbers, 

or specific heat measurements because they occur over an extremely limited scale range, or the 

digits of pi.  

2. One can improve the agreement with the Benford/Newcomb Law by increasing the size of one 

data set, or by combining multiple unbiased data sets and the taking a random sample from the 

union of the different data sets. 

 

One is left with the fact that the Benford/Newcomb Law is a heuristic/empirical law of 

probability distributions that are amazingly common in the physical world and in human affairs. 

Moreover, even after nearly 140 years and a large amount of mental effort by mathematicians, 

physicists and natural philosophers, we still do not have a convincing answer for why nature is 

this way. As Raimi wrote in his popular Scientific American essay,
6
 “Thus all the explanations 

given so far seem to lack something of finality … the answer remains obscure.”  

On the other hand, one cannot help but notice that the roles played by geometric sequences, scale 

invariance, and linear regressions have a common thread running through them that might be 
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stated as repeating the same structure, law, operation or process on many different scales, or 

more simply stated: same thing on different scales. With this simple principle one can understand 

how each of the data sets listed above (e.g., river lengths, bank account balances, the Fibonacci 

sequence, atomic masses, and exoplanet orbital periods) conforms to a log law probability 

distribution for first digits. Before proceeding to a possible answer to the meaning of the 

Benford/Newcomb Law, we need to consider another phenomenon that is ubiquitous in the 

natural world and human affairs: self-similarity.  

 

IV. Mandelbrot 

In the second half of the 1970s Benoit Mandelbrot introduced the public and the scientific 

community to fractals and fractal geometry. He demonstrated that mathematical and physical 

objects could have fractional dimensionality, rather than the integer dimensionality that had 

always ruled geometry in the past. Mandelbrot gathered diverse data and information showing 

that fractal self-similarity was evident in our everyday world, as well as in the microcosm and 

cosmocosm. Fractal geometry and fractal modeling have since played important roles in all the 

physical sciences (e.g., astronomy, physics, meteorology, and geology), in the life science (e.g., 

biology, genetics, medicine and neurobiology), in the social sciences (e.g., sociology, city 

planning, economics), in the technical sciences (e.g., materials science, computer science and 

logistics), and in the mathematical sciences. Every year 100s of papers containing the word 

fractal in their abstracts are submitted to the arxiv.org preprint servers, and that only counts 

papers in the physical sciences! 

Here is a very short list of a few of the well-known examples of fractal structures and processes 

in the observable world. 

Filamentary cosmic web on the largest observable scale 

Branching patterns of trees 

Veins of leaves 

Cloud morphology 

Circulatory systems in organisms 

Neuron organization and connectivity in brains 

Galactic clustering (galaxies, galactic groups, clusters of groups, clusters of clusters, …) 

Architecture of lungs (15 levels of self-similar tube branching) 

Coastlines and geographic boundaries everywhere 

Base-pairing and long-range correlations in DNA 

Open-shut temporal patterns of sodium, calcium and potassium channels in cells 

Clustering of stars within galaxies 

Clustering of atomic ions in the high-energy plasmas comprising stars 

Music of Bach and many others have self-similar motifs 

Morphology of Interstellar gas/dust clouds 

Temporal fluctuations of the solar wind 



 

7 
 

Multiple analogies between atomic nuclei, stellar pulsars and galactic quasars 

Atmospheric turbulence of many types 

Snowflake morphologies 

Microscopic Brownian motion of very many physical systems 

Waves on ocean surfaces 

Wall art of medieval churches and mosques 

Fluid turbulence with all bodies of water 

Mixing of different fluids 

Tributary and delta drainage systems of rivers 

Peak/valley mountain range morphology 

Sizes and distributions of astronomical cratering 

Very many landscapes viewed from the air: desert, arctic, forest, lake regions, … 

Ferns, cedar boughs, Dill plants, cactus plants, broccoli, and many more plant types 

Organization of governments, judicial systems, law enforcement agencies, etc. 

The internet’s node structuring, networking and temporal operation, etc. 

Growth patterns and interconnectedness of cities 

Mathematics: proofs of the Pythagorean theorem, the Golden section, M-set, … 

 

One of the defining features of fractals is their self-similarity. When something has the property 

of self-similarity, it means that there are multiple copies of the same (or similar) shapes, physical 

systems, operational processes or temporal phenomena on different spatial and/or temporal scale. 

