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Introduction

Niven shows that for rational, non-zero r, cos r and cosh r are irrational [6].
His method is similar to that of his famous irrationality of π proof: functions
are defined, integrals involving integration by parts are used, and a contra-
diction is arrived at [5]. Parks makes a similar argument, arguably simpler,
for the cosine case [7]. Zhou recently proved the cosine and hyperbolic co-
sine results using recursive integrals [8]. In this article, our pattern does
not involve integrals; just multiplication and derivatives of polynomials are
needed.

The pattern is to start with an exponential equation where a sum of
exponential values equals a rational number. So, for cosh this equation is
er + e−r = a/b. Then a polynomial, f , is defined. It has a zero root of
multiplicity p − 1, p a prime, and the exponents in the sum, r, −r, for
cosh, as additional roots of multiplicity p. Using exF (0) = F (x) + ε, proven
below, and simple multiplication, this gives 0 = F (0)(er + e−r − a/b) =
−a/bF (0)+F (r)+F (−r)+ ε. As the ε value grows power wise in the degree
of f and multiplicity in f translates into factorial values in F , division by
(p − 1)! gives a contradiction for large enough p. Details follow.

As the transform exF (0) = F (x) + ε is good for complex variables, as
well as real, the identity 2 cos r = eri + e−ri is similar to the pattern for cosh
and its identity 2 cosh r = er + e−r just given. Using other identities the
corresponding irrationality of other trigonometric and hyperbolic functions
are obtained. Corresponding results for inverses of these functions are easily
proven as well.

The methods used in this article are also used in [3, 4], giving the tran-
scendence of e, easiest, and π, hardest, respectively.
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Lemmas

Definition 1. Given a polynomial f(z), lowercase, the sum of all its deriva-
tives is designated with F (z), uppercase.

Definition 2. For non-negative integers n, let εn(z) denote the infinite series

z

n + 1
+

z2

(n + 1)(n + 2)
+ · · · +

zj

(n + 1)(n + 2) . . . (n + j)
+ . . . .

Lemma 1. If f(z) = czn, then

F (0)ez = F (z) + ε, (1)

where ε has polynomial growth in n.

Proof. As F (x) = c(xn + nxn−1 + · · · + n!), F (0) = cn!. Thus,

F (0)ex = cn!(1 + x/1 + x2/2! + · · · + xn/n! + . . . )

= cxn + cnx(n−1) + · · · + cn! + cxn+1/(n + 1)! + . . .

= F (x) + cxn(x/(n + 1) + x2/(n + 1)(n + 2) + . . . )

= F (x) + f(x)εn(x).

Now f(x) has polynomial growth in n and εn(x) ≤ ex, so the product has
polynomial growth in n.

Lemma 2. If F is the sum of the derivatives of the polynomial f(z) =
c0 + c1z + · · · + cnz

n of degree n, then

ezF (0) = F (z) + ε, (2)

where ε has polynomial growth in the degree of f .

Proof. Let fj(x) = cjx
j, for 0 ≤ j ≤ n. Using the derivative of the sum is

the sum of the derivatives,

F =

n
∑

k=0

(f0 + f1 + · · · + fn)
(k) = F0 + F1 + · · · + Fn,

where Fj is the sum of the derivatives of fj. Using Lemma 1,

exFj(0) = Fj(x) + ε (3)
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and summing (3) from k = 0 to n, gives

exF (0) = F (x) + nε.

As the finite sum of functions with polynomial growth in n also has polyno-
mial growth in n, we arrive at (2).

Lemma 3. If polynomial f(x) has root r of multiplicity p, then f (k)(r) = 0,
for 0 ≤ k ≤ p − 1 with each term of f (k), p − 1 < k ≤ n is a multiple of p!,
where n is the degree of f(x).

Proof. Suppose r = 0 then f(x) = xp(bnx
n + · · · + b0) has b0x

p as its term
with minimal exponent. Using the derivative operator, D(xn) = nxn−1,
repeatedly, we see the 0 through p−1 derivatives of f(x) will have a positive
exponent of x in each term. This implies that r = 0 is a root, as needed for
this case. Using the produce of p consecutive natural numbers is divisible by
p!, terms of subsequent derivatives will be multiples of p!, .

