
Ontology engineering for robotics

Frank Schröder

November 20, 2017

Germany

Abstract
Ontologies are a powerfull alternative to reinforcement learn-
ing. They store knowledge in a domain-specific language. The
best-practice for implementing ontologies is a distributed ver-
sion control system which is filled manually by programmers.

Keywords: Robotics, ontology engineering

Contents
1 Introduction 1

2 Ontology based robotics 1
2.1 Computer based training 2
2.2 Object-oriented animation 2
2.3 Ontologies vs optimal control 3

2.3.1 Qualitative Reinforcement Learning . . 3
2.4 User Interface 3

3 Example ontologies 3
3.1 Dance notation 4
3.2 Critics on SUMO 4
3.3 Robotics domain 4

4 Storing knowledge 4
4.1 Task ontologies 5
4.2 Domain ontology 5
4.3 Why ontology sharing will not work 6

5 Object oriented programming 6
5.1 OOP = ontology? 6

References 7

1 Introduction
to do: ontology + neural network

In today robotics, the most dominant challenge is the op-
timal control problem. In short the question is how to adjust
the servo motor of a robot to fulfill a given task. The naive
approach which utilizes the game-tree of all possible actions
and search for an optimal solution is failing because of the
huge amount of states. Even if the robot has only 3 DOF the
computation will explode. A better approach is to using ad-
ditional heuristics to specify the problem on a semantic level.

To formalize the task knowledge, a dedicated ontology has to
created first. In most cases the ontology uses a vocabulary
and describes the domain in natural language. In the follow-
ing paper some details are given about this problem solving
technique.

2 Ontology based robotics

Ontology is a word which was first used in the context of cog-
nitive robotics. It describes the usage of “semantic networks”
for describing the domain knowledge. OK, that was not the
best explanation so let me give a short example. Suppose you
want to build a walking robot. In normal non-ontology based
robotics you would invent some form of algorithm. In most
cases an algorithm which acts as a solver. In contrast, with
cognitive-robotics not the algorithm is in the center of the
focus, instead a network of concepts. In the easiest which is
similar to a mindmap.[26] In more complex cases the seman-
tic network is forming RDF triples, UML charts and class-
diagrams.

This thesis postulates, that ontologies for robots are the
major problem solving technique especially for very complex
tasks like biped robots, dexterous grasping and human-like
behaviors. The reason why ontologies are important is that
other problem solving techniques which are used in traditional
robotics like algorithm and planners will fail to solve complex
task. A solver which uses minimax for searching into the
gametree of chess or four-in-one-row is not suitable for finding
the gait patterns of a walking machine. Only ontologies can
do this job well.

After this short motivation there is the question to answer
in what form a robot ontology has to be formulated. Some-
times, the programming language Prolog is used for building
an ontology.[30] But Prolog is not the language of choice,
because it lacks in game-based programming, physics-engine
and – very important – speed. An ontology itself is not bound
onto a dedicated language. A normal object-oriented pro-
gramming language is sufficient. The best of visualizing a
robot ontology is a UML chart. There are some classes which
has methods and attributes. That are the major components
of an ontology. For reason of simplification it is right to pos-
tulate the ontologies and class-diagrams are using the same
principle.

The difference between the two is that a class diagram is
normally static. The classes are written in sourcecode and
can’t modify itself during runtime. An ontology, especially an
rdf-triple ontology can be changed during program-runtime.
It consists of data like an inmemory-sql-database. But, for

1

practical purpose this feature is not very important, a static
ontology is sufficient in most cases. Not the attribute and
methods as a formal pattern have to be changed, instead
only the values of the attribute are changeable like normal
variables.

The reason why some authors in the context of RDF-based
ontologies are using memory-based ontology which can change
completely during runtime is the hope that the ontology can
be learned on a magical way.[27] The aim is to start the
program with an empty ontology and to fill the gaps dur-
ing runtime.[19] That is true in cases if neural networks and
reinforcement learning are used for building such ontologies.
But, the truth is, that this kind of automatic programming
will not work. There is not practical example that a solver can
build up an ontology without help from outside. The most
– or better, nearly all – ontologies are handmade and change
not their structure during runtime. Ontology modeling has
much in common with traditional object oriented design and
is done manually by programmer in edit-compile-run cycles.