The self-similarity can be merely statistical, or moderately strong, or even exact. One can find 

examples of continuous self-similarity (uniform over applicable scale range), or the more 

common discrete self-similarity that manifests itself at a discrete set of scales. Here again we see 

a truly ubiquitous feature of our world and once again the fundamental underlying principle can 

be briefly summarized as: same thing on different scales. 

Since I firmly believe in Einstein’s well-known dictum: “Raffiniert ist der Herrgott, aber boshaft 

ist er nicht” (i.e., “Subtle is the Lord, but malicious He is not”), I am highly inclined to think that 

nature is trying to tell us something important that we have missed, and that the “good Lord” 

(which was Einstein’s affectionate name for Spinoza’s god = nature) would not mislead us in 

such a dramatic way. So maybe we are ready to attempt a decoding of the message: same thing 

on different scales. 

 

V. Toward An Explanation Of The Benford/Newcomb Law and Fractal Self-Similarity 
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We already have stated several times that the common thread running through the scale 

invariance, linear recursion, geometric sequences and self-similarity that underlie the logarithmic 

law of first digits and fractal self-similarity is that structures, physical laws, mathematical 

operations and various processes are repeated with little variation on different scales. This seems 

to suggest that, whenever possible, nature treats scale in a relational or relative way, rather than 

in an absolute way.  

What is surprising is that most of our major theories in the physical sciences, such as the 

standard model of particle physics, quantum mechanics, general relativity and the standard 

model of cosmology, being based mainly on Euclidean geometry and non-Euclidean geometry, 

all involve, for the most part, absolute global scale when measurements are made in a proper rest 

frame. For example, the hydrogen atom is thought to have a fixed Bohr radius for its ground state 

and a fixed proper mass. So it appears that we have a conflict here. On one hand we have 

nature (and to a restricted sense relativity theory) advocating for relative scale, while on 

the other hand we have the majority of the dominant physics theories of the 21
st
 century 

firmly founded on the assumption of absolute scale. One should also note here that the equally 

firm belief among physicists in strict (or at least strong) reductionism is inextricably intertwined 

with the assumption of absolute scale. 

One wonders if there might be a way to resolve this fundamental conflict so that our observations 

of nature and our theoretical models of how nature works are in less disagreement with each 

other. Happily, I think there most certainly is and it is called conformal geometry, which has the 

potential to lead us into the less restrictive realm of relative scale without losing the beauty and 

knowledge-generating power of our best physics theories, although it would require recasting 

them so that they are compatible with the symmetries of conformal geometry. 

Briefly, conformal geometry preserves shapes and angles, but has no fixed lengths, and so it is 

fully compatible with relative scale. The conformal symmetry group contains the translations, 

rotations and relativistic boosts that we are most familiar with in the reigning 10-parameter 

Poincare group, but adds another 5 symmetries: 1 dilatation and 4 special conformal 

transformations relating to combinations of rotations and translations (but these are beyond the 

scope of this discussion). Maxwell’s theory of electromagnetism has all the conformal 
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symmetries when limited to massless electric and magnetic fields. The massless “vacuum” 

equations of General Relativity also possess full conformal symmetry. However, adding charges 

and masses to these theories is believed to “break” their conformal symmetry, although attempts 

have been made to circumvent these problems. Conformal geometry and conformal field theories 

have been applied in a somewhat restricted manner in quantum electrodynamics, general 

relativity (with limited success), and various theories of particle physics. 

It is the dilatation symmetry (often simply called dilation symmetry) that is of most interest to us 

here. Dilation invariance means that a shape, or the physical properties of a system, or relevant 

laws and processes remain the same for different changes of scale. So here we once again meet 

our theme: same thing on different scales. Given that self-similarity (copies within copies within 

copies,…) can be understood in terms of a discrete subset of structures or processes taken from 

full and continuous conformal symmetry, one might think that fractal geometry may be 

synonymous with conformal geometry in full, partial or discrete/ broken form, depending on the 

specific limitations of each case. 

Past theoretical applications of scale invariance, self-similarity and conformal symmetries have 

usually been restricted to finite ranges of scale. The examples of the data tables that conform to 

the logarithmic law and the well-recognized examples self-similarity observed in nature cover a 

vast range of total combined scale, but individually the examples are usually limited to either the 

microscopic, macroscopic or cosmic ranges of scale. This is probably due to the fact that the 

world is a very complicated place with a large number of distinct structures, laws and processes 

that must compete interactively, and this is likely to interfere with full conformal symmetry. So 

perhaps we must be satisfied with partial and broken forms of conformal symmetry. That is what 

the Benford/Newcomb Law of First Digits and the ubiquitous fractal self-similarity in our 

observable world indicate so far. And yet, one wonders if nature might have one more 

spectacular surprise in store for us. 