If r 6= 0, then f(x) = (x − r)pQ(x), for some polynomial Q(x). Let
g(x) = f(x + r) = xpQ(x + r). As g(k) = f (k) for all k, g(k)(0) = f (k)(r), and
the r = 0 case applies.

Lemma 4. If a and b are Gaussian integers and p is a prime, p > |a|, then

|a(p − 1)! + bp!| is a non-zero integer divisible by (p − 1)!, but not by p.

Proof. As a(p − 1)! + bp! is of the form A − B + (C − D)i with A − B 6= 0
or C − D 6= 0, both results follow.

Lemma 5. Let polynomial f(z) have root r = 0 of multiplicity p − 1 then,

for large enough p, p - |F (0)|.

Proof. We can write f(x) = xp−1(bjx
j + · · · + b0). The p − 1 derivative

is (p − 1)!b0 and, using Lemma 3, all subsequent terms of derivatives are
multiples of p!. Now if p > |b0|, then p - |F (0)|, using Lemma 4.

Applications

Theorem 1. For non-zero rational r, cosh r is irrational.
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Proof. Suppose not. Suppose 2 cosh r = a/b where a/b is a rational number.
As 0 is not in the range of cosh, we can assume a/b 6= 0. Using the exponents
of 2 cosh = er + e−r, define

f(z) = d2p−1[(z + r)(z − r)]p = (dz)p−1(dz − c2)p

where r = c/d. Then f(z) is an integer polynomial. Next

0 = F (0)
(

er + e−r −
a

b

)

.

Using Lemma 2
0 = bF (r) + bF (−r)− aF (0) + bε

and, using Lemmas 3, 4, and 5, this gives a contradiction.

As Lemma 3 applies to complex polynomials as well as real, the proof for
cos r is similar.

Theorem 2. For non-zero rational r, cos r is irrational.

Proof. Suppose not. Suppose 2 cos r = a/b where a/b is a rational number.
We exclude a/b = 0 as cos kπ/2 = 0 has cos with an irrational argument.
Using the exponents of 2 cos = eri + e−ri, define

f(z) = d2p+p−1zp−1[(z + ri)(z − ri)]p = (dz)p−1((dz)2 + c2)p

where r = c/d. Then f(z) is an integer polynomial. Next

0 = F (0)
(

eri + e−ri −
a

b

)

.

Using Lemma 2 and multiplying by b gives

0 = bF (ri) + bF (−ri)− aF (0) + bε

and, using Lemmas 3, 4, and 5, this gives a contradiction.
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Conclusion

Once cos r and cosh r are proven irrational, sec r and sech r are easy conse-
quences, being reciprocals of these functions [6]. As cos 2r = cos2 r− sin2 r =
1 − 2 sin2 r, the rationality of sin r would imply that of cos, a contradiction.
Assume tan r is rational. Then using

cos 2r =
1 − tan2 r

1 + tan2 ,

cos r would be rational too, a contradiction. As csc r and cot r are the
reciprocals of sin r and tan r, the former two are proven irrational. Similarly,
the hyperbolic functions all follow the same program. Inverse functions have
an easy proof: if f−1(r) = a/b then f(f−1(r)) = r = f(a/b), a contradiction
of f(r) is irrational.

One might wonder if Theorem 2 could be modified to allow for the a/b = 0
case. This would allow for a proof of the irrationality of π, a nice result. We
need F (0), but not necessarily that 0 is a root of f for Lemma 2 to work.
We need to ensure that

0 = F (0)(eri + e−ri) = F (ri) + F (−ri) + ε.

Using f(z) = d2p−1(z − ri)p−1(z + ri)p will do the trick. Note a benefit of
Lemma 2 over the use of the mean value theorem and real and complex
integrals to establish its validity, as in [1, 2], is just this: one of the roots can
assume the role of the odd power out, a multiplicity of p − 1.
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