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I. INTRODUCTION

Much physics theory is incomplete. People seek to predict undiscovered elementary particles, to describe
dark matter, and to characterize dark energy. Some physics theories seem disjointed. People seek theory
uniting quantum mechanics and gravity. This paper suggests looking beyond traditional approaches
to physics theory. This paper suggests a basis for theory that may lead to such predictions and such
uni�cation. This paper includes de�nitive predictions for undiscovered elementary particles and de�nitive
possible characterizations for dark matter and dark energy.
More speci�cally, we predict undiscovered elementary fermions, predict undiscovered elementary

bosons, and show models that correlate with electromagnetism and photons and with gravitation and
gravitons. Unlike traditional approaches, that part of work de-emphasizes motions of objects. We then
add, via symmetries correlating with conservation of momentum and conservation of angular momentum,
aspects regarding motion. By adding the symmetries and using aspects of the modeling basis, we provide
a non-traditional symmetry correlating with each of conservation of energy, a description of dark matter,
and a description of the stu� that correlates with the dark-energy density of the universe. The description
of quantum gravity points to forces that govern the rate of expansion of the universe and that correlate
with the three observed eras - initial accelerating expansion, subsequent decelerating expansion, and
present accelerating expansion.
Possibly, people can use this basis to produce a uni�ed theory for observationally known physics.

II. ONE PDE ISOTROPIC QUANTUM HARMONIC OSCILLATOR

This unit discusses mathematics correlating with partial di�erential equations relevant to isotropic
quantum harmonic oscillators.
Equations (1) and (2) correlate with QP-like isotropic quantum harmonic oscillators. The term QP-like

correlates with spatial or momentum-like and contrasts with QE-like, which correlates with temporal or
energy-like. Here, r denotes the radial coordinate and has dimensions of length. The parameter η has
dimensions of length. Here, D is a positive integer. Including for D = 1, each of equation (1), equation
(2), and the function Ψ pertains for 0 < r < ∞. The parameter η is a non-zero real number. The term
PDE abbreviates the phrase partial di�erential equation.

ξΨ(r) = (ξ′/2)(−η2∇2 + η−2r2)Ψ(r) (1)

∇2 = r−(D−1)(∂/∂r)(rD−1)(∂/∂r)− Ωr−2 (2)

We consider solutions of the form equation (3) shows. The magnitude |η| correlates with a scale length.
We de-emphasize the traditional case for which D = 1, the function Ψ pertains for −∞ < r <∞, Ω = 0,
and solutions include factors that are Hermite polynomial functions of r.

Ψ(r)∝(r/η)ν exp(−r2/(2η2)), with η2 > 0 (3)

Equations (4) and (5) characterize solutions. The parameter η does not appear in these equations.

ξ = (D + 2ν)(ξ′/2) (4)

Ω = ν(ν +D − 2) (5)

Work above uses the presence of Ω to summarize aspects pertaining to angular coordinates. Traditional
math pertaining to angular coordinates results in equation (6) and, therefore, in equation (7).

2ν is an integer (6)

4Ω is an integer (7)
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The set of solutions to which work above points is too broad for our work. We de-emphasize solutions
that do not normalize.
We consider normalization with respect to D∗ dimensions. A factor r(D

∗−1) correlates with the expres-
sion

´
r(D

∗−1)dr. A factor r2νcorrelates with Ψ∗Ψ. For r → 0+, the integrand behaves like r(D
∗−1)+2ν .

The following three possibilities pertain.

• For D∗ + 2ν > 0, normalization occurs for any η2 > 0. We correlate solutions that correlate with
this case with the term volume-like.

• For D∗ + 2ν = 0, normalization occurs only in the limit η2 → 0+. We correlate solutions that
correlate with this case with the term point-like.

� For D∗ = 1 and ν = −1/2, relevant math correlates with an expression for a delta function.
Note equation (8). Noticing that −r2/(2η2) + {−r2/(2η2)} = −r2/(η2), we correlate η2 with
4ε. We correlate r2 with x2. People use equation (8) with the domain −∞ < x < ∞. We
use the domain 0 < x < ∞ and posit that the answer to the question of whether a function
normalizes does not depend on our choice of domain.

δ(x) = lim ε→0+(1/(2
√
πε))e−x

2/(4ε) (8)

� Similar normalization results pertain for other positive integer values ofD∗ and negative integer
values of 2ν for which D∗ + 2ν = 0.

• For D∗ + 2ν < 0, normalization fails. We de-emphasize solutions that do not normalize.

