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Introduction

Niven shows that for rational, non-zero r, cos r and cosh r are irrational [6].
His method is similar to that of his famous irrationality of π proof: functions
are defined, integrals involving integration by parts are used, and a contra-
diction is arrived at [5]. Parks makes a similar argument, arguably simpler,
for the cosine case [7]. Zhou recently proved the cosine and hyperbolic co-
sine results using recursive integrals [8]. In this article, our pattern does
not involve integrals; just multiplication and derivatives of polynomials are
needed.

The pattern is to start with an exponential equation where a sum of
exponential values equals a rational number. So, for cosh this equation is
er + e−r = a/b. Then a polynomial, f , is defined. It has a zero root of
multiplicity p − 1, p a prime, and the exponents in the sum, r, −r, for cosh,
as additional roots of multiplicity p. The sum of its derivatives is given by
F (x). Using exF (0) = F (x) + ε, proven below, and simple multiplication,
this gives 0 = F (0)(er + e−r − a/b) = −a/bF (0) + F (r) + F (−r) + ε. As the
ε value grows power wise in the degree of f and multiplicity in f translates
into factorial values in F , division by (p − 1)! gives a contradiction for large
enough p. Details follow.

As the transform exF (0) = F (x) + ε is good for complex variables, as
well as real, the identity 2 cos r = eri + e−ri is similar to the pattern for
cosh and its identity 2 cosh r = er + e−r just used. Using other identities the
corresponding irrationality of other trigonometric and hyperbolic functions
are obtained. Corresponding results for inverses of these functions are easily
proven as well.
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The methods used in this article are also used in [3, 4] to show the tran-
scendence of e and π and the irrationality of their natural number powers.

Lemmas

All polynomials are integer polynomials, z is a complex number, n is a non-
negative integer, and p is a prime number.

Definition 1. Given a polynomial f(z), lowercase, the sum of all its deriva-
tives is designated with F (z), uppercase.

Definition 2. For non-negative integers n, let εn(z) denote the infinite series

z

n + 1
+

z2

(n + 1)(n + 2)
+ · · · +

zj

(n + 1)(n + 2) . . . (n + j)
+ . . . .

Lemma 1. If f(z) = czn, then

F (0)ez = F (z) + ε, (1)

where ε has polynomial growth in n.

Proof. As F (x) = c(xn + nxn−1 + · · · + n!), F (0) = cn!. Thus,

F (0)ex = cn!(1 + x/1 + x2/2! + · · · + xn/n! + . . . )

= cxn + cnx(n−1) + · · · + cn! + cxn+1/(n + 1)! + . . .

= F (x) + cxn(x/(n + 1) + x2/(n + 1)(n + 2) + . . . )

= F (x) + f(x)εn(x).

Now f(x) has polynomial growth in n and εn(x) ≤ ex, so the product has
polynomial growth in n.

Lemma 2. If F is the sum of the derivatives of the polynomial f(z) =
c0 + c1z + · · · + cnz

n of degree n, then

ezF (0) = F (z) + ε, (2)

where ε has polynomial growth in the degree of f .
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Proof. Let fj(x) = cjx
j, for 0 ≤ j ≤ n. Using the derivative of the sum is

the sum of the derivatives,

F =
n

∑

k=0

(f0 + f1 + · · · + fn)
(k) = F0 + F1 + · · · + Fn,

where Fj is the sum of the derivatives of fj. Using Lemma 1,

exFj(0) = Fj(x) + ε (3)

and summing (3) from k = 0 to n, gives

exF (0) = F (x) + nε.

As the finite sum of functions with polynomial growth in n also has polyno-
mial growth in n, we arrive at (2).

Lemma 3. If polynomial f(x) of degree n has root r of multiplicity p, then

f (k)(r) = 0 for 0 ≤ k ≤ p − 1 and each term of f (k), p ≤ k ≤ n is a multiple

of p!.

Proof. Suppose r = 0 then f(x) = xp(bnx
n + · · · + b0) has b0x

p as its term
with minimal exponent. Using the derivative operator, D(xn) = nxn−1,
repeatedly, we see the 0 through p−1 derivatives of f(x) will have a positive
exponent of x in each term. This implies that r = 0 is a root, as needed for
this case. Using the product of p consecutive natural numbers is divisible by
p!, terms of subsequent derivatives will be multiples of p!, .

If r 6= 0, then f(x) = (x − r)pQ(x), for some polynomial Q(x). Let
g(x) = f(x + r) = xpQ(x + r). As g(k) = f (k) for all k, g(k)(0) = f (k)(r), and
the r = 0 case applies.