 

VI. “One Of The Most Exquisite Conjectures In Science Or Religion” 
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Speaking of the general concept that nature might repeat itself in a conformally symmetric 

manner on radically different size scales, Carl Sagan offered the following comment in his book, 

Cosmos
9
, which was linked to the TV series of the same name. 

 “There is an idea -- strange, haunting, evocative – one of the most exquisite conjectures in 

science or religion. It is entirely undemonstrated; it may never be proved. But it stirs the blood. 

There is, we are told, an infinite hierarchy of universes, so that an elementary particle, such as an 

electron, in our universe would, if penetrated reveal itself to be an entire closed universe. Within 

it , organized into the local equivalent of galaxies and smaller structures, are an immense number 

of other, much tinier elementary particles, which are themselves universes at the next level, and 

so on forever – an infinite downward regression, universes within universes, endlessly. And 

upward as well.” 

Sagan’s vision of an infinite self-similar cosmos resonated with me because several years earlier 

I had experienced a similar epiphany. It was an epiphany that had also occurred to Democritus in 

the 5
th

 century BC, to Spinoza in the 17
th

 century, to Kant in the 18
th

 century, and to many others 

over the last 2500 years. In his last writing, for a 1955 conference in Italy celebrating of 50 years 

of relativity, Einstein
10

 noted the potential for solutions of his latest unified field equations that 

were “similar but not congruent”, i.e., that exhibited discrete self-similarity and dilation 

invariance. He was skeptical, however, because he noted that atoms appear to have fixed radii 

and masses, and this seemed to conflict with the concept of relative scale. Alas, he died about a 

month later that same year and never had a chance to fully explore the hint he found in those 

equations. Had he lived longer, Einstein might have considered Sagan’s “exquisite conjecture” of 

global discrete dilation symmetry, i.e., of a cosmos that repeats itself, but only in the case of 

almost unimaginably large and discrete (i.e., quantized) jumps of scale. 

In my case, while studying at the University of Washington in Seattle during the early 1970s, the 

hierarchical organization of nature had always seemed self-evident to me. It also seemed 

obvious that the cosmological hierarchy was highly stratified into atomic, stellar and galactic 

scales. Whereas the observable portion of the cosmic hierarchy had a mass range of over 80 

orders of magnitude (!), three relatively narrow mass ranges of about 5 orders of magnitude for 

each strongly dominated the hierarchy: the Atomic Scale (particles, ions and atoms), the Stellar 
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Scale (black holes, neutron stars and main sequence stars), and the Galactic Scale (globular 

clusters, quasars and galaxies). These fundamental cosmological Scales together represented less 

than 1/5 of the full mass range, and yet they contained nearly all of the mass of the observable 

universe. 

I also began to notice that there were many possibilities for drawing analogies among the 

systems on the different Scales. For example, one can see quite a few similarities among atomic 

nuclei, pulsars, and quasars. Then on the night of December 21
st
 in 1976, I was sitting in the 

reading room of the Marine Biological Laboratory in Woods Hole, Massachusetts and perusing a 

Nature paper
11

 by E. R. Harrison entitled “Electrified Black holes”. Harrison noted that stars 

would have a net positive charge because their high temperatures would preferentially drive off 

the lighter electrons and retain heavier nuclei which are positive. The concept of positively 

charged stars, combined with a wealth of disparate clues for stellar-atomic analogies, suddenly 

caused me to envision the same strange new paradigm that had ‘stirred the blood’ of Sagan: that 

of an infinite and eternal hierarchical cosmos in which the same laws, structures, kinematics, and 

dynamics were repeated endlessly on vastly separated Scales. Even though I was fully conscious 

of how crazy the idea sounded, and how exceedingly speculative it was at that point, a life-long 

journey to explore this radical idea had begun in earnest. 

The first thing one needed to test the idea against observational knowledge was to derive a set of 

length (L), time (T) and mass (M) transformation equations that relate the physical properties of 

the physical systems on the atomic, stellar, and galactic Scales. After inventorying all known 

physical objects from electrons to superclusters of galaxies, and studying their kinematics and 

dynamics, I was able to choose the most reasonable sets of analogue pairs from differing Scales, 

and use them to establish the following transformation equations for neighboring Scales n and 

n+1. 