III. THE FOUR TRADITIONAL FUNDAMENTAL PHYSICS FORCES

This unit explores the concept that models based on one isotropic harmonic oscillator might correlate
with the four traditional fundamental physics forces.
Equations (9), (10), (11), and (12) re-express equations (1) and (2). Here, ~ is Planck's constant

(reduced) and τt is an as yet undetermined non-zero time. Each of equations (10), (11), and (12) shows
an operator with dimensions of square of energy. We consider that Ψ(r) pertains for a non-zero-mass
object or particle that provides a component of a composite particle, atomic nucleus, atom, or neutron
star. For example, for a composite particle, Ψ(r) correlates with a model pertaining to a quark. For
an atomic nucleus Ψ(r) correlates with a nucleon. For an atom, Ψ(r) correlates with an electron. For
purposes of this discussion, we assume that the particle has zero magnetic moment and zero spin. For
D = D∗ = 3, this system of equations correlates with a simple model for squares of potential. We
consider solutions of the form equation (3) shows. For cases in which the strong interaction pertains,
equation (10) provides the long-distance behavior of the square of the potential correlating with the
strong interaction. For cases in which the strong interaction does not play much a role, equations (13)
and (14) pertain. Equation (11) provides for the long-distance behavior of the square of the potential
correlating with the electromagnetic and/or gravitational interaction. Equation (15) correlates Ω with
an orbital angular momentum correlating with the state occupied by the object or particle. Here, 2ν is a
non-negative even integer and L is a non-negative integer. For solutions of the form equation (3) shows,
V2,ST |WE|EM |GR provides terms that are the negatives of the results of operators V2,ST and V2,EM |GR
provide. Other terms correlating with V2,ST |WE|EM |GR exist and correlate with equation (16). For the
cases we consider, the weak interaction is short-ranged and the constant long-range term V2,WE , which
correlates with the square of a potential and with zero long-range force, pertains.

(~2/(τt)2)(2ξ/ξ′)Ψ(r) = (V2,ST |WE|EM |GR + V2,EM |GR + V2,ST )Ψ(r) (9)

V2,ST = (~2/(τt)2)η−2r2 (10)

V2,EM |GR = (~2/(τt)2)η2Ωr−2 (11)

V2,ST |WE|EM |GR = (~2/(τt)2)(−η2)r−(D−1)(∂/∂r)(rD−1)(∂/∂r) (12)
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ξ′η−2 → 0+ (13)

ξ′η2 is a positive constant (14)

Ω = L(L+ 1), with L = ν (15)

V2,WE ∝ (~2/(τt)2)(D + 2ν) = (~2/(τt)2)(3 + L) (16)

Work just above is quadratic in energy. Aspects of other physics models that feature terms quadratic
in energy include the stress-energy tensor in general relativity, the Klein-Gordon equation in quantum
mechanics, E2 = (mc2)2 + (Pc)2 in special relativity, and the electromagnetic stress-energy tensor.
Regarding the hydrogen atom, work above can produce the same set of principle quantum numbers

and the same number of states per principle quantum number as a Schrodinger-equation-based approach
produces. In its simplest form, each approach features orbital angular momentum, ignores electron
magnetic moment and spin, ignores any magnetic �eld associated with the nucleus, and ignores spin-
orbit coupling. In each case, for electrons and for a principle quantum number N that is a positive
integer, one can invoke the Pauli exclusion principle and correlate 2N2 states with the principle quantum
number. A key concept is that each of the set of principle quantum numbers and the numbers of states
correlates with the Laplacian.

IV. SOME ELEMENTARY PARTICLES

This unit explores the concept that models based on one isotropic quantum harmonic oscillator might
correlate with the existence in nature of some non-zero-mass elementary particles.
Equations (1) through (7) include solutions for which equations (17), (18), and (19) pertain. Here, 2S

is a non-negative integer.

Ω = σS(S +D − 2) (17)

σ = ±1 (18)

ν < 0 (19)

Each known elementary particle has a spin S~ that comports with equations (20) and (21).

S(S + 1) = S(S +D∗ − 2) (20)

D∗ = 3 (21)

Table I shows solutions for which 2ν is an odd negative integer and equations (19) and (21) pertain.
For each row in the table, we use the radial component of a D-dimensional solution as the radial solution
of a D∗-dimensional solution and then add angular coordinates correlating with D∗ = 3 dimensions.
For each row in the table, Ω and σ pertain to the D-dimensional solution. For each row in the table,
the D-dimensional radial solution and the D∗-dimensional radial solution share a common value of S
and share a common value of |Ω|. D∗-dimensional solutions for which ν = −1/2 are volume-like. D∗-
dimensional solutions for which ν = −3/2 are point-like. The right-most two columns propose correlating
families of elementary particles with solutions. The symbol Σ denotes 2S. The symbol Φ denotes an
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Table I. Fermion-centric PDE solutions
D∗ ν D∗ + 2ν S Ω σ D D D + 2ν 2S + 1 ΣΦ