2.1 Computer based training

A well formulated ontology is capable for controlling the robot
in the given domain. The ontology acts as a supervisor, a
planner, a method-library and is capable to react even in
uncommon situations. But, that is only the goal not the way
how to create such ontologies. The process of creating have to
be done from scratch and in most cases it is unclear what the
structure of the ontology is. So there is the need for using a
software-engineering-process which leads in developing a well
formulated ontology. The best practice is to start slowly with
a semi-automatic surveillance ontology which guides not the
robot but the human-operator. This kind of software is called
computer-based training.

I want to give some details about this kind of tools.
Normally robots were programmed with the aim of fully-
autonomous systems. The robot should do his task alone
without any help from outside. The creation of such systems
is very difficult so in most cases the software-engineering pro-
cess will fail. That’s the reason why until now the number
of working robots is very low. A better way is to reduce
the requirement for a robotics system. Instead of implement-
ing a fully-autonomous system only semi-autonomy is needed.
That means, the robot act more than a decision support sys-
tem which observes the human user and give advice.[23] In the
literature this interaction mode is described as educational
software. The idea is to teach tasks to a human operator,
and he (not the robot) learns to drive a car, grasp an object
or stand up.

Instead of programming a sophisticated robot-control-
system the task for the engineers is reduced to programming a
simple teaching software. A concrete method is to use an on-
tology based authoring tool like SmartTrainer.[17] These sys-
tems are not sufficient for controlling real robots, instead they
have much in common with edutainment-software and serious
games.[6] The main idea is to program some kind of comput-
ergame and integrate task-ontologies for describing situations
from the real live like flying an airplane, building a city or op-
erate minimally invasive.

2.2 Object-oriented animation

A robot-ontology is nothing more than a computerprogram
written in an object-oriented language. Since the 1980s some
research projects are done in the context of object-oriented
computer animation, e.g. ASAS, HIRES and JACK. ASAS
(Actor/Scriptor Animation System) was used in the Dis-
ney movie TRON and was build on the LISP programming
language.[20] The aim of these research projects was to build
an animation system which is controlled by natural language.
A command like “move” triggers actions in a 3D world.[11]
Instead of sketching lines, the animation process is task-
oriented. There is a vocabulary in the-loop which holds the
domain-knowledge and with that vocabulary the user acti-
vates the animation routines.[10] A concrete example of how
such systems work is given in [24, page 11-12] There are some
nice screenshots given of the animation software. On the one
hand a man is standing on the ground, and as overlay the
textual commands are visible which are driving the virtual
actor.

From the point of view of how to build such systems the
most remarkable aspect of the projects which are cited above
is that domain-ontologies are created in every case manually
by hand. No sophisticated artificial intelligence techniques
like reinforcement learning, general problem solving or self-
modifying code was used. The base of object-oriented anima-
tion is a handcoded computerprogram which consists of pa-
rameters and methods which are oriented on the domain. The
knowledge about inverse kinematics, positions in the scene,
dynamic walking, walk-cycles and the difference between a
smiling and a sad actor are hardcoded in a programming lan-
guage. The older ASAS system was build upon LISP, modern
animation engines are using modula-2 or C++.

Computeranimation is a good example for narrow AI. The
aim is to use the computer to do a specific task. Computers
can be used for raytracing, calculate the color or to animate a
movie. With computerscience or artificial general intelligence
this has that nothing in common. Instead, the computer is
only the instrument to do something better. Computer in
that meaning are used by artists to create something. If they
use not a digital computer, they would use a pencil for paint-
ing cartoons. Even Robotics is not computerscience in its
core meaning. Robotics is like computeranimation only a do-
main. The aim is to program a mechatronic system. That
system deals with kinematics, servo-motors and electric cur-
rent. Robotics can also be described as narrow AI.

So the golden way of understanding robotics, computer an-
imation and any other field outside the computer science is
given by the domain itself. Computernnimation is primarily
based on animation, not on computers, and robotics is based
on mechanics not computers. But if these domains are located
outside of core computerscience what is the fundamental in-
ner circle of computing? That is often called theoretical com-
puting or Artificial General Intelligence. Possible subjects are
turing-machine, Kolmogorov complexity, self-modifying code,
recursion and most important a strong similarity to mathe-
matics. The bad news is, that with these core computer-
science it’s impossible to solve one of the major problems like
robotics or computer animation. And yes, core computer sci-

2

ence is often useless. That is the main reason why Strong AI
was replaced by narrow AI in the 1980s.1

For the practical working for roboticists, game-programmer
and experts for artificial intelligence the effects can’t be
greater. They are no longer computer scientists, but they
are expert for their domain outside of computing. Experts
for music, animated movies, walking machines or whatever.
If major robotics projects fail, in most cases the team has too
much knowledge about computing, and too less knowledge
about the concrete domain.

