Bagadi, R. (2017). Dynamic Thresholding For Linear Binary Classifiers. {Version 2} ISSN 1751-3030. $PHILICA.COM\ Article\ number\ 1146.$

http://www.philica.com/display_article.php?article_id=1146

Dynamic Thresholding For Linear Binary Classifiers. {Version 2} ISSN 1751-3030

Author:

Ramesh Chandra Bagadi

Data Scientist
INSOFE (International School Of Engineering),
Hyderabad, India.
rameshcbagadi@uwalumni.com
+91 9440032711

Research Manuscript

Abstract

In this research investigation, the author has detailed a novel method of finding the Thresholding for Linear Binary Classifiers.

Theory

Method 1:

If y_l (for l = 1 to n) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value y_t using the equation

$$\sum_{i=1}^{m} (y_i - y_t) y_i = \sum_{j=1}^{n-m} |(y_j - y_t)| y_j$$
 Equation 1

with $i \neq j$, $y_i > y_t$, $y_j < y_t$ and $y_i, y_j \in y_l$. But since we do not know y_t , we first order all the y_l in increasing order and choose y_t to be in between the y_l values, i.e., $y_l < y_t < y_{l+1}$ (for l = 1 to n-1). That is for n number of points, we need to choose (n-1) number of domains of y_t . Values of y_t within one of these domains gives us the best y_t , the best being the one which satisfies the above stated equation 1 best.

Bagadi, R. (2017). Dynamic Thresholding For Linear Binary Classifiers. {Version 2} ISSN 1751-3030. PHILICA.COM Article number 1146.

http://www.philica.com/display_article.php?article_id=1146

Method 2:

Case 1:

If x_l , y_l (for l=1 to n) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value y_t using the equation

$$\sum_{i=1}^{m} (y_i - y_t)(x_t - x_i) = \sum_{j=1}^{n-m} (y_t - y_j)(x_j - x_t)$$
 Equation 2

with $i \neq j$, $y_i > y_t$, $y_j < y_t$, $x_i < x_t$, $x_j > x_t$ and $y_i, y_j \in y_l$. But since we do not know x_t , y_t , we first order all the y_l in increasing order and choose y_t to be in between the y_l values, i.e., $y_l < y_t < y_{l+1}$ (for l = 1 to n-1). We similarly, order all x_l in increasing order and choose x_t to be in between the x_l values, i.e., $x_l < x_t < x_{l+1}$ (for l = 1 to l = 1). That is for l = 1 number of points, we need to choose l = 1 number of domains (each) of l = 1 to l = 1 number of domains (each) of l = 1 to l = 1 number of domains (each) of l = 1 to l = 1 number of domains (each) of l = 1 to l = 1 number of domains (each) of l = 1 number of their (respective) domains such that they satisfy the above stated equation 2 best.

Case 2:

If y_i (for i = 1 to n) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value y_t using the equation

$$\sum_{i=1}^{m} (y_t - y_i)(x_t - x_i) = \sum_{j=1}^{n-m} (y_j - y_t)(x_j - x_t)$$
 Equation 3

with $i \neq j$, $y_i < y_t$, $y_j > y_t$, $x_i < x_t$, $x_j > x_t$ and $y_i, y_j \in y_l$. But since we do not know x_t , y_t , we first order all the y_l in increasing order and choose y_t to be in between the y_l values, i.e.,

Bagadi, R. (2017). Dynamic Thresholding For Linear Binary Classifiers. {Version 2} ISSN 1751-3030. $PHILICA.COM\ Article\ number\ 1146.$

http://www.philica.com/display_article.php?article_id=1146

 $y_l < y_t < y_{l+1}$ (for $l=1\ to\ n-1$). We similarly, order all x_l in increasing order and choose x_t to be in between the x_l values, i.e., $x_l < x_t < x_{l+1}$ (for $l=1\ to\ n-1$). That is for n number of points, we need to choose (n-1) number of domains (each) of x_t and y_t . Now, we have to choose the values of x_t , y_t within one of their (respective) domains such that they satisfy the above stated equation $2\ best.$

References

1.http://www.philica.com/advancedsearch.php?author=12897

2.http://www.vixra.org/author/ramesh_chandra_bagadi