(m 6= 0) (m ≈ 0)
3 −1/2 2 1/2 3/4 +1 (5− 4Ω)/2 1 0 2 1C 1N
3 −1/2 2 1/2 −3/4 −1 (5− 4Ω)/2 4 3 2 1Q 1R
3 −1/2 2 3/2 −15/4 −1 (5− 4Ω)/2 10 9 4 (3Q) (3R)
3 −1/2 2 ...
3 −3/2 0 3/2 15/4 +1 (21− 4Ω)/6 1 −2 4 (3C) (3N)
3 −3/2 0 1/2 3/4 +1 (21− 4Ω)/6 3 0 2 1C 1N
3 −3/2 0 1/2 −3/4 −1 (21− 4Ω)/6 4 1 2 1Q 1R
3 −3/2 0 3/2 −15/4 −1 (21− 4Ω)/6 6 3 4 (3Q) (3R)
3 −3/2 0 ...

Table II. Relationships between some PDE parameters for ΣW, ΣH, and ΣO solutions

D∗ ν D∗ + 2ν S Ω σ D D D + 2ν 2S + 1 ΣΦ
3 −1 1 1 2 +1 3− Ω 1 −1 3 2W
3 −1 1 0 0 +1 3− Ω 3 1 1 0H
3 −1 1 0 0 −1 3− Ω 3 1 1 (0O)
3 −1 1 1 −2 −1 3− Ω 5 3 3 2O
3 −1 1 2 −6 −1 3− Ω 9 7 5 (4O)
3 −1 1 ...

abbreviation for family name. The symbol m denotes mass. The C family includes the known charged
leptons and no other particles. The N family includes the known neutrinos and no other particles. The
1Q particles include the known quarks and no other particles. We point to the possibility that nature
includes 1R particles. Elsewhere, we discuss reasons correlating with the notion that nature might not
include elementary fermions for which Σ ≥ 3. (See reference [2].) Below, we discuss the topic of the extent
to which neutrinos have non-zero-mass. (See subsection VIIIA.) We assume that volume-like solutions
correlate with �eld-like constructs and that point-like solutions correlate with particle-like constructs.
We assume that the lack of a volume-like solution that would correlate with 3C and 3N correlates with
the notion that the point-like solution that correlates with 3C and 3N is not physics-relevant.
Table II shows solutions for which 2ν is an even negative integer and equations (19) and (21) pertain.

Solutions for which ν = −1 are volume-like. The right-most column proposes correlating families of
elementary particles with solutions. The W family includes the known Z and W bosons and no other
particles. The H family includes the known Higgs boson and no other particles. We think that, for the
purposes of elementary-particle physics, the 0O solution is the same as the 0H solution. We point to the
possibility that nature includes 2O particles. Elsewhere, we discuss reasons correlating with the notion
the nature might not include non-zero-mass elementary bosons for which Σ ≥ 4 and we discuss the topic
of the point-like solutions for non-zero-mass elementary bosons. (See reference [2] and subsection VIIIG.)
Assuming that one counts antiparticles as being distinct from particles and that one ignores results for
rows that correlate with parenthesized ΣΦ, the column labeled 2S+1 provides the number of elementary
particles correlating with ΣΦ.

V. PERSPECTIVE, ISOTROPIC PAIRS OF ISOTROPIC QUANTUM HARMONIC
OSCILLATORS, AND TRANSITION

This unit notes some aspects of physics that work above does not address and summarizes ways to
address some of those aspects.
We note some aspects of physics that work above does not address. Work above does not address

motion and does not explicitly dovetail with either special relativity or general relativity. The work does
not explicitly discuss energies for states of, for example, electrons in atoms. Work above regarding the
elementary particles that nature includes or may include does not explicitly address zero-mass elementary
bosons, fermion generations, or the notion that that nature includes twice as many quarks as charged
leptons. The work does not explicitly discuss relative magnitudes, for various elementary particles, of
properties such as charge and mass.
We think that work above points to promise for using models based on isotropic quantum harmonic

oscillators to catalog and describe elementary particles and their properties. Reference [2] explores using
isotropic pairs of isotropic pairs of isotropic quantum harmonic oscillators. As above, one oscillator in a
pair correlates with notions of space-like. The other oscillator in a pair correlates with notions of time-



6

like. While work above correlates with PDE models, work in reference [2] uses PDE results and adds
results based on ALG models. The letters ALG abbreviate the word algebraic.
The following equations show aspects of an ALG isotropic pair of isotropic quantum harmonic oscilla-

tors. Equations (22) and (23) show aspects of a QE-like isotropic quantum harmonic oscillator. QE-like
denotes temporal or energy-like. Equations (24) and (25) show aspects of a QP-like isotropic quantum
harmonic oscillator. QP-like denotes spatial or momentum-like. Equation (26) shows aspects of the
isotropic pair of isotropic quantum harmonic oscillators. Based on the equality that equation (26) fea-
tures, we use the word solution to correlate with a relevant construct correlating with one non-negative
integer NQE|..., one non-negative integer NQP |..., and the relevant set of integers nEj and nPj . For all
uses of the equation A = 0, a concept similar to double-entry bookkeeping pertains. For example, adding
one to an nEj requires adding one to an nPj . Equation (27) follows from equation (26).

AQE = Σ
NQE|...−1
j=0 (nEj + 1/2), for NQE|... ≥ 1 (22)

AQE = 0, for NQE|... = 0 (23)

AQP = Σ
NQP |...−1
j=0 (nPj + 1/2), for NQP |... ≥ 1 (24)

AQP = 0, for NQP |... = 0 (25)

0 = A =AQE −AQP (26)

|NQE|... −NQP |...| is an even integer (27)

Reference [2] uses ALG models to achieve the following. Count numbers, including generations, of
fermions within each fermion family. Include solutions correlating with zero-mass bosons. Discuss the
topic of which bosons interact with which fermions. Introduce a concept, which applies for some boson-
fermion interactions and not for other boson-fermion interactions, of conservation of fermion generation.
(For example, for a su�ciently isolated interaction between an incoming charged lepton and an incom-
ing W boson, the outgoing neutrino has the same generation as the incoming charged lepton.) Predict
charges for the 2O bosons. Dovetail with charge-centric and magnetic-moment-centric aspects of electro-
magnetism and photons. Dovetail with and predict aspects of gravitation, gravitons, and changes in the
rate of expansion of the universe.
Reference [2] uses hybrid ALG-and-PDE models to achieve the following. Extrapolate from masses of

the H0 (or, Higgs) boson, Z boson, and W bosons to predict masses for 2O bosons.
Reference [2] uses ALGmodels to incorporate, via symmetries, conservation of momentum, conservation

of angular momentum, and motion. Symmetries resulting from this work show that results correlate with
either special relativity or general relativity. Symmetries correlating with conversation of energy suggest
de�nitions and explanations for dark matter and for dark-energy stu�.
Below, we summarize such results.

VI. KNOWN AND POSSIBLE ELEMENTARY PARTICLES

This unit summarizes results regarding elementary particles. We use the acronym CUSP to correlate
with our work. CUSP abbreviates the phrase concepts uniting some physics.
Table III alludes to all known elementary particles and to possible other elementary particles. For each

row for which the known-particles entry is not blank, people have found all of elementary particles to
which CUSP points. For each row for which the known-particles entry is blank, people have found none
of the possible elementary particles to which CUSP points. The column labeled Φ provides a family name
that pertains to the relevant elementary particles and to mathematical solutions that CUSP correlates
with the particles. The column labeled S lists spins. Regarding the ΣΦ column, Σ = 2S. We use a symbol
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Table III. Numbers of elementary particles and/or modes

Known particles Φ S ΣΦ G-family modes Matter/antimatter
particles

Matter
particles

nP0 σ

Higgs boson H 0 0H 1 0 0 +1
Charged leptons C 1/2 1C 0 3 0 +1

Neutrinos N 1/2 1N |← ... π0,3 ... →| −1 +1
Z and W bosons W 1 2W 1 1 0 +1

Photon G 1 2γ 2 1 ≤ −1 +1
G 2 4γ 2 1 ≤ −1 +1
G 3 6γ 2 1 ≤ −1 +1
G 4 8γ 2 1 ≤ −1 +1

Quarks Q 1/2 1Q 0 6 0 −1
R 1/2 1R 0 6 −1 −1

Gluons Y 1 2Y 0 8 −1 −1
O 1 2O 1 1 0 −1

of the form Σγ for each of the four G-family particles the table lists. Each of these particles correlates
with a set of more than one G-family solution, with each such solution being of the form ΣGΛ for some
Λ. For each G-family particle, two modes exist. One mode is left-circularly polarized. The other mode
is right-circularly polarized. We propose that 4γ correlates with the term graviton. The table shows, in
the column labeled matter/antimatter particles, the number of particles that people would consider not
to correlate with either matter or antimatter. Each of the particles is its own antiparticle. Examples
include the Higgs boson and the Z boson. A Dirac-fermion neutrino correlates, with respect to table
III, with zero matter/antimatter particles and with one matter particle. A Majorana-fermion neutrino
correlates, with respect to table III, with one matter/antimatter particle and zero matter particles. (See
subsection VIII B.) In the table, πj′,j′′ denotes the concept that j

′ pertains for one of the two relevant
columns and j′′ pertains for the other of the two relevant columns. The table shows, in the column
labeled matter particles, the number of particles that people would consider to be matter particles. For
each matter particle, there is an antimatter particle. An example is the W boson, regarding which people
consider each of the W− and W+ bosons to be the antiparticle of the other particle. Table III does
not take into account some G-family solutions that are possibly physics-relevant. Some of the G-family
solutions that the table does not take into account correlate with anomalous moments, such as anomalous
magnetic dipole moments that people correlate with elementary particles. (See subsection VIIIM.) Such
anomalous moments correlate with circumstances in which elementary particles are components of entities
that are not single elementary particles. Each particle for which nP0 = 0 has non-zero mass. Each boson
particle for which the table states that nP0 ≤ −1 has zero mass. We discuss neutrino masses below. (See
subsection VIIIA.) For each Σγ the table lists, the G-family solution ΣGΣ pertains and correlates with
nP0 = −1. For each Σγ the table lists, at least one other G-family solution ΣGΛ pertains and correlates
with nP0 ≤ −2. For each Σγ the table lists, the G-family solution ΣGΣ correlates with a monopole
interaction. For example, 2G2 is a component of 2γ and correlates with interactions based on electric
charge. 2G24 is a component of 2γ and correlates with nP0 = −2 and with a dipole interaction. For
a model, of an object, that includes a non-zero magnetic dipole moment for the object and that does
not base that magnetic dipole moment on motions of charges within the object, 2G24 correlates with
e�ects that correlate with the magnetic dipole moment of the object. (For the moment we note, but
do not dwell on, the notion that 2γ also includes a quadrupole term. Such a term can correlate with
a familiar property of the earth. For the earth, the axis of spin and the axis correlating with magnetic
dipole moment do not align with each other. A quadrupole moment pertains. The relevant G-family
solution is 2G248.) For each elementary particle for which σ = +1, the term free-ranging pertains. For
each elementary particle for which σ = −1, the term free-ranging does not pertain.

Table IV lists elementary particles CUSP predicts.

Equation (28) shows relative magnitudes of charges for known and predicted elementary particles
correlating with non-zero charge. The 2O1 and 2O2 particles would have opposite charges. The 2O0
particle would have zero charge.

1C : 1Q(some) : 1Q(some) : W : 2O1 : 2O2 :: 3 : 2 : 1 : 3 : 1 : 1 (28)

Equation (29) shows relative squares of approximate masses for known and predicted elementary bosons
correlating with non-zero mass. (Regarding accuracy of ratios correlating with known particles, see
subsection VIIIH.)
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Table IV. Predicted elementary particles

Possible elementary particles

• One 4γ elementary boson. This particle has zero mass, correlates with spin-2, and
has two polarization modes. We propose that this particle correlates with the term
graviton.

• One 6γ elementary boson. This particle has zero mass, correlates with spin-3, and
has two polarization modes.

• One 8γ elementary boson. This particle has zero mass, correlates with spin-4, and
has two polarization modes.

• Six 1R elementary fermions. Each particle is a zero-mass or low-non-zero-mass,
zero-charge, spin-1/2 counterpart to one quark. For each 1R particle, a distinct
antiparticle exists. 1R particles can exist within composite particles. 1R particles
do not correlate with the term free-ranging.

• Two 2O elementary bosons. Each particle is a non-zero-mass, spin-1 counterpart to
one spin-1 weak-interaction boson. The 2O counterpart to the Z boson has zero
charge. This 2O particle is its own antiparticle. A 2O counterpart to a W boson
has one-third the charge of the W boson. For this 2O particle, a distinct
antiparticle exists and has negative one-third the charge of the same W boson. 2O
particles can exist within composite particles. 2O particles do not correlate with
the term free-ranging.

H0 : Z : W : 2O0 : 2O1 : 2O2 :: 51 : 27 : 21 : 9 : 7 : 7 (29)

VII. ORDINARY MATTER, DARK MATTER, AND DARK ENERGY

This unit describes similarities and di�erences among ordinary matter, dark matter, dark-energy stu�,
and dark-energy forces.
We distinguish among four phenomena - ordinary matter, dark matter, dark-energy stu�, and dark-

energy forces (or, pressure).
We correlate e�ects of dark-energy forces with phenomena that people correlate with phrase rate

of expansion of the universe. These forces correlate primarily with components of 4γ. Phenomena
correlating with the three words rate of expansion correlate primarily with components for which the
SDFs (or, spatial dependences of forces) are r−5, r−4, and r−3. (Here, r correlates with a distance from
a center-of-property for an object.) SDFs of r−5, r−4, r−3, and r−2 correlate, respectively with the terms
octupole, quadrupole, dipole, and monopole. Each SDF equals the rnP0−1 correlating with one or more
relevant G-family solutions. We consider the largest astrophysical objects of which people know. Based
respectively on initial accelerating expansion of the universe, subsequent decelerating expansion, and
recent accelerating expansion, CUSP suggests that the two r−5 components of 4γ mediate a repulsive
force, the one r−4 component of 4γ mediates an attractive force, and the one r−3 component of 4γ
mediates a repulsive force.
Regarding observations and data, we correlate with the two-word term ordinary matter the acronym

OMS (for ordinary-matter stu�). We correlate with the two-word term dark matter the acronym DMS
(for dark-matter stu�). We correlate the acronym DES with the term dark-energy stu�. Each of OMS,
DMS, and DES contributes to e�ects people correlate with the term density of the universe.
CUSP suggests that each of dark matter and dark-energy stu� consists primarily of copies of some

ordinary-matter elementary particles and all ordinary-matter composite particles. Regarding each copy,
we use the term ensemble. Table V summarizes results regarding particles, solutions, and ensembles.
(See, table III and discussion related to table III.) Each ensemble includes a set of 0H, 1C, and 1N
elementary particles. Each ensemble includes a set of all possible composite particles, including 1Q∪2Y
composite particles and possibly including, for example, 1Q∪2O composite particles. Known composite
particles include the pion and the proton. All known composite particles are of the type 1Q∪2Y. Each
ensemble includes its own copy of the 2G2 and 2G24 components of 2γ (or, photons). Instances of
some solutions correlate with more than one ensemble. For example, consider the 4G4 solution, which
is a component of 4γ (or, gravitons). 4G4 is the only component of 4γ for which the SDF is r−2. An
instance of 4G4 correlates with gravitational interactions between entities correlating with six ensembles.
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Table V. Particles and/or solutions that correlate with one ensemble and particles and/or solutions that might
correlate with more than one ensemble

σ Particle sets and/or solution sets One instance Span
correlates with (ensembles

2016 Standard Model Possible one ensemble per instance)
+1 1C, 1N - Yes 1
+1 0H - � �

Composite particles
(1Q∪2Y)

Composite particles
(other)

� �

+1 2G2∪2G24 6G24, ΣG246, ΣG2468 � �
+1 - 8G8 � �
+1 - 4G4 No 6
+1 - Other G-family � 2 or 6
+1 2W - � 6
−1 2Y 2O � 6
−1 1Q 1R � 8

Regarding interactions, we say that each instance of 2G2∪2G24 has a span of one ensemble and that each
instance of 4G4 has a span of six ensembles. Each of 2γ and 4γ includes components with spans greater
than one. (For example, 2G248 is a component of 2γ. The span correlating with the 2G248 solution is
six. The solution correlates, in table V, with the term other G-family.) The correlation of 1Q with more
than one ensemble, from a standpoint of modeling, is mathematically useful, and, from a standpoint of
observable phenomena, is not necessarily physics-relevant.

Based on symmetries that CUSP dovetails with traditional physics conservation laws and kinematic
symmetries, CUSP suggests that the universe includes 48 ensembles. (See subsection VIII E.) Ordinary
matter (or, OMS) correlates with one ensemble. Regarding this ensemble, we use the acronym OME,
for ordinary-matter ensemble. Dark matter (or, DMS) correlates with the �ve ensembles that interact
with the instance of 4G4 that interacts with the OME. Regarding the �ve dark-matter ensembles, we
use the acronym DME, for dark-matter ensemble (or ensembles). Possibly, this explanation adequately
comports with inferred ratios of density of dark matter to density of ordinary matter. (Regarding the
ratios, see data that reference [3] provides.) Dark-energy stu� (or, DES) correlates with the remaining 42
ensembles. Regarding the 42 dark-energy ensembles, we use the acronym DEE, for dark-energy ensemble
(or ensembles). Possibly, CUSP explains, at least qualitatively, a perceivable gap between predicted and
inferred ratios of density of DES to density of OMS∪DMS. Inferred ratios grow, since the big bang, from
zero to about 2.2. (Regarding the number 2.2, see data that reference [3] provides.) CUSP provides
the notion that the actual ratio is seven-to-one. CUSP provides the notion that impacts of DES on
observations from which people infer densities of DES are indirect and adequately slow to account for
results that are less than seven-to-one.

Each non-OME ensemble features elementary particles that are essentially identical to OME elementary
particles. Di�erences between ensembles might occur with regard to which one of matter (by some
de�nition) and antimatter (by the same de�nition) dominates. People can, in essence, envision dark
matter and dark-energy stu�. People might consider the possibility that, for any DME or DEE, adequately
physics-savvy beings exist. Here, adequately physics-savvy denotes having at least as much knowledge
of physics as people have. Between any two ensembles, the relationship of being or not being the other
ensemble's dark matter is reciprocal. Thus, from our perspective, adequately physics-savvy DME beings
would consider our OME (including us) to be made of what those DME beings would consider to be dark
matter. Between any two ensembles, the relationship of being or not being the other ensemble's dark
energy-stu� is reciprocal.

VIII. NOTES

This unit provides some details regarding concepts previous units discuss and summarizes some CUSP
results for some topics for which units above do not provide much information. Elsewhere, we discuss
these results and other in more detail. (See references [2] and [1].)
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A. Neutrino masses

CUSP points to interactions that would catalyze neutrino oscillations, even if each �avor of neutrino
has zero mass. CUSP suggests that, for models that consider that gravitational interactions correlate
with an energy-and-momentum m-tensor with m≥ 1, zero-mass neutrinos need not be inconsistent with
astrophysical data that people interpret as suggesting that non-zero masses pertain for at least some
neutrinos. For elementary bosons, nP0 ≤ −1 correlates with zero mass. For neutrinos, nP0 = −1
pertains. Nevertheless, we think CUSP models can be compatible with either no or some non-zero mass
neutrino �avors.

B. 2O particles, baryon asymmetry, and one aspect of the topic of Dirac and/or Majorana
neutrinos

Perhaps, early in the universe, the number of antimatter charged leptons equaled the number of matter
charged leptons and the number of antimatter quarks equaled the number of quarks. If so, charged 2O
leptons may have converted antimatter quarks into matter quarks and W bosons could have converted
antimatter charged leptons into neutrinos and converted neutrinos into matter charged leptons. To the
extent neutrinos behaved as Dirac fermions, cosmic background neutrinos would include more antimatter
neutrinos than matter neutrinos.

C. Threshold energies for producing 2O bosons

Possibly, people can produce 2O bosons only by producing 1Q∪2O composite particles or 1R∪2O
composite particles. We predict masses for 2O bosons. (See equation (29).) We do not predict minimum
energies needed to produce 1Q∪2O composite particles or 1R∪2O composite particles.

D. SU(3)× SU(2)× U(1) boson symmetries

CUSP correlates SU(3) × SU(2) × U(1) boson symmetries and electroweak symmetry breaking with
each of interaction-centric aspects of models and instance-centric (or span-centric) aspects of models. The
Standard Model development of SU(3)×SU(2)×U(1) boson symmetries correlates with interactions. The
Standard Model does not include instance-centric aspects. 2O bosons would correlate with interaction
symmetries and instance symmetries similar to interaction symmetries and instance symmetries correlat-
ing with 2W bosons. People might be able to add straightforwardly 2O bosons to the elementary-particle
Standard Model.
Aspects of SU(3)×SU(2)×U(1) boson symmetries may correlate with a possible narrative in which the

�rst elementary-particle states populated during the big bang correlate with speci�c G-family solutions,
some of which are components of 2γ (or, photons) and some of which are components of 4γ (or, gravitons).

E. Symmetries correlating with traditional conservation laws and with numbers of ensembles

In traditional physics, each of conservation of momentum and conservation of angular momentum
correlates with an SU(2) symmetry and three generators. In CUSP ALG modeling for free-ranging
elementary particles, each of conservation of momentum and conservation of angular momentum correlates
with an SU(2) symmetry and with a pair of harmonic oscillators that comprise the QP-like isotropic
quantum harmonic oscillator. For CUSP models that correlate with special relativity, boost correlates
with an SU(2) symmetry and a QP-like pair of harmonic oscillators. For CUSP models that correlate
with general relativity, boost-related symmetry does not pertain; a U(1) symmetry pertains and correlates
with two QP-like harmonic oscillators. Each of the above-mentioned harmonic oscillators is interaction-
centric. CUSP adds the relevant six QP-like (or, interaction-centric) harmonic oscillators to ALG models
for the properties of free-ranging particles. In traditional physics, conservation of energy correlates
with a one-generator symmetry. In CUSP ALG modeling for free-ranging elementary particles, single-
ensemble models correlate conservation of energy, with one QE-like harmonic oscillator, and with a one-
generator symmetry. For single-ensemble models for free-ranging elementary particles, Poincare-group
symmetries pertain for models that correlate with special relativity. The double-entry bookkeeping
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Swap Swap Swap pertains
(for each odd j′ for the

and transformation
with j′′ = j′ + 1) T C P
nEj′′ and nEj′ - Yes Yes No

- nE0 and nP0 No No No
nPj′ and nPj′′ - No Yes Yes

Table VI. C, P, and T transformations

aspect of CUSP ALG models correlates with a need to add, to ALG models for the properties of free-
ranging particles, six QE-like (or, instance-centric) oscillators. CUSP considers a set of seven QE-like
(or, instance-centric) oscillators. The set includes the six QE-like oscillators that, in e�ect, provide
double-entry balance correlating with the six added QP-like (or, interaction-centric) oscillators. The set
includes the one QE-like oscillator that correlates with single-ensemble conservation of energy. CUSP
multi-ensemble models correlate conservation of energy with those seven QE-like (or, instance-centric)
harmonic oscillators, an SU(7) symmetry, 48 generators, and 48 ensembles. Regarding the kinematics
of free-ranging composite particles and the number instances of free-ranging composite particles, CUSP
assumes that similar thinking and results pertain. (See table V.) Regarding instances and spans for
elementary particles for which σ = −1, CUSP develops results, that table V shows, by using double-
entry principles. For example, regarding each of the known 1Q and 2Y particles, a complete set of
Poincare-group symmetries does not pertain. However, for 1Q∪2Y composite particles and under the
assumption that such particles contain at least two quarks, 1Q and 2Y symmetries combine to produce (for
models correlating with special relativity) Poincare-group interaction-centric symmetry for the composite
particles and to produce instance-centric symmetries that correlate with the span, for 1Q, that table V
shows. (See subsection VIIIM.)

F. CPT symmetries

For ALG models, table VI pertains. CPT symmetry pertains throughout CUSP.

G. Point-like solutions for and relative masses of non-zero-mass elementary bosons

CUSP discusses point-like solutions for elementary bosons. (See reference [2].) Aspects of such solutions
correlate with results equation (29) shows.

H. Relative masses of known non-zero-mass elementary bosons

As of the year 2016, of the masses of H0, Z, and W bosons, people knew most accurately the mass of
the Z boson. (For data, see reference [3].) Equation (29) predicts the mass of H0 to accuracy of about
one standard deviation, based on 2016 data. Equation (29) predicts the mass of W to accuracy of about
2.3 standard deviations, based on 2016 data.

I. Relative masses of some elementary fermions

Equation (30) possibly pertains. Here, m denotes mass, τ denotes tauon, e denotes electron, q denotes
charge, ε0 denotes the vacuum permittivity, and GN denotes the gravitational constant. Based on 2016
data, equation (30) predicts a tauon mass with a standard deviation of less than one quarter of the
standard deviation correlating with the experimental result. (For data, see reference [3].) Possibly, more
accurate experimental determination of the tauon mass could predict a more accurate, than experimental
results, value for the gravitational constant, GN .

(4/3)× (mτ/me)
12 = ((qe)

2/(4πε0))/(GN (me)
2) (30)
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J. Sums of energies of photon ground states

Equation (26) pertains throughout CUSP. Regarding correlating CUSP models with special relativity,
people might correlate E2 (or, energy squared) with AQE . People might correlate with AQP one of
(mc2)2, for objects having non-zero mass, or (Pc)2, for elementary particles having zero mass. Double-
entry bookkeeping pertains. For example, excitation by one unit of a photon mode adds one unit of E2

to the AQE for that mode, adds one unit of (Pc)2 to the AQP for that mode, and preserves A = 0 for
that mode. The sum of A across all elementary-particle states is zero. Possibly, CUSP models obviate
possible needs to consider sums of photon ground-state energies and to consider the possible in�nity in
which such a sum might result.

K. The Planck length

Possibly, CUSP models attribute no physics-relevance to the Planck length. (See subsection VIII J.)

L. Geodesic motion

Consider a thought experiment. For simplicity, assume that the sun is spherically symmetric and does
not rotate. Consider an OME photon for which the sun's gravity bends the trajectory of the photon.
CUSP correlates the bending with e�ects correlating with the OME∪DME instance of 4G4. Consider a
DEE photon that starts on the same trajectory as the OME photon traverses. The OME∪DME instance
of 4G4 does not a�ect the trajectory of the DEE photon.
CUSP suggests that the concept of geodesic motion correlates with applications of models based on

general relativity and does not correlate with space-time geodesics.

M. Possible alternatives to QED and QCD

Work that section III discusses may point to possibilities for approaches that would be alternatives to
QED (or, quantum electrodynamics) and QCD (or, quantum chromodynamics). For example, regarding
QED, reference [2] shows the possibility that a sum of a few terms, each correlating with a G-family
solution, might correlate with the anomalous magnetic dipole moment of a charged lepton. For example,
regarding QCD, reference [2] develops results based on the notion that symmetries correlating with
special relativity or general relativity pertain to a free-ranging composite particle but do not necessarily
pertain regarding kinematics of elementary-fermion components of a free-ranging composite particle or
regarding kinematics of elementary-boson components of a free-ranging composite particle. Possibly,
CUSP-based alternatives to QED and QCD would obviate or reduce needs to consider techniques such
as renormalization.

IX. CONCLUDING REMARKS

This unit provides future-oriented perspective regarding aspects of this work.
We think that this work provides, at least, precedent and impetus for people to try tackle an agenda to

unite much physics; make predictions regarding elementary particles; and explain aspects of sub-atomic
physics, atomic physics, astrophysics, and cosmology. This work may provide a means to tackle such an
agenda. This work may provide progress toward ful�lling that agenda.
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