2.3 Ontologies vs optimal control

Ontologies are not the only possibility for solving robotics
problem. Some literature uses an idea named “optimal con-
trol”. Optimal control is more common and it is the natural
way of describing robotics problem in mathematical terms. A
good example is biped walking which can be expressed with
a formula which calculates the ZMP (zero-movement-point).
So, the robotics problem is converted to an abstract mathe-
matical issue. The movement of the robots are given by the
planner who solves it.[22]

The trouble with optimal control in general and ZMP cal-
culation in detail is, that biped walking is more complex than
solving an equation. Using an ontology instead of calculating
a formula means, that the semantics of the question has to
be understood. Ye problem “biped walking” is no longer an
equation which can be iterated by a solver, instead the situa-
tion is seen as a mindmap with special vocabulary. The pro-
gramming technique of implementing an ontology has much
in common with object-oriented programming. The problem
has to be divided into subproblems (aka classes) and every
class has methods (aka the vocabulary). Solving the biped
walking task is no longer done by solving one equation, but
it is to paint an UML chart and know the different methods
from the classes like “move a leg up”, “search for footplace”
and so on.

It is correct, that in most cases, some mathematics is
needed, for example for calculating the inverse kinematics.
And sometimes a dedicated solver and even brute-force-search
is part of the solution. But, that is not the way how to imple-
ment the robot-control-system. The control system as whole
works more like an ontology. A network of classes which con-
sists of special vocabulary which is the same like experts use
if they talk about the issue.

2.3.1 Qualitative Reinforcement Learning

Reinforcement Learning is a well known problem solving tech-
nique for robotics. Most famous examples as the “mountain
car problem” and the “cartpole problem” have demonstrated
it’s potential. Both are examples for finding the policy for
optimal control. Even if pure reinforcement learning is able
to solve these tasks a more advanced approach is needed.
This is called qualitative reinforcement learning[9] and can
be classified as a hybrid system: prior knowledge plus rein-
forcement learning is used together. But if hybrid systems

1Strong AI can be seen as modern form of cybernetics. Computers
are build as a replacement for man.

Figure 3.1: Mindmap

works, why we need something else than an ontology? The
answer is that ontology-only problem-solving is better than
hybrid systems. Because the black box optimizing techniques
which are used inside reinforcement learning are only capable
for solving toy problems. Ontology only optimal control is not
well established in the literature, but it is capable of solving
more advanced problems and is the here-to-stay technique for
future robotics.

2.4 User Interface

An ontology can be seen as a user interface between man and
machine. It is comparable to other interactive controllers like
GUI Systems or mouse-movements. It has no direct function-
ality for the computer but it’s more a tool for better commu-
nicating between human-operator and software. Ontologies
consists often of a lexicon, perhaps with words like “move”,
“jump left” and “pickup”. From a technical point of view, this
vocabulary makes no sense, because the computer itself needs
no natural English description. He is very fine with method
names likes “action1”, “action2” or even better with function
names in hexadecimal syntax like “action#A0”, “action#0B”.
But, if the user interface has clear action names with a com-
mon sense meaning, it is easier for novice users to interact
with the computer. He understands intuitive on which but-
ton he has to click and can program scripts which consists of
many subactions with less effort.

3 Example ontologies

• Route graphs in Haskell [18]

• Robocup soccer [8]

• Virtual humans (mostly JACK) [3]

• Upper ontologies: SUMO (largest), Cyc, DOLCE [21]

• Robotics ontologies: KnowRob, CORA [4]

3

• Upper ontologies for computeranimation: AIM@SHAPE
[13]

3.1 Dance notation

In the Startrek episode TNG 4x11 “Data’s day” the android
data learns on the holodeck in the famous scene with Dr.
Crusher how to dance. The exact working of data’s positronic
brain was not given in the episode and perhaps Gene Rodden-
berry didn’t even know it. The way of how an android learns
how to dance is not located in the the brain of the android,
but in his environment. The theoretical foundations of “how
to dance” is called Labanotation and has a long history.[15]
It is only known by dance-experts not by computer scientists.
But, if the task is to program a robot how to walk, dance and
move, the art of Labanotation is the correct notation. The
above cited book is not a book about computer programming
or robotics. It is a classical book about dancing. In most cases
it is read by art students in context of ballet dance, and is
not very common in mainstream. The task which computer
programmer has to be done is to translate this and similar
books into C++ language. That is the best-practice method
for programming a robot to move like a human-dancer. And
that’s the way how to teach data in the introduction sentences
of how to dance with Dr. Beverly Crusher.