A Leibniz table can be used to give an example of the result of Lemma 3.
Suppose f(z) = (z − r)3Q(z), where Q(z) is a polynomial of degree 2. Table
1 indicates f (k)(r) = 0 for 0 ≤ k ≤ 2 and 3! divides the terms of f (k)(r) for
3 ≤ k ≤ 5. For more on Leibniz tables see [2].

Lemma 4. If a and b are Gaussian integers and p is a prime, p > |a|, then

|a(p − 1)! + bp!| is a non-zero integer divisible by (p − 1)!, but not by p.

Proof. As a(p − 1)! + bp! is of the form A − B + (C − D)i with A − B 6= 0
or C − D 6= 0, A, B, C , and D integers, both results follow.
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(x − r)3 3(x − r)2 6(x − r) 3!
Q(z) 0 0 0 1 0 2 3!bQ(r) 3

Q′(z) 0 1 0 2 0 3 3!bQ′(r) 4

Q′′(z) 0 2 0 3 0 4 3!bQ′′(r) 5

Table 1: First interior cell values give evaluations at x = r and the second
the order of the derivative. The ’b’ factor is a binomial coefficient.

Lemma 5. Let polynomial f(z) have root r = 0 of multiplicity p − 1 then,

for large enough p, p - |F (0)|.

Proof. We can write

f(x) = xp−1(bjx
j + · · · + b0) (4)

= xp−1(bjxxj−1 + · · · + b1x) + xp−1b0 (5)

= xp(bjx
j−1 + . . . b1) + xp−1b0. (6)

Using Lemma 3, as r = 0 is a root of multiplicity p of xp(bjx
j−1 + . . . b1),

its first p − 1 derivatives, evaluated at r = 0 are 0 and then its terms are
multiples of p!. Similarly the first p − 2 derivatives of xp−1b0 are 0 at 0 and
the p − 1 derivative is (p − 1)!b0 and subsequent derivatives are multiples
of p!. If p > |b0|, as all terms but one in F (0) is divisible by p, the result
follows.

Applications

Theorem 1. For non-zero rational r, cosh r is irrational.

Proof. Suppose not. Suppose 2 cosh r = a/b where a/b is a rational number.
As 0 is not in the range of cosh, we can assume a/b 6= 0. Using the exponents
of 2 cosh = er + e−r, define

f(z) = d2p−1[(z + r)(z − r)]p = (dz)p−1(dz − c2)p

where r = c/d. Then f(z) is an integer polynomial. Next

0 = F (0)
(

er + e−r −
a

b

)

.
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Using Lemma 2
0 = bF (r) + bF (−r)− aF (0) + bε

and, using Lemmas 3, 4, and 5, this gives a contradiction.

As Lemma 3 applies to complex polynomials as well as real, the proof for
cos r is similar.

Theorem 2. For non-zero rational r, cos r is irrational.

Proof. Suppose not. Suppose 2 cos r = a/b where a/b is a rational number.
We exclude a/b = 0 as cos kπ/2 = 0 has cos with an irrational argument.
Using the exponents of 2 cos = eri + e−ri, define

f(z) = d2p+p−1zp−1[(z + ri)(z − ri)]p = (dz)p−1((dz)2 + c2)p

where r = c/d. Then f(z) is an integer polynomial. Next

0 = F (0)
(

eri + e−ri −
a

b

)

.

Using Lemma 2 and multiplying by b gives

0 = bF (ri) + bF (−ri)− aF (0) + bε

and, using Lemmas 3, 4, and 5, this gives a contradiction.

Note: As cos π = −1, Theorem 2 does imply that π is irrational. This
does imply that kπ/2 is also irrational – the case missing from Theorem 2.

Other functions

Once cos r and cosh r are proven irrational, sec r and sech r are easy conse-
quences, being reciprocals of these functions [6]. As cos 2r = cos2 r− sin2 r =
1 − 2 sin2 r, the rationality of sin r would imply that of cos, a contradiction.
Assume tan r is rational. Then using

cos 2r =
1 − tan2 r

1 + tan2 ,

cos r would be rational too, a contradiction. As csc r and cot r are the
reciprocals of sin r and tan r, the former two are proven irrational. Similarly,
the hyperbolic functions all follow the same program. Inverse functions have
an easy proof: if f−1(r) = a/b then f(f−1(r)) = r = f(a/b), a contradiction
of f(r) is irrational.
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