    Ln = ΛLn+1 

    Tn = ΛTn+1 

    Mn = Λ
D
Mn+1 
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Lambda (Λ) is equal to 5.2 x 10
17

. The mass scaling requires the fractional exponent D = 3.174, 

which is appropriate for a fractal theory, and for 3-dimensional structures in our 4-dimensional 

world. These amazingly simple Scale transformation equations have never required adjustments 

(i.e., fudging) since they were established decades ago. They are highly and specifically 

consistent with discrete scale invariance, self-similarity and discrete dilation symmetry; they also 

generate geometric sequences and can be viewed as examples of linear recursion. With these 

simple equations that embody our “same thing on radically different Scales” principle, one can 

predict and retrodict quite a few properties of the observable universe. A partial list would 

include: 

Successful prediction of pulsar-planets before their discovery 

Radius of the proton 

Mass of the proton 

Abundance of red dwarf stars 

Abundance of white dwarf stars 

Lower limit radii for red dwarf stars 

Average radii for white dwarf stars 

Range of radii for white dwarf stars 

Overall range of radii for stars in general 

Range of radii for galaxies 

Typical spin periods of pulsars 

Typical spin periods of galaxies 

Geometrical shapes of atomic nuclei and galaxies 

Average mass of white dwarf stars 

Lower mass limit of white dwarf stars 

Ks/Ka ratio for the J = KnM
2
 relationships of stars and atoms 

Δs/Δa ratio for the µ = ΔiJ relationships on the Stellar and Atomic Scales 

Global 160 minute g-mode oscillation of the Sun 

Magnetic dipole moment ranges for atomic nuclei and neutron stars 

Preferred periods for white dwarf stars 

Range of oscillation periods for neutron stars 

Keplerian period-radius laws for variable stars and Rydberg atoms 

Ratio of the Ks/Ka from the P
2
 = KiR

3
 relationships of atoms and stars 

Dark matter mass peaks at 8 x 10
-5

, 0.15 and 0.58 solar mass 

Full dark matter mass range is 8 x 10
-5

 to 35 solar mass 

Steep drop in stellar mass function below 0.15 solar mass 

Gap in the white dwarf mass function at 0.73 solar mass 

Prediction of unusually low exoplanet abundance for lowest mass red dwarf stars 

Preferred mass peaks in the white dwarf mass spectrum 

Decreased upper limit for the masses of single stars 

Revised upper limits to the observed radii of stars and atoms 

Active galaxy oscillation periods on the order of 10
7
 years 
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Self-similar scaling between stellar activity cycles and e
-
 spin transitions 

Self-similarity between RR Lyrae stars and specific E-state transitioning of He atoms 

Self-similarity between δ Scuti stars and excited C atoms 

Self-similarity between ZZ Ceti stars and excited He
+
 ions 

Self-similarity between SX Pheonnicis stars and excited boron atoms 

Approximate radius of the alpha particle 

Potential resolution of the vacuum energy density crisis 

Successful prediction of billions of unbound planetary-mass objects 

 

If one were interested in learning more about what I refer to as Discrete Scale Relativity, then 

there is a website
12

 [ http://www3.amherst.edu/~rloldershaw ] which includes a main ideas 

section, a selection of the most important published papers, a full listing of 70 publications, and a 

wealth of new developments and discoveries that are way beyond the scope of this paper. A 

review of 15 definitive predictions, including brief discussions of motivating evidence and 

accumulated observational support, can be obtained at 

https://www.academia.edu/2917630/Predictions_of_Discrete_Scale_Relativity . 

At any rate, it is definitely possible that nature has at least one more amazing surprise in store for 

us, when we are ready for it. Based on the ubiquity of the Benford/Newcomb Law of First Digits, 

the ubiquity of fractal self-similarity, and the evidence for Sagan’s exquisite conjecture of nature 

repeating itself on different cosmological Scales, one can justifiably claim that absolute scale is 

in serious doubt, that anything more than limited reductionism within Scales is also in serious 

doubt, and that global discrete conformal symmetry needs to be aggressively explored. The 

emerging relative scale paradigm would require major changes in some of the most basic and 

firmly held assumptions of current theoretical physics. Such changes will not come quickly or 

without strong resistance. In fact, this radical paradigm change may have to await a new 

generation of physics students and natural philosophers who are less indoctrinated when it comes 

to long-held assumptions. Perhaps they will discover that nature is infinitely more subtle, elegant 

and unified than most of their predecessors have dared to dream. 
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