3.2 Critics on SUMO

SUMO is called an “upper ontology”, which is equal to a meta-
ontology. An ontology for building other ontologies. Sumo is
open source and can be downloaded from the webserver. But
in reality the project is useless for robotics. On the one hand,
Sumo is nearly perfect. It is a well elaborated ontology, has
many facts and rules and even consists of some predefined
applications like medicine, transportation and business. But
the problem is, that SUMO not really have knowledge inside
his database. It is more like a SQL table which has to be
filled with information. Sumo alone lacks of semantics.

Perhaps, my critics is a bit harsh but what is the alter-
native to Sumo? A natural form of storing knowledge is a
Wikihow tutorial. These “step by step” guides have informa-
tion which can be interpreted by humans for doing a con-
crete task. Another useful information source for humans is
Wikipedia itself. In contrast, Sumo can not compete which
this rich information sources. On the other hand there is the
computer which also deals with information. Computers are
programmed in languages like C++. For executing a task this
type of software has to be programmed. Here also Sumo lacks
of capabilities. Sumo can’t be executed or converted to C++
code. It is more like an XML table. So even for interpreting
by machines Sumo makes no sense.

As a conclusion, Sumo has no meaning for humans and no
meaning for computers. Sumo is more like a trial to formalize
knowledge, This trial was not successful. An “upper ontology”
is an anti-pattern of how not transfer knowledge to machines.
But why it is so difficult to invent an intermediate language
between C++ on the one hand and normal English on the
other side? I don’t know. Even highly sophisticated dedicated
robotics ontologies like Knowrob, which have demonstrated

in practice that they work are not really a here-to-stay in
robotics. Knowrob is difficult to understand and perhaps it
would be easier to program the sourcecode in normal way.

[13, page 49] differentiates between different types of on-
tologies. On the low end, there are domain- and task-specific
ontologies. On the next level are so called “upper ontolo-
gies” which have common knowledge and on the first level
are Generic ontologies which are even more “meta” than the
upper ontologies. Usefull in the sense that humans or ma-
chines can do something concrete with an ontologies are only
the domain- and task-specific ontologies.

3.3 Robotics domain
In [25] the development of a robotics ontology is described.
The authors idea is to use a semantically grounded language
and formalize this language into an ontolgy. On page 2 the
paper lists existing robotics ontologies from domains like Sen-
sor, pathplanning, motion planning and event-processing. On
page 3 is the own sub-ontology given from the domain Action.
It looks like a chart which consists of:

• drivefaster

• stopdriving

• changelocation

• changedirection

• turnleft

So, the domain is subdivided into linguistic categories and
probably these categories are mapped into sourcecode. The
more abstract robotics ontologies are similar to a classic
robotics Firmware like Lejos where a operating system has
access to the hardware of the robot (brick). The mid- and
lowlevel ontologies are more domain-specific and consists of
detailed descriptions like followline or turn-left. Working code
is not given in the above paper, the author states modest:

“We have developed a draft version of ontology for
the robot programming domain. ” [25, page 5]

4 Storing knowledge
The natural way to store knowledge are languages like En-
glish. In Wikihow-articles, glossaries, lexicons and books are
scientific relevant information saved. Unfortunately, comput-
ers are unable to parse this kind of information. Some call
this a knowledge gap between human and machines. The
information about how to walk, doing tasks or driving car
are on the one hand given in a explicit way (as books), but
computers fail to interpret this knowledge.[2]

The only language computers understand are programming
languages. In the history of computing many languages were
invented, and some of them with the aim to store knowledge.
The most dominant language is SQL for storing knowledge in
rows and columns, but for semi structured data also languages
exists like ABL, Prolog and KIF. The problem with ABL
and the other examples of artificial intelligence languages is,

4

that they not really capable to overcome the knowledge gap.
There is no converter from normal English text to ABL pro-
gramming language. And it comes even worse: so called lan-
guages of the fifth computer generation like Prolog and Lisp
are not more suitable than normal general purpose languages
like C++. So in every case a LISP program can be replaced
by well written C++ code but not the other way around.

The question is: how can knowledge which is written in
English transferred to C++ source code? The answer is sim-
ple: the transition is called programming, or better known as
object-oriented domain-specific programming. It can be done
by a single programmer, a team or even by a company. The
task of transferring human-knowledge to computer-readable
knowledge is not solvable by algorithms, but it is a challenge
for humans. The conversation is a manual task which has to
be done inside projects. It is comparable with creating the
Wikipedia-encyclopedia which is also be done by real humans
and not by algorithms.

4.1 Task ontologies

Task ontologies are the lowlevel end of ontology engineering.
There are describing the process flow on a detailed level. But,
concrete examples for this kind of ontologies are rare in litera-
ture. It seems, that tasks which are formulated in an abstract
description are until now only a research topic and not ready
for practical usage. The problem is the following: normally,
ontologies are written in an ontology language, mostly based
on XML. A concrete task has in contrast be formulated in a
computer language like C++ or Java. But it’s not possible
to store C++ sourcecode in XML syntax, at least it makes
no sense.

In gaming-AI context task ontologies are often imple-
mented as behavior trees. This kind of workflow can be stored
as abstract XML tree. But, here is also the problem that a
behavior tree is not a real computer program. In most cases
a behavior tree is more like a diagram which is used in the
software-engineering process for defining the requirements for
the application. In a real life-scenario the behavior tree has
to be converted into executable sourcecode, mostly C++. So,
task ontologies seems to me more like software-engineering
tools like a UML diagram but not as a way to get working
code.

Obviously the reason why in literature task ontologies are
discussed is to formalize knowledge. The aim is not to write in
a computerlanguage, but to describing problems at a general
level which has nothing to do with programming. Formu-
lating ontologies is that, what computer researcher do. Or
should I say better: wants to do. The truth is that nobody
wants to program, especially not at the C++ level with point-
ers and llvm-compiler in mind. But why? Mostly because
programming is difficult, takes long time and is error-prone.
But, using task ontologies is no help in the process, because
at the end the ontology alone will not work. The ontology is
only a concept drawing on the computerscreen, not working
software. And without concrete software, the robot will also
not work. Perhaps, task ontologies are a bit too abstract to
be useful. The better way around is to focus more into the
programming level. I would suggest using a version control

system like git, for iterative programming in C++ and in the
sourcecode the task-ontology is “populated”. Not in the sense
of ontology learning or automatic programming, but in the
sense of writing lines of code in a real programming project.

4.2 Domain ontology
The idea of using an ontology for describing robotics tasks is
a confession of weakness for the computer science. I mean,
if the computerscience itself has high-quality algorithms and
tools for program a robot to walk, think and act like real hu-
mans, these tools would be used on the first hand. The truth
is that computerscience lacks of such tools instead ontologies
are used for pointing outside of computerscience. Knowledge-
engineering means, that domain knowledge from subjects like
sports, games, clothing and animation is transferred into com-
puterscience. So the process model for creating such ontolo-
gies from scratch is not given in computerscience but it is
determined by the concrete subjects. If the aim is to build a
dancing robot, than a dance artist gives the vocabulary and
procedures which are part of the ontology. It the aim is to
create a driving-ontology then the science of traffic will guide
the creation of the suitable ontology.

Even if domain-ontology languages like OWL and KIF [16]
exists a good starting point for creating a domain-specific
ontology is the UML notation. [12] starts on page 5 with a
normal UML diagram for describing a businessprocess which
consists of customer, order and order line:

“Hence, to assign business meaning to object-
oriented languages, a mapping was created between
the ontological concepts and objectoriented con-
structs.” [12, page 13]

Ontology engineering extends methods of object-oriented
software engineering with concrete applications like natural
language processing and business process modeling:

“Putting ontological engineering in the context of
other disciplines enables both ontological engineers
and other specialists to view their fields from differ-
ent perspectives.” [7]

Reverse engineering an ontology from given database-model
[1] or existing sourcecode is also possible. [31] gives an exam-
ple for translating legacy Cobol-program into an ontology.

Scripting AI UML based domain-modeling is not the first
time when normal computerprograms for controlling robots
was used. In early times this concept was called Finite State
Machine or Scripting AI and his meaning was to use nor-
mal sourcecode for realizing complex robot systems. UML
based ontologies extends this basic idea to something more
advanced. Instead of using simple macros and behavior-
scripts, a complex ontology which is spreading over many
C++ classes is used. The new idea is, not to using sophisti-
cated AI programming techniques instead the artificial intel-
ligence is realized in a common software-engineering process.
Not algorithms are in the center but it is the knowledge ac-
quisition process. This kind of software-development-cycles
are driven by the domain. Like in former chapters described

5

the animation artist, linguist or car-experts defines how the
final program will look like.

Ontology engineering starts with the naive statement that
computerscience itself has very little to offer for the overall
development cycle. The only working technique is a program-
ming language like c++, some object-oriented programming
and perhaps a physics-engine. That’s all. The rest, especially
the question of how the robot looks like, and how he will be
animated is decided not by software-engineers but by artists,
designers and animation experts. They have the important
knowledge and tell the programmer how he must implements
this in C++ sourcecode. If the robot doesn’t walk, not the
guys from the computerdepartment have made a mistake, but
it was the animation expert. He was not able to tell exactly
what the position of the legs should be.

4.3 Why ontology sharing will not work

If a formal ontology was created it would be nice if the
knowledge can shared among other software so that quasi-
automatic programming will be possible. The lingua franca
in ontology engineering is KIF (Knowledge Interchange For-
mat). Inside KIF new facts and rules are defined by first-
order-logic. That is a declarative programming language
which has much in common with Prolog. The idea is sim-
ple: the knowledge base would be created in First-order-logic
and can be translated from that formal specification in other
programming languages which runs on a computer. Nice idea,
but not very innovative. In the 1960’er the Multics operating
system has something similar in mind. That is the reason why
Multics was written in PL-1, a programming language which
can be – in theory – generated from formal specifications.[5]

Until today first-order logic was not very successful in re-
placing normal procedural languages. Not Multics has con-
quered the mainframe, but UNIX and Linux which are both
written in a non-declarative C programming dialect. It’s ob-
vious that this lesson can be transferred to knowledge engi-
neering. I want to say, that first-order-logic for knowledge
storing and sharing will not work.

A good comparison is the relationship between regular ex-
pressions and a C program. In regular expressions (which are
used by awk and grep tools under Linux) simple rules can
be formulated in surprising less programming effort. But, for
advanced algorithm a real language like C is the only way
to go. It’s not possible to write a complete operating sys-
tem in regular expressions. And that’s the same restriction
as in Prolog. Prolog is a good macro interpreter for writ-
ing small code pieces but it lacks in support for developing
large software projects. Here is the object oriented paradigm
in general and particularly C++ programming language the
more comfortable approach.

Versioncontrol The better alternative to KIF and first-
order logic is “versioncontrol based ontology development”.
That development cycle uses traditional distributed software-
engineering techniques likes mailing-lists, wikis and git ver-
sioncontrol. Not a programming language like KIF, Prolog or
PL-1 is in the center but a manual driven developer collec-
tive which is sometimes described as “the crowd”. The crowd

is the opposite to automatic programming, the crowd works
completely human-driven but uses advanced techniques for
communicating over Internet. A good example is the Hozo
ontology editor [28] which has additional to the Protege Edi-
tor a feature for collaborative working on ontologies.

Ontology reusing Ontology sharing is sometimes called
reusing. The aim is to create a formal abstract high level
ontology and apply it to many different domains. Sometimes
this wish is connected with topdown systems, were the core
ontology consists of vocabulary for English and subontologies
are derived from this concepts to more specific run-able appli-
cations. The bad news is, that until now no working example
was demonstrated. It is only the hope of computer scientists
that this engineering technique will work in future and some
projects like Cyc and OWL have this vision in mind.

A possible explanation why top down ontology engineering
will lacks is because automatic programming in general also
fail. Automatic programming was the aim to develop operat-
ing systems and user-applications without programming and
only with formal requirement specification. The idea was to
use program generators which can build a Linux kernel and
similar software from scratch. Let’s make a short thought
experiment: The task is to automate generation of a prime-
number checker. Not by programming it in Java but by us-
ing automatic programming. In many papers techniques like
genetic programming, Petri nets [14] and even Bayes clas-
sification is described as a hopeful technique to solve these
problems, but if one of these techniques should be applied
to the given domain it will fail. And if even a simple prime
number generator can’t be created via automatic toolchains,
how should more complex domains like pathplanning or mo-
tion planning work? Yes, the pessimistic point of view is the
right one, automatic programming and general ontology are
not ready for solving real problems.

It is a mistake to think that programming without human
in the loop will be successful. In every case, an ontology is
some form of a computerprogram. And computerprograms
are normally written by programmers. To improve their pro-
ductivity some tools are available like high-level programming
languages, Stackoverflow question&answer website and ver-
sioncontrol. But a tool for automatic generate a runable
ontology from natural language without any intervention of
human-programmer is purely science-fiction. I would suggest
that even in 20 years such tools are not available. So the
only possibility for creating robotics ontologies is to use nor-
mal conservative techniques. If one person alone can not cre-
ate complex software, that more programmer are be needed.
The question is: how many? Are 100 programmer enough for
bulding a walking ontology for a human-robot?

5 Object oriented programming

5.1 OOP = ontology?

On the first impression there is no difference between object-
oriented programming and ontology engineering.[29] In both
cases the problem will be subdivided into a domain-specific

6

vocabulary. But there is a difference. Object-oriented pro-
gramming is ready for practice, ontology engineering not. On-
tology engineering has it’s roots into Strong AI. The so called
general problem solvers based on first-order logic are ontol-
ogy based systems. This tradition was merged into current
semantic web and OWL definitions. Virtually unchanged is
the aim of describing knowledge in an abstract way. The main
difference between OOP and ontologies is, that OOP works,
while ontologies not.

Nevertheless in current literature about robotics ontology
not object-oriented programming is discussed but ontology
engineering. An ontology is often used as a replacement for
an API (application programming interface). The ontology
is the front-end for an object-oriented program. It consists
only of the names of the methods and no sourcecode is given.
The advantage is two-folded: on the one hand, ontologies
haven’t to be complete programs. They are more concepts
and requirements for the future. And the second advantage
is that while using ontologies and not real C++ code, the
author can describes commercial patent restricted software
which is not public available under GNU public license. So the
usage of ontologies and not of object-oriented programming
has often legal reasons.

References

[1] Aftab Ahmed Abbasi and Narayanan Kulathuramaiyer.
A systematic mapping study of database resources to
ontology via reverse engineering. Asian Journal of In-
formation Technology, 15(4):730–737, 2016.

[2] Andrea Addis and Daniel Borrajo. From unstructured
web knowledge to plan descriptions. In Information Re-
trieval and Mining in Distributed Environments, pages
41–59. Springer, 2010.

[3] Norman I Badler, Cary B Phillips, and Bonnie Lynn
Webber. Simulating humans: computer graphics anima-
tion and control. Oxford University Press, 1993.

[4] Stephen Balakirsky, Craig Schlenoff, Sandro Rama
Fiorini, Signe Redfield, Marcos Barreto, Hirenkumar
Nakawala, Joel Luís Carbonera, Larisa Soldatova, Julita
Bermejo-Alonso, Fatima Maikore, et al. Towards a robot
task ontology standard. In ASME 2017 12th Interna-
tional Manufacturing Science and Engineering Confer-
ence collocated with the JSME/ASME 2017 6th Inter-
national Conference on Materials and Processing, pages
V003T04A049–V003T04A049. American Society of Me-
chanical Engineers, 2017.

[5] Boumediene Belkhouche. Generation of ada and pl/1
prototypes from abstract data type specifications. Jour-
nal of Systems and Software, 16(3):255–264, 1991.

[6] Paolo Busetta, Chiara Ghidini, Matteo Pedrotti, An-
tonella De Angeli, and Zeno Menestrina. Briefing virtual
actors: a first report on the presto project. In Proceed-
ings of the AI and Games Symposium at AISB, 2014.

[7] Vladan Devedzić. Understanding ontological engineer-
ing. Communications of the ACM, 45(4):136–144, 2002.

[8] Frank Dylla, Alexander Ferrein, Gerhard Lakemeyer,
Jan Murray, Oliver Obst, Thomas Röfer, Stefan Schiffer,
Frieder Stolzenburg, Ubbo Visser, and Th Wagner. Ap-
proaching a formal soccer theory from behaviour specifi
cations in robotic soccer. WIT Transactions on State-
of-the-art in Science and Engineering, 32, 2008.

[9] Arkady Epshteyn and Gerald DeJong. Qualitative rein-
forcement learning. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 305–312.
ACM, 2006.

[10] Jeffrey Esakov and Norman I Badler. An investigation
of language input and performance timing for task ani-
mation. 1988.

[11] Jeffrey Esakov, Norman I Badler, and Moon Jung. Hu-
man task animation from performance models and nat-
ural language input. 1989.

[12] Joerg Evermann and Yair Wand. Ontology based object-
oriented domain modelling: fundamental concepts. Re-
quirements engineering, 10(2):146–160, 2005.

[13] Alejandra Garcia Rojas Martinez. Semantics for virtual
humans. 2009.

[14] Dragan Gaševiü and Vladan Devedžiü. Reusing petri
nets through the semantic web. In The Semantic Web:
Research and Applications: First European Semantic
Web Symposium, ESWS 2004, Heraklion, Crete, Greece,
May 10-12, 2004, Proceedings, volume 1, page 284.
Springer, 2004.

[15] Ann Hutchinson Guest. Labanotation: the system of an-
alyzing and recording movement. Routledge, 2014.

[16] Patrick Hayes and Christopher Menzel. A semantics for
the knowledge interchange format. In IJCAI 2001 Work-
shop on the IEEE Standard Upper Ontology, volume 1,
page 145, 2001.

[17] Mitsuru Ikeda, Kazuhisa Seta, and Riichiro Mizoguchi.
Task ontology makes it easier to use authoring tools. In
IJCAI (1), pages 342–351, 1997.

[18] Bernd Krieg-Brückner, Udo Frese, Klaus Lüttich, Chris-
tian Mandel, Till Mossakowski, and Robert J Ross. Spec-
ification of an ontology for route graphs. In Interna-
tional Conference on Spatial Cognition, pages 390–412.
Springer, 2004.

[19] Wei Liu, Albert Weichselbraun, Arno Scharl, and Eliz-
abeth Chang. Semi-automatic ontology extension using
spreading activation. Journal of Universal Knowledge
Management, 1(1):50–58, 2005.

[20] William E Lorensen and Boris Yamrom. Object-oriented
computer animation. In Aerospace and Electronics Con-
ference, 1989. NAECON 1989., Proceedings of the IEEE
1989 National, pages 588–595. IEEE, 1989.

7

[21] Viviana Mascardi, Valentina Cordì, and Paolo Rosso. A
comparison of upper ontologies. In WOA, volume 2007,
pages 55–64, 2007.

[22] Katja Mombaur, Anh Truong, and Jean-Paul Laumond.
From human to humanoid locomotionon inverse optimal
control approach. Autonomous robots, 28(3):369–383,
2010.

[23] Edwin Olson, Johannes Strom, Ryan Morton, An-
drew Richardson, Pradeep Ranganathan, Robert Goed-
del, Mihai Bulic, Jacob Crossman, and Bob Marinier.
Progress toward multi-robot reconnaissance and the
magic 2010 competition. Journal of Field Robotics,
29(5):762–792, 2012.

[24] Cary B Phillips and Norman I Badler. Interactive be-
haviors for bipedal articulated figures, volume 25. ACM,
1991.

[25] Ignas Plauska. Ontology for robot programming domain.
In XV International PhD Workshop OWD, 2013.

[26] Biplab Kumer Sarker, Peter Wallace, and Will Gill.
Some observations on mind map and ontology build-
ing tools for knowledge management. Ubiquity,
2008(March):2–1, 2008.

[27] Javier Snaider, Ryan McCall, and Stan Franklin. The
lida framework as a general tool for agi. Artificial general
intelligence, pages 133–142, 2011.

[28] Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura,
and Riichiro Mizoguchi. An environment for distributed
ontology development based on dependency manage-
ment. The Semantic Web-ISWC 2003, pages 453–468,
2003.

[29] Florian Weber, Andreas Bihlmaier, and Heinz Wörn. Se-
mantic object-oriented programming (soop). Informatik
2016, 2016.

[30] Jan Wielemaker, Guus Schreiber, and Bob Wielinga.
Prolog-based infrastructure for rdf: Scalability and per-
formance. In International Semantic Web Conference,
volume 2870, pages 644–658. Springer, 2003.

[31] Hongji Yang, Zhan Cui, and Paul O’Brien. Extract-
ing ontologies from legacy systems for understanding
and re-engineering. In Computer Software and Appli-
cations Conference, 1999. COMPSAC’99. Proceedings.
The Twenty-Third Annual International, pages 21–26.
IEEE, 1999.

8

	Introduction
	Ontology based robotics
	Computer based training
	Object-oriented animation
	Ontologies vs optimal control
	Qualitative Reinforcement Learning

	User Interface

	Example ontologies
	Dance notation
	Critics on SUMO
	Robotics domain

	Storing knowledge
	Task ontologies
	Domain ontology
	Why ontology sharing will not work

	Object oriented programming
	OOP = ontology?

	References

