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Abstract

Do Stokes and Gauss’s theorems from Vector Analyses hold also in curved spacetime (or in the

curved coordinates of a flat manifold)? These theorems (especially the Gauss’s or the ”Divergence”

theorem) are ones of the utmost importance, especially for theoretical astrophysics. My opinion is

in the file. Can you tell me what journal will accept this ”nonsense”?

It is too good to be true. But it is true: the continuity equation of the four-current in flat

spacetime Jν, ν = 0 has the obvious form in curved spacetime (or the curved coordinates in flat

spacetime) (Jν; ν = 0) without loosing its physical meaning! It means, what our successful research

team have found the new conservation law, and the other amazing conservation laws possibility.

Is interesting: does this hold (especially the conservation of rest-mass) in the Poincare Gauge

Gravity? c©
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The happy students of Prof. Risto Tammelo - the former head of Theoretical Physics in

our University have learned the following formula:∮
S

~A~σ =
∫ ∫ ∫

div ~A dV

in the flat Euclidean Universe with metric ds2 = dx2 + dy2 + dz2. Hereby dV = dx dy dz,

the ~σ is the vectorized surface element of the closed surface S. The integration on the right

is throughout the inner of this surface S. It is the Gaussian Theorem. In the index notation

it looks like ∮
Ai σi =

∫ ∫ ∫
Ak, k dV .

Here and after the index ”, u” means a partial derivative, but index ”; u” means the co-

variant derivative (the one, which uses Christoffel Symbols Γνµα. They are used, if there is a

curviness in the problem). It is derived from the definition of the divergence: divA = Ak, k.

Note, what it is not derivable from Ak, k = 0. Here the k takes all available values in this

universe and the expression is scalar, ie. invariant and physical. Therefore, it is expected,

what in curved coordinates of flat spacetime, or in curved spacetime holds following law of

our research team ∮
Aν σν =

∫ ∫ ∫
Aµ;µ

√
−g dΩ ,

which is also scalar. Here σν = nν
√
−g dσ, where the surface element dσ = dxi dxj dxk with

i 6= j 6= k and i, j, k ∈ (t, x, y, z), the coordinate volume dΩ = dt dx dy dz. Here the x, y, z

are not necessarily the Cartesian coordinates, ie. in some cases might be x ≡ r, y ≡ θ,

z ≡ φ. All this is possible, because the vector basis of the ”curvature coordinates” can be

only orthonormal.

Here must hold |nν nν | = 1, and nν must be orthogonal to the surface ϕ(t, x, y, z) = const

of integration: nν = ϕ, ν . Note, what (e.g. in example Aµ ν = Cµ Uν , where Cµ are constants)

in curved situation the formula does not hold for second (and higher) rank tensors. Perhaps

even the flat spacetime suffers this problem in a curved coordinate systems.

Now the theory is over, let us apply our knowledge!

I. APPLICATION

The continuity equation Jν ; ν = 0, where the 4-current of fluid or dust is Jν = −T νµ uµ.

In curved spacetime it is an absurd: what is conserved, if there is no consistent theory
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of conservation??? But now it describes (with help of our research team) the rest-mass

conservation. The latter means, that the number of particles in fluid (or dust) remains the

same.

Therefore, holds, if J i = 0 at the borders.

T tµ u
µ√−g = const.

Let us prove, that Jν ; ν = 0.

(T νµ u
µ);ν = T νµ u

µ
;ν

We can get insides on the closed Friedman Universe with help of this simple tricks:

If you have the Scalar Curvature R, then R; ν ≡ Aν is needed vector. If you have Scalar

S = Rµ ν Rµ ν then needed vector is S; ν .

If you have tensor Rµ ν then needed vector is Kν := Rν µ δtµ, where δtµ = (1, 0, 0, 0) are

coordinates of the temporal basis vector of the curvature coordinates.

Keep in mind, what in presence of Dark Energy is not holding the old good formula

Gµ ν = 8π T µ ν , and in presence of Dark Matter even such promising formula Gµ ν + Λ gµ ν =

8π T µ ν fails. Why, you’re asking? The Dark Matter and Dark Energy have no experimental

reason to be included in the Matter section of General Relativity: they are not in T µ ν . See

also vixra.org/abs/1512.0347

II. APPLICATION FOR FRIEDMANN UNIVERSE

. Take the simple metric ds2 = −dt2 + a2(t) (dr2/(1− k r2) + r2dΩ2), where k = −1, 0, 1.

Let the Aν does not depend on space coordinates, only on time. The
√
−g ∼ a3(t), therefore

holds (after the taken the t-derivative)

(At a3), t = Aν ; ν a
3 .

It is really amazing, what all the choices our research team made (Aν = R; ν , Aν =

(Rαβ Rαβ); ν , Aν = (Rt t); ν)) do satisfy the latter equation identically and without restriction

of the a(t): it holds with any vector Aν and with any scale function a(t) and for any kind

of Universe (ie, the constant k is also arbitrary).

If you apply the formulas for the energy-momentum tensor of the perfect fluid T µν =

(−ρ(t), p(t), p(t), p(t)) then it turned out to be

ρ = ρ0 (a0/a(t))3 .
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Because must hold the continuity equation (ρ uν); ν = 0 with uν = (1, 0, 0, 0). This case

coincides perfectly with experimental data: see vixra.org/abs/1304.0